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Abstract. We calculate the almost sure Hausdorff dimension of the random covering set lim supn→∞(gn + ξn) in d-dimensional
torus Td , where the sets gn ⊂ T

d are parallelepipeds, or more generally, linear images of a set with nonempty interior, and ξn ∈ T
d

are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear
mappings, holds provided that the sequences of the singular values are decreasing.

Résumé. Nous calculons presque sûrement la dimension de Hausdorff de l’ensemble de recouvrement aléatoire lim supn→∞(gn +
ξn) dans le tore T

d de dimension d, où gn ⊂ T
d sont des parallélépipèdes, ou plus généralement, des images linéaires d’un en-

semble d’intérieur non vide et ξn ∈ T
d sont des points aléatoires indépendants et uniformément distribués. La formule de dimen-

sion, exprimée en fonction des valeurs singulières des applications linéaires, est valable à condition que la suite de ces valeurs
singulières soit décroissante.

MSC: 60D05; 28A80
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1. Introduction

Given a sequence of positive numbers (ln) and a sequence of independent random variables (ξn) uniformly distributed
on the circle T

1 =R/Z, define the random covering set E as follows:

E = {
x ∈ T

1|x ∈ [ξn, ξn + ln] for infinitely many n
} = lim sup

n→∞
[ξn, ξn + ln].

Denoting the Lebesgue measure by L and using the Borel–Cantelli lemma and Fubini’s theorem, it follows that,
almost surely, the following dichotomy holds:

L(E) =
{

0, when
∑∞

n=1 ln < ∞,

1, when
∑∞

n=1 ln = ∞,
(1.1)

that is, almost all or almost no points of the circle are covered, depending on whether or not the series of the lengths
of the covering intervals diverges.

The case of full Lebesgue measure has been extensively studied. It was a long-standing problem to find conditions
on (ln) guaranteeing that the whole circle is covered almost surely, that is,

P
(
E = T

1) = 1. (1.2)
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This problem, known in literature as the Dvoretzky covering problem, was first posed by Dvoretzky [5] in 1956. After
substantial contribution of many, including Kahane [18], Erdős [7], Billard [3] and Mandelbrot [24], the full answer
was given by Shepp [29] in 1972. He proved that (1.2) holds if and only if

∞∑
n=1

1

n2
exp(l1 + · · · + ln) = ∞,

where the lengths (ln) are in decreasing order. After this, a natural problem, raised by Carleson (private communication
to Kahane), is to describe the growth of the covering number of a given point x ∈ T

1, that is, to study the asymptotic
behaviour of the sums

CN(x) =
N∑

n=1

χ[ξn,ξn+ln](x),

where χA is the characteristic function of a set A. Obviously, the expectation E(CN(x)) = ∑N
n=1 ln. In the case ln = γ

n

with γ > 1, Fan and Kahane [10] proved that almost surely the order of the covering number CN(x) is logN for every
x ∈ T

1, meaning that for sufficiently large N

Aγ logN ≤ min
x∈T1

CN(x) ≤ max
x∈T1

CN(x) ≤ Bγ logN

with positive and finite constants Aγ and Bγ . Furthermore, Fan [9] verified that the set

Fβ =
{
x ∈ T

1
∣∣∣ lim
N→∞

CN(x)∑N
n=1 ln

= β

}
has positive Hausdorff dimension for a certain interval of β > 0 in the case ln = γ

n
with γ > 0. For general ln, Barral

and Fan [2] answered Carleson’s problem by identifying three kinds of phenomena depending whether the index

γ̄ = lim supN→∞
∑N

n=1 ln
− log lN

is zero, positive and finite or infinite. More precisely, when γ̄ = 0, dimH Fβ = 1 almost

surely for all β ≥ 0, when γ̄ = ∞, F1 = T
1 almost surely, and when 0 < γ̄ < ∞, dimH Fβ depends on β . Here the

Hausdorff dimension is denoted by dimH.
For the case of zero Lebesgue measure, the Hausdorff dimension of E was first calculated by Fan and Wu [12]

in the case ln = 1/nα . When studying the Hausdorff measure and the large intersection properties of E for general
ln, Durand [4] gave another, independent proof of the dimension result. According to [12] and [4], the almost sure
Hausdorff dimension of E is given by

dimH E = inf

{
t ≥ 0

∣∣∣ ∞∑
n=1

ltn < ∞
}

= lim sup
n→∞

logn

− log ln
, (1.3)

where the lengths ln are in decreasing order. In [4], the author also proved that the packing dimension of E equals
1 almost surely. When considering the hitting probability property of the random set E, Li, Shieh and Xiao [22]
provided an alternative way to obtain the Hausdorff and packing dimension results under some additional conditions.
The result (1.3) can be also proven as a consequence of the mass transference principle due to Beresnevich and Velani
[1] (see Proposition 4.7). The fact that both packing and box counting dimensions are equal to 1 almost surely follows
since E is almost surely a dense Gδ-set in T

1 (see [19], Chapter 5, Proposition 11, and [27], Section 2).
In this paper we study random covering sets in d-dimensional torus Td . Letting (gn) be a sequence of subsets of

T
d and letting (ξn) be a sequence of independent random variables, uniformly distributed on T

d , define the random
covering set by

E = lim sup
n→∞

(gn + ξn) =
∞⋂

n=1

∞⋃
k=n

(gk + ξk).
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Notice that a counterpart of (1.1) is easily obtained, that is, almost surely

L(E) =
{

0, when
∑∞

n=1 L(gn) < ∞,

1, when
∑∞

n=1 L(gn) = ∞,

where L is the Lebesgue measure on T
d .

On the d-dimensional torus the Dvoretzky covering problem has been studied by El Hélou [6] and Kahane [20]
among others. In [20] Kahane gave a complete solution for the problem when the sets gn are similar simplexes (see
also Janson [16]). However, in the general case the covering problem has not been completely solved.

For an overview on the research on random covering sets and related topics, we refer to [19], Chapter 11, the survey
[21] and the references therein. Here we only mention a few variations on the classical random covering model. For
example, Hawkes [13] considered under which conditions all the points in K ⊂ T

1 are covered with probability one
(or zero). Mandelbrot [25], in turn, introduced Poisson covering of the real line (see also Shepp [28]). In general
metric spaces, the random coverings by balls have been studied by Hoffman-Jörgensen [15]. Recent contributions to
the topic include various types of dynamical models, see Fan, Schmeling and Troubetzkoy [11], Jonasson and Steif
[17] and Liao and Seuret [23].

We address the question of determining the analogue of (1.3) in higher dimensional case. In [12] the method is
strongly adapted to the 1-dimensional case whereas the argument based on the mass transference principle [1] can
be carried through in any dimension provided that the sets gn are uniformly ball like (see Proposition 4.7). Our main
interest is the case where the sets gn are not uniformly ball like, and therefore, the mass transference principle cannot
be applied. It turns out that almost surely the Hausdorff dimension of the covering set E is given in terms of the
singular value functions of the linear mappings related to the system, see Theorem 2.1.

To this end, in Section 2 we introduce our setting, state our main result and prove preliminary lemmas including
the upper bound for the dimension. In Section 3 we construct a random subset of the covering set E having large
dimension with positive probability which, in turn, gives the lower bound of the dimension in Section 4.

2. Preliminaries and statement of main theorem

Denote the closed ball of radius r and centre x in R
d by B(x, r). Letting L :Rd →R

d be a contractive linear injection,
the image L(B(0,1)) of the unit ball B(0,1) is an ellipse whose semiaxes are non degenerated. The singular values
0 < αd(L) ≤ · · · ≤ α1(L) < 1 of L are the lengths of the semiaxes of L(B(0,1)) in decreasing order. Given 0 < s ≤ d ,
define the singular value function by

Φs(L) = α1(L) · · ·αm−1(L)αm(L)s−(m−1),

where m is the integer such that m − 1 < s ≤ m.
We use the notations Td for the d-dimensional torus and L for the Lebesgue measure on T

d . Consider a probability
space (Ω,A,P ) and let (ξn) be a sequence of independent random variables which are uniformly distributed on T

d ,
that is, (ξn)∗P = L, where (ξn)∗P is the image measure of P under ξn. Letting (gn) be a sequence of subsets of Td ,
we use the notation Gn for the random translates Gn = gn + ξn ⊂ T

d and define the random covering set generated
by (gn) by

E = Eω = lim sup
n→∞

Gn.

In this paper we consider the case gn = Π(Ln(R)), where R ⊂ [0,1]d has non-empty interior, Ln :Rd → R
d is a

contractive linear injection for all n ∈ N and Π :Rd → T
d is the natural covering map. Moreover, we assume that for

all i = 1, . . . , d the sequence of singular values αi(Ln) decreases to 0 as n tends to infinity. Defining

s0 = inf

{
0 < s ≤ d

∣∣∣ ∞∑
n=1

Φs(Ln) < ∞
}

, (2.1)

with the interpretation s0 = d if
∑∞

n=1 Φd(Ln) = ∞, we are ready to state our main theorem.
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Theorem 2.1. For P -almost all ω ∈ Ω we have

dimH Eω = s0. (2.2)

Theorem 2.1 is an immediate consequence of the following proposition concerning the case where each generating
set gn is a rectangular parallelepiped in T

d meaning that there exist a parallelepiped g̃n ⊂ R
d such that gn = Π(g̃n).

In what follows rectangular parallelepipeds will consistently be called rectangles.
Let E(gn) = Eω(gn) be the covering set generated by a sequence (gn) of rectangles. For all rectangles g and for

all 0 < s ≤ d define

Φs(g) = α1(g) · · ·αm−1(g)αm(g)s−(m−1),

where 0 < αd(g) ≤ · · · ≤ α1(g) < 1 are the lengths the edges of g in decreasing order and m is the integer such that
m − 1 < s ≤ m.

Proposition 2.2. Assume that (gn) is a sequence of rectangles such that for all i = 1, . . . , d the sequence of lengths
αi(gn) decreases to 0 as n tends to infinity. Then almost surely

dimH E(gn) = s0(gn), (2.3)

where

s0(gn) = inf

{
0 < s ≤ d

∣∣∣ ∞∑
n=1

Φs(gn) < ∞
}

with the interpretation s0 = d if
∑∞

n=1 Φd(gn) = ∞.

We proceed by verifying first that Theorem 2.1 follows from Proposition 2.2.

Proof of Theorem 2.1 as a consequence of Proposition 2.2. Letting (Ln), R and E be as in Theorem 2.1, there are
sequences (g′

n) and (gn) of rectangles such that g′
n ⊂ Π(Ln(R)) ⊂ gn, and moreover, αi(g

′
n) = c′αi(Ln) and αi(gn) =

cαi(Ln) for all i = 1, . . . , d . Here the constants c′ and c are independent of n and i. Since E(g′
n) ⊂ E ⊂ E(gn) we

have

dimH E
(
g′

n

) ≤ dimH E ≤ dimH E(gn).

Applying Proposition 2.2 to the sequences (g′
n) and (gn) and noting that s0(g

′
n) = s0(gn) = s0, gives (2.2). �

It remains to prove Proposition 2.2. As the first step we verify the following lemma according to which the Haus-
dorff dimension of E(gn) is always bounded above by s0(gn). The proof is standard following, for example, the ideas
in [8].

Lemma 2.3. Assume that (gn) and s0(gn) are as in Proposition 2.2. Then for all ω ∈ Ω we have dimH Eω(gn) ≤
s0(gn).

Proof. We may assume that s0(gn) < d . Let s0(gn) < s < d and let m be the integer with m − 1 < s ≤ m. For each
n ∈ N we estimate the number of cubes of side length αm(gn) needed to cover Gn. By expanding the last d − m + 1
edges of Gn to length αm(gn) and by dividing the expanded rectangle to cubes of side length αm(gn), we end up with
an upper bound(⌊

α1(gn)

αm(gn)

⌋
+ 1

)
. . .

(⌊
αm−1(gn)

αm(gn)

⌋
+ 1

)
≤ 2m−1α1(gn) · · ·αm−1(gn)αm(gn)

−m+1,

where the integer part of any x ≥ 0 is denoted by 
x�.



Affine random covering sets in torus 1375

Recalling that for all N ∈ N

E(gn) ⊂
∞⋃

n=N

Gn,

gives the following estimate for the s-dimensional Hausdorff measure

Hs(E) ≤ lim inf
N→∞

∞∑
n=N

2m−1(√dαm(gn)
)s

α1(gn) · · ·αm−1(gn)αm(gn)
−m+1

= lim inf
N→∞

∞∑
n=N

2m−1(
√

d)sΦs(gn) = 0.

This implies that dimH E(gn) ≤ s0(gn). �

We continue by proving two auxiliary results.

Lemma 2.4. Assume that (Ln) is a sequence of contractive linear injections Ln :Rd → R
d . Let s0 be as in (2.1) and

let m − 1 < s0 ≤ m. Defining for all m − 1 < s < s0

f (s) := lim sup
n→∞

logn

− logΦs(Ln)
,

we have f (s) > 1.

Proof. We will show that f (s) ≥ 1 for all m − 1 < s < s0 and f is strictly decreasing. This clearly implies the claim.
Let m − 1 < s < s0. The fact that

∑∞
n=1 Φs(Ln) = ∞ implies that for all ε > 0 there exists a subsequence (nk)

such that Φs(Lnk
) > 1

n1+ε
k

for all k. From this we deduce that f (s) ≥ 1
1+ε

, and letting ε go to 0 yields f (s) ≥ 1.

Consider δ > 0 such that m − 1 < s + δ < s0. Since Φs(Ln) ≥ αm(Ln)
s we obtain

Φs+δ(Ln) = Φs(Ln)αm(Ln)
δ ≤ Φs(Ln)

1+δ/s ,

giving

f (s + δ) ≤ lim sup
n→∞

logn

(1 + δ/s)(− logΦs(Ln))
= f (s)

1 + δ/s
< f (s).

Hence f is strictly decreasing. �

Remark 2.5. Lemma 2.4 holds for all 0 < s < s0, but this stronger claim is not necessary for our purposes.

Proposition 2.6. Assume that G ⊂ T
d and L(G) > 0. Let ξ1, . . . , ξn be independent, uniformly distributed random

variables on T
d . Let

Mn = #
{
i ∈ {1, . . . , n}|ξi ∈ G

}
,

where #A denotes the number of elements in a set A. Then

P

(
Mn ≤ 1

2
nL(G)

)
≤ 4(1 −L(G))

nL(G)
.
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Proof. Denote by χA the characteristic function of a set A. Calculating the first and second moments of Mn gives

E(Mn) = E

(
n∑

i=1

χ{ξi∈G}

)
= nL(G)

and

E
(
M2

n

) = E

((
n∑

i=1

χ{ξi∈G}

)2)
= E

(
n∑

i=1

χ{ξi∈G} +
∑
j 
=i

χ{ξi∈G}χ{ξj ∈G}

)

= nL(G) + (
n2 − n

)
L(G)2.

From Chebyshev’s inequality we deduce

P

(
Mn ≤ 1

2
E(Mn)

)
≤ P

(∣∣Mn −E(Mn)
∣∣ ≥ 1

2
E(Mn)

)

≤ 4(E(M2
n) −E(Mn)

2)

E(Mn)2
= 4(1 −L(G))

nL(G)

which completes the proof. �

3. Construction of random Cantor sets

Let (gn) and s0(gn) be as in Proposition 2.2. Consider an integer m such that m− 1 < s0(gn) ≤ m. For notational sim-
plicity, we assume that 0 is a vertex of each gn. Indeed, by choosing suitable deterministic translates, we find an iso-
morphic probability space (Ω ′,A′,P ′) where this is the case since the random variables (ξn) are uniformly distributed
and the rectangles (gn) are deterministic. For each n, let Tn :Rd → R

d be a linear map such that Π(Tn([0,1]d)) = gn.
Observe that αi(Tn) = αi(gn) for all i = 1, . . . , d . Let m− 1 < s < s0(gn). For the purpose of proving Proposition 2.2
we construct in this section an event Ω(∞) ⊂ Ω , having positive probability, and a random Cantor like set Cω such
that Cω ⊂ Eω for all ω ∈ Ω(∞). In Section 4 we prove that dimH Cω ≥ s almost surely conditioned on Ω(∞).

Let a0 = 1
2 . Consider a sequence (al) of real numbers larger than 1/2 increasing to 1 with

∏∞
l=1

1
al

< ∞. By
Lemma 2.4, there exists a sequence (nk) of natural numbers satisfying

lim
k→∞

lognk

− logΦs(Tnk
)

= f (s) > 1. (3.1)

Moreover, by considering a suitable subsequence of (nk), we may assume that for all k ∈N

diam(gnk
) ≤ 1

2
(1 − ak−1)αd(gnk−1), (3.2)

nkL(gnk−1) ≥ n
(3+f (s))/(2+2f (s))
k and (3.3)

lognk ≥ nk−1, (3.4)

where n0 = 0 and g0 = T
d . Notice that since the sequence (nk) is deterministic it is independent of ω ∈ Ω .

We proceed by constructing inductively a random nested sequence of finite collections Ck of rectangles as follows:
Let C0 = {Td} and N0 = 1. Define N1 = 
 1

2ad
0 n1� and I (1,Td) = {1, . . . ,N1}. For all i ∈ I (1,Td), let g′

i be a linear
isometric copy of gn1 contained in gi . The existence of g′

i follows from the fact that αj (gn1) ≤ αj (gi) for all i ≤ n1

and j = 1, . . . , d . For each i ∈ I (1,Td), set G′
i = g′

i + ξi . Then G′
i ⊂ Gi . Defining C1 = {G′

i |i ∈ I (1,Td)}, we have

⋃
G∈C1

G ⊂
n1⋃
i=1

Gi.
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Furthermore, the collection C1 can be chosen for any ω ∈ Ω =: Ω(1) giving P(Ω(1)) = q1 with q1 = 1.
Assume that there exist events Ω(1), . . . ,Ω(k − 1) with P(

⋂k−1
j=1 Ω(j)) = q1 · · ·qk−1 such that for all ω ∈⋂k−1

j=1 Ω(j) there are collections C1, . . . ,Ck−1 having the following properties for all j = 1, . . . , k − 1(
1

2

)3

ad
j−1(nj − nj−1)L(gnj−1) ≤ Nj ≤ (nj − nj−1)L(gnj−1), where Nj = #Cj , (3.5)⋃

G∈Cj

G ⊂
⋃

G∈Cj−1

G, (3.6)

#
{
G′ ∈ Cj |G′ ⊂ G

} =
⌊

1

2
ad
j−1mjL(gnj−1)

⌋
for each G ∈ Cj−1

where mj =
⌊

nj − nj−1

Nj−1

⌋
, (3.7)

Cj is a finite collection of isometric copies of gnj
and (3.8)

⋃
G∈Cj

G ⊂
nj⋃

l=nj−1+1

Gl. (3.9)

We define an event Ω(k) such that P(
⋂k

j=1 Ω(j)) = q1 · · ·qk and for all ω ∈ ⋂k
j=1 Ω(j) there is a collection Ck

satisfying (3.5)–(3.9). Write Ck−1 = {G̃1, . . . , G̃Nk−1} and set mk = 
nk−nk−1
Nk−1

�. For l = 1, . . . ,Nk−1, define random
sets

Ĩ (k, G̃l) = {
i ∈ {

nk−1 + 1 + (l − 1)mk, . . . , nk−1 + lmk

}|ξi ∈ ak−1G̃l

}
,

where aG is the similar copy of G with similarity ratio a and with the same centre as G. Let

Ω(k) =
{
ω ∈ Ω

∣∣∣#Ĩ (k,G) >
1

2
ad
k−1mkL(gnk−1) for all G ∈ Ck−1

}
and

qk = P
(
Ω(k)|Ω(1), . . . ,Ω(k − 1)

)
.

Note that qk > 0. For each G ∈ Ck−1 we denote by I (k,G) the collection of the first 
 1
2ad

k−1mkL(gnk−1)� elements in
Ĩ (k,G) and set

Ck = {
G′

i |G ∈ Ck−1, i ∈ I (k,G)
}

and Nk = #Ck,

where G′
i = g′

i + ξi and g′
i is a linear isometric copy of gnk

contained in gi . (See Fig. 1.) Observe that Nk is deter-
ministic. As above, g′

i exists since αj (gnk
) ≤ αj (gi) for all j = 1, . . . , d and i ≤ nk . Clearly, (3.7) and (3.8) are valid

for Ck . Since, by inequality (3.2), we have g′
i + ξi ⊂ G ∈ Ck−1 provided that ξi ∈ ak−1G, property (3.6) holds for Ck .

Furthermore, the choices of mk and I (k,Gl) imply (3.9). The choice of mk gives(
1

2

)3

ad
k−1(nk − nk−1)L(gnk−1) ≤ Nk−1

⌊
1

2
ad
k−1mkL(gnk−1)

⌋
= Nk

≤ (nk − nk−1)L(gnk−1),

and therefore, condition (3.5) is satisfied for Ck . Finally,

P

(
k⋂

l=1

Ω(l)

)
= P

(
Ω(k)|Ω(1), . . . ,Ω(k − 1)

)
P

(
k−1⋂
l=1

Ω(l)

)
= q1 · · ·qk.
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Fig. 1. Construction of Ck .

Letting Ω(∞) = ⋂∞
n=1 Ω(n), we have P(Ω(∞)) = ∏∞

n=1 qn. Define for all ω ∈ Ω(∞)

Cω =
∞⋂

n=1

⋃
G∈Cn

G ⊂ Eω.

Next we verify that the Cantor like set Cω ⊂ Eω exists with positive probability. We use the notation Fk for the
σ -algebra generated by the random variables ξ1, . . . , ξnk

.

Proposition 3.1. With the above notation we have P(Ω(∞)) > 0.

Proof. We have

qk = P
(
Ω(k)|Ω(1), . . . ,Ω(k − 1)

)
= 1

P(
⋂k−1

l=1 Ω(l))
P

(
Ω(k) ∩

k−1⋂
l=1

Ω(l)

)

= 1

P(
⋂k−1

l=1 Ω(l))
E

(
E(χΩ(k)χ⋂k−1

l=1 Ω(l)
|Fk−1)

)
= 1

P(
⋂k−1

l=1 Ω(l))
E

(
χ⋂k−1

l=1 Ω(l)
E(χΩ(k)|Fk−1)

)
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= 1

P(
⋂k−1

l=1 Ω(l))
E

(
χ⋂k−1

l=1 Ω(l)
E(χ⋂

G∈Ck−1
{#Ĩ (k,G)>(1/2)ad

k−1mkL(gnk−1 )}|Fk−1)
)

≥ 1

P(
⋂k−1

l=1 Ω(l))
E

(
χ⋂k−1

l=1 Ω(l)

(
1 −

∑
G∈Ck−1

E(χ{#Ĩ (k,G)≤(1/2)mkL(ak−1gnk−1 )}
∣∣∣Fk−1)

))
,

and applying Proposition 2.6 hence gives

qk ≥ 1 − N2
k−1

8(1 −L(ak−1gnk−1))

(nk − nk−1)L(ak−1gnk−1)
=: 1 − pk.

Inequalities (3.5) and (3.4), in turn, imply that Nk−1 ≤ (nk−1 − nk−2)L(gnk−2) ≤ nk−1 ≤ lognk , and therefore, noting
that nk − nk−1 ≥ 1

2nk by (3.4) and using (3.3), we obtain

∞∑
k=1

pk ≤
∞∑

k=1

8(1 −L(ak−1gnk−1))(lognk)
2

(1/2)ad
k−1nkL(gnk−1)

≤
∞∑

k=1

8(lognk)
2

(1/2)ad
k−1n

(3+f (s))/(2+2f (s))
k

< ∞,

where the convergence follows since by (3.4) the sequence (nk) is growing exponentially fast. Letting k0 ∈N be such
that pk < 1 for all k ≥ k0, we have

∏∞
k=1 qk ≥ ∏k0

k=1 qk

∏∞
k=k0+1(1 − pk) > 0. �

Remark 3.2. The idea of finding a large-dimensional Cantor subset of the random covering set was already exploited
in the dimension calculation of Fan and Wu [12] in the case of T1. In their proof it is essential that the sets Cω are
homogeneous and the construction intervals are well-separated, which follows from well-known results on random
spacings of uniform random samples [14]. Structure of the set allows them then to directly estimate sizes of inter-
sections of balls with the set Cω, giving the dimension bound from below. In our choice of the subset Cω, however,
separation of the generating sets plays no role. Indeed, it is a well-known fact that for self-affine sets no separation
condition guarantees the dimension formula. Also a direct estimate for measures of balls is probably hopeless. Instead
a potential theoretic method based on a transversality argument is the key, see Lemma 4.3 below. In the implementation
of this idea we need the assumption (3.8).

4. Dimension estimate

Using the notation introduced in Section 3, we prove that for s < s0(gn) the event {ω ∈ Ω(∞)|dimH Cω ≥ s} has pos-
itive probability. To obtain the dimension bound, we use potential theoretic methods and define a measure supported
on Cω with finite s-energy. In what follows, we consider only the event Ω(∞) and denote the expectation over Ω(∞)

simply by E.
For any ω ∈ Ω(∞), k ∈ N and G ∈ Ck−1, let Mk = #I (k,G) = 
 1

2ad
k−1mkL(gnk−1)� be the number of level k

construction rectangles contained in G. Notice that Mk is a deterministic number depending only on k. For later
notational simplicity, we will relabel the random variables ξi using a deterministic tree structure.

For all l ∈N, consider the sets Jl = {i1 . . . il |ij ∈ {1, . . . ,Mj } for all j ∈ {1, . . . , l}} and define J = ⋃∞
l=0 Jl , with the

convention J0 = {∅}. For i, j ∈ J, denote by i ∧ j the maximal common initial sequence of i and j and let ij ∈ J be the
word obtained by juxtaposing the words i and j. Further, we denote by |i| the length of i ∈ J, that is, |i| = l if i ∈ Jl . For
each l ≤ k and i ∈ Jl , define the cylinder of length l and of depth k by C(i, k) = {j ∈ Jk|i ∧ j = i}. For i ∈ {1, . . . ,M1},
define φi = ξi and G(i) = g′

i + φi and let T ′
i be a linear map such that Π(T ′

i ([0,1]d) = g′
i . Assume that we have

defined the random variables φi and the rectangles G(i) ∈ Ck−1 for all i ∈ Jk−1. Let I (k,G(i)) = {j1, . . . , jMk
}

where ji < ji+1 in the natural order given by the construction. For all i ∈ {1, . . . ,Mk}, define φii = ξji
, g′

ii = g′
ji

and G(ii) = g′
ii + φii and let T ′

ii be a linear map satisfying Π(T ′
ii ([0,1]d)) = g′

ii . Then det(Tn|i|) = L(G(i)) and
Φs(T ′

i ) = Φs(Tn|i|) for all i ∈ J. For notational purposes set G(∅) = T
d and φ∅ = 0. When necessary we view T ′

i as a
map on T

d by identifying T
d with [0,1[d . Finally, for i1, . . . , ik ∈ J, denote by F(i1, . . . , ik) the σ -algebra generated

by the events {ω ∈ Ω(∞)|G(il ) = Ql for all l = 1, . . . , k}, where each Ql ⊂ T
d is an isometric copy of gn|il | .

Remark 4.1. Note that {φi|i ∈ C(j, k)} = {ξi |i ∈ I (k,G(j))} for any j ∈ Jk−1 and {φi|i ∈ Jk} = {ξi |i ∈⋃
G∈Ck−1

I (k,G)}. Let A ⊂ T
d be a Borel set with L(A) > 0. Since ξj is uniformly distributed on T

d for given j ,
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every ξj is uniformly distributed on A when conditioned on the event ξj ∈ A. Let i ∈N and let ii ∈ Jk+1. By definition
φii = ξj for some j ∈ {nk + 1, . . . , nk+1} with ξj ∈ G(i), and hence the random variable φii is uniformly distributed
on akG(i) when conditioned on φii = ξj and the σ -algebra F(i). Furthermore,

E
(
χ{φii∈A}|F(i)

) =
nk+1∑

j=nk+1

E
(
χ{φii∈A}|F(i),φii = ξj

)
E

(
χ{φii=ξj }|F(i)

)

= L(A ∩ akG(i))
L(akG(i))

nk+1∑
j=nk+1

E
(
χ{φii=ξj }|F(i)

) = L(A ∩ akG(i))
L(akG(i))

.

Hence φii is uniformly distributed inside akG(i) when conditioned on F(i). Moreover, if j satisfies j ∧ ii 
= ii, con-
ditioning on F(i, j) instead of F(i) does not change the uniform distribution of φii on akG(i), since ξj and ξl are
independent for j 
= l. Recall that even though the corner points φii and φih are independent for i 
= h, the rectangles
G(ii) and G(ih) are not, since the orientation of g′

ii is determined by the index ji .

Lemma 4.2. The sequence of measures μω
l on T

d given by

μω
l =

∑
i∈Jl

(T ′
i + φi)∗L
Nl

(4.1)

converges in weak∗-topology to a measure μω supported on Cω.

Proof. By the Riesz representation theorem a weak∗-limit μω exists, if we prove that for all positive, continuous
functions f on T

d the sequence
∫

f dμω
l converges.

To that end, fix a positive, continuous function f on T
d and ε > 0. Since T

d is compact, there exists δ > 0 with
|f (x) − f (y)| < ε for all |x − y| < δ. Let K be so large that diam(gnK

) < δ, and fix k ≥ K . Write μω
k as a sum of

measures μω
i,k defined by

μω
k =

∑
i∈JK

∑
j∈C(i,k)

(T ′
j + φj)∗L

Nk

=
∑
i∈JK

μω
i,k.

For all i ∈ JK , we have μω
i,k(G(i)) = 1

NK
= μω

i,K(G(i)) and sptμω
i,k ⊂ G(i). Therefore,∣∣∣∣∫ f dμω

k −
∫

f dμω
K

∣∣∣∣ ≤
∑
i∈JK

∣∣∣∣∫
G(i)

f dμω
i,k −

∫
G(i)

f dμω
i,K

∣∣∣∣ ≤ ε,

since diamG(i) = diam(gnK
) < δ. Thus sequence

∫
f dμω

l converges. The claim sptμω ⊂ Cω holds since Cω is
compact and sptμω

l ⊂ ⋃
G∈Cl

G for all l. �

Next we show that for all s < s0(gn) the s-energy I s(μω) = ∫ ∫ dμω(x)dμω(y)
|x−y|s of μω is finite almost surely. In the

energy estimate we will make use of the following lemma [8], Lemma 2.2.

Lemma 4.3 (Falconer). Let s be non-integral with 0 < s < d and let T :Rd → R
d be an affine injection. Then there

exists a number 0 < D0 < ∞, depending only on d and s, such that∫
[0,1]d

dL(x)

|T (x)|s ≤ D0

Φs(T )
.

Lemma 4.4. For all i, j ∈ J and x, y ∈ T
d we have

E
(
χG(j)(y)χG(i)(x)

) ≤
( ∞∏

l=1

1

al

)2d
det(Tn|i|)det(Tn|j|)

det(Tn|i∧j|)
2

E
(
χG(i∧j)(y)χG(i∧j)(x)

)
.
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Proof. Since (
∏∞

l=1
1
al

) > 1, the claim holds when i = j. Consider i 
= j ∈ J. Without loss of generality, we may

assume that |i| ≥ |j|. Letting k ∈ J and i ∈N satisfy i = ki ∈ J, we obtain for any x, y ∈ T
d that

E
(
χG(j)(y)χG(i)(x)

) = E
(
χG(j)(y)χG(k)(x)χG(i)(x)

)
= E

(
χG(j)(y)χG(k)(x)E

(
χG(i)(x)|F(j,k)

))
= E

(
χG(j)(y)χG(k)(x)E

(
χx−g′

i
(φi)|F(j,k)

))
.

Even though the orientation of g′
i depends on ω ∈ Ω(∞), the volume L(g′

i) does not. Therefore, from Remark 4.1 we
get

E
(
χx−g′

i
(φi)|F(j,k)

) ≤ L(gn|i|)

L(a|k|gn|k|)
,

and therefore,

E
(
χG(j)(y)χG(i)(x)

) ≤ E

(
χG(j)(y)χG(k)(x)

L(gn|i|)

L(a|k|gn|k|)

)

= det(Tn|i|)

ad
|k| det(Tn|k|)

E
(
χG(j)(y)χG(k)(x)

)
.

Iterating this with respect to k, if necessary, gives

E
(
χG(j)(y)χG(i)(x)

) ≤
( ∞∏

l=1

1

al

)d
det(Tn|i|)

det(Tn|i∧j|)
E

(
χG(j)(y)χG(i∧j)(x)

)
. (4.2)

Inequality (4.2) completes the proof provided that j = i ∧ j. If this is not the case, we apply the above argument with
j playing the role of i and i ∧ j playing that of j. �

Lemmas 4.3 and 4.4 lead to the following energy estimate.

Proposition 4.5. Letting s < s0(gn), there exists a constant C < ∞ such that
∫
Ω(∞)

I s(μω
l )dP(ω) < C for all l ∈N.

In particular, I s(μω) < ∞ for P -almost all ω ∈ Ω(∞).

Proof. Let s < s0(gn) and let i, j ∈ J. Define

H(i, j, s) =
∫
Td

∫
Td

1

|x − y|s d
(
T ′

i + φi
)
∗L(x)d

(
T ′

j + φj
)
∗L(y).

As the functions involved are clearly measurable, use of Fubini’s theorem and Lemmas 4.4 and 4.3 yields the following
estimate∫

Ω(∞)

H(i, j, s)dP = (detTn|i| detTn|j|)
−1

∫
Td

∫
Td

E(χG(i)(x)χG(j)(y))

|x − y|s dL(x)dL(y)

≤
( ∞∏

l=1

1

al

)2d ∫
Td

∫
Td

E(χG(i∧j)(x)χG(i∧j)(y))

det(T ′
i∧j)

2|x − y|s dL(x)dL(y)

=
( ∞∏

l=1

1

al

)2d ∫
Ω(∞)

∫
Td

∫
Td

dL(x)dL(y)dP

|T ′
i∧j(x − y)|s ≤ D

Φs(Tn|i∧j|)
,
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where D depends on D0 of Lemma 4.3. Combining this with (4.1) gives∫
Ω(∞)

I s
(
μω

l

)
dP(ω) =

∫
Ω(∞)

∫
Td

∫
Td

1

|x − y|s dμω
l (x)dμω

l (y)dP(ω)

=
∑

i∈Jl

∑
j∈Jl

N2
l

∫
H(i, j, s)dP ≤ N−2

l

∑
i∈Jl

∑
j∈Jl

D

Φs(Tn|i∧j|)

≤ N−2
l

l∑
K=0

∑
k∈JK

∑
i∈C(k,l)

∑
j∈C(k,l)

D

Φs(TnK
)

=
l∑

K=0

D

NkΦs(TnK
)
.

From (3.1) we deduce that Φs(Tnk
) > n

−2/(1+f (s))
k for large k. Recalling (3.5), (3.4) and (3.3), gives for large k that

NkΦ
s(Tnk

) ≥
(

1

2

)3

ad
k−1(nk − nk−1)L(gnk−1)Φ

s(Tnk
)

≥
(

1

2

)4

ad
k−1nkL(gnk−1)Φ

s(Tnk
) ≥

(
1

2

)4

ad
k−1n

(3+f (s))/(2+2f (s))
k n

−2/(1+f (s))
k

=
(

1

2

)4

ad
k−1n

(f (s)−1)/(2+2f (s))
k . (4.3)

By (3.4) the sequence (nk) is growing exponentially fast. Therefore, recalling that f (s) − 1 < 0, inequality (4.3)
implies that the series

∑∞
K=0

D
NKΦs(TnK

)
converges. The final claim follows by approximating the kernel |x|−s by

kernels min{|x|−s ,A}, where A ∈N. �

Now Proposition 2.2 follows in a straightforward manner.

Proof of Proposition 2.2. By Lemma 2.3 it suffices to prove that dimH E ≥ s0(gn). Consider m−1 < s < s0(gn) ≤ m

where m is an integer. Lemma 4.2 and Proposition 4.5 combined with [26], Theorem 8.7, imply that dimH Cω ≥ s

almost surely conditioned on Ω(∞) which, in turn, gives

P
(
dimH Eω ≥ s

)
> 0.

Since {dimH E ≥ s} is a tail event, from the Kolmogorov zero–one law we deduce that P(dimH E ≥ s) = 1. Approach-
ing s0(gn) along an increasing sequence of real numbers s gives dimH Eω ≥ s0(gn) for P -almost all ω ∈ Ω . �

As we mentioned in the Introduction, for ball like covering sets the dimension formula is an easy consequence of
the mass transference principle of Beresnevich and Velani. Since the proof is quite simple in this case, we give the
details here.

For a ball B = B(x, r) ⊂R
d and 0 < s < d , write Bs = B(x, r

s
d ). We recall a special case of the mass transference

principle [1], Theorem 2, suitable for our purposes.

Theorem 4.6 (Beresnevich–Velani). Let (Bn) ⊂ R
d be a sequence of balls whose radii converge to zero. Suppose

that for any ball B ⊂R
d

Hd
(
B ∩ lim sup

n→∞
Bs

n

)
=Hd(B).

Then for any ball B in R
d ,

Hs
(
B ∩ lim sup

n→∞
Bn

)
= ∞.
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Proposition 4.7. Consider a sequence (gn) of subsets of Td satisfying B(xn, rn) ⊂ gn for sequences of points (xn)

and radii (rn). Letting ρn be the diameter of gn with ρn ↓ 0, assume that there exists C < ∞ such that ρn

rn
≤ C

for all n ∈ N. Let (ξn) be a sequence of independent random variables, uniformly distributed on T
d . Then for E =

lim supn→∞(gn + ξn), almost surely

dimH E = min{s0, d},
where s0 = inf{s ≥ 0|∑∞

n=1 ρs
n < ∞}.

Proof. Let s > s0. Set Gn = gn + ξn. Since E ⊂ ⋃∞
n=N Gn for all N , we obtain

Hs(E) ≤ lim inf
N→∞

∞∑
n=N

ρs
n = 0,

giving dimH E ≤ min{s0, d}.
Obviously, E ⊃ lim supn→∞ Bn where Bn = B(xn + ξn, rn). Consider s < min{s0, d}. Letting K = L(B(0,1)), we

have

∞∑
n=1

L
(
Bs

n

) = K

∞∑
n=1

rs
n ≥ KC−s

∞∑
n=1

ρs
n = ∞. (4.4)

Since P(x ∈ Bs
n) = L(Bs

n) for all x ∈ T
d and n ∈ N, Borel–Cantelli lemma and (4.4) imply P(x ∈ lim supn→∞ Bs

n) =
1. Applying Fubini’s theorem, gives L(lim supn→∞ Bs

n) = 1 almost surely, implying L(lim supn→∞ Bs
n ∩ B) = L(B)

for any ball B ⊂ T
d . From Theorem 4.6 we get Hs(lim supn→∞ Bn) = ∞, which leads to dimH E ≥ min{s0, d},

almost surely. �

Remark 4.8. In T
1 one may assume without loss of generality that (ln) is a decreasing sequence by reordering the

sequence if necessary whereas in T
d with d > 1 one cannot always reorder αi(Ln) simultaneously for all i = 1, . . . , d .

However, we do not know whether this assumption is necessary for the validity of Theorem 2.1.
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