
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2014, Vol. 50, No. 3, 770–805
DOI: 10.1214/13-AIHP538
© Association des Publications de l’Institut Henri Poincaré, 2014

Small positive values for supercritical branching processes in
random environment

Vincent Bansayea and Christian Böinghoffb

aCMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France. E-mail: vincent.bansaye@polytechnique.edu
bDepartment of Mathematics, Goethe-University Frankfurt/Main, Deutschland. E-mail: boeinghoff@math.uni-frankfurt.de

Received 14 March 2012; revised 15 October 2012; accepted 1 January 2013

Abstract. Branching Processes in Random Environment (BPREs) (Zn: n ≥ 0) are the generalization of Galton–Watson processes
where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives
with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes
positive but small values for large times.

We describe the asymptotic behavior of P(1 ≤ Zn ≤ k|Z0 = i), k, i ∈ N as n → ∞. More precisely, we characterize the expo-
nential decrease of P(Zn = k|Z0 = i) using a spine representation due to Geiger. We then provide some bounds for this rate of
decrease.

If the reproduction laws are linear fractional, this rate becomes more explicit and two regimes appear. Moreover, we show that
these regimes affect the asymptotic behavior of the most recent common ancestor, when the population is conditioned to be small
but positive for large times.

Résumé. Les processus de branchement en environnement aléatoire (Zn: n ≥ 0) sont une généralisation des processus de Galton
Watson où à chaque génération, la reproduction est choisie de manière i.i.d. Dans le régime surcritique, ces processus survivent avec
probabilité positive et croissent alors géométriquement. Ce papier considère l’événement rare où le processus prend des valeurs
non nulles mais bornées en temps long.

Nous décrivons ainsi le comportement asymptotique de P(1 ≤ Zn ≤ k|Z0 = i) quand n → ∞. Plus précisément, nous carac-
térisons la vitesse exponentielle àlaquelle P(Zn = k|Z0 = i) tend vers zéro en utilisant une représentation en épine due à Geiger.
Nous donnons alors des bornes pour cette vitesse.

Si la loi de reproduction est linéaire fractionnaire, la vitesse devient plus explicite et deux régimes apparaissent. Nous montrons
par ailleurs que ces régimes affectent le comportement asymptotique de l’ancêtre commun le plus récent de la population en vie à
l’instant n quand cette dernière est conditionnée à prendre de petites valeurs en temps long.
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1. Introduction

A branching process in random environment (BPRE) is a discrete time and discrete size population model going back
to [7,29]. In each generation, an offspring distribution is picked at random, independently from one generation to the
other. We can think of a population of plants having a one-year life-cycle. In each year, the outer conditions vary in a
random fashion. Given these conditions, all individuals reproduce independently according to the same mechanism.
Thus, it satisfies both the Markov and branching properties.

Recently, the problems of rare events and large deviations have attracted attention [9,10,12,20,24,25]. However,
the problem of small positive values has not been treated except in the easiest case which assumes non-extinction,
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i.e. P(Z1 ≥ 1|Z0 = 1) ≥ 1 (see [9]). For Galton–Watson processes, the explicit equivalent of this probability is well-
known (see e.g. [8], Chapter I, Section 11, Theorem 3). In particular, denoting by f the probability generating function
of the reproduction law, we have for k large enough,

� := lim
n→∞

1

n
logP(1 ≤ Zn ≤ k|Z0 = 1) = logf ′(pe), (1.1)

where pe = P(∃n ∈ N: Zn = 0|Z0 = 1). Moreover, the rate of decrease remains equal to � if kn decreases sub-
exponentially. It means that as soon as kn/ exp(δn) → 0 as n → ∞ for every δ > 0, then limn→∞ 1

n
logP(1 ≤ Zn ≤

kn|Z0 = 1) = �. In this paper, we focus on the existence and characterization of � in the random environment frame-
work. It is organized as follows.

First, we give the classical notations and properties of BPRE. In the next section, we state our results. We prove
the existence of � and a characterization of its value via a spine construction, give a lower bound and an upper bound
which have natural interpretations. Finally, we specify our results in the linear fractional case, where two regimes
appear, which are also visible in the time of the most recent common ancestor (MRCA).

In the rest of the paper, the proofs of these results are presented. Section 3 deals with a tree construction due to
Geiger, which is used in Section 4 to characterize ρ. In Section 5.2, we prove that ρ > 0 under suitable assumptions.
In Section 5.3, we prove a lower bound for � in terms of the rate function of the associated random walk. Finally, in
Sections 6.1 and 6.2 the statements for the linear fractional case are proved using the general results obtained before,
whereas in Section 7, we present some details on two examples.

For the formal definition of a branching process Z in random environment, let Q be a random variable taking
values in Δ, the space of all probability measures on N0 = {0,1,2, . . .}. We denote by

mq :=
∑
k≥0

kq
({k})

the mean number of offsprings of q ∈ Δ. For simplicity of notation, we will shorten q({·}) to q(·) throughout this
paper. An infinite sequence E = (Q1,Q2, . . .) of independent, identically distributed (i.i.d.) copies of Q is called
a random environment. Then the integer valued process (Zn: n ≥ 0) is called a branching process in the random
environment E if Z0 is independent of E and it satisfies

L(Zn|E ,Z0, . . . ,Zn−1) = Q
∗Zn−1
n a.s. (1.2)

for every n ≥ 1, where q∗z is the z-fold convolution of the measure q . We introduce the probability generating function
(p.g.f.) of Qn, which is denoted by fn and defined by

fn(s) :=
∞∑

k=0

skQn(k)
(
s ∈ [0,1]).

In the whole paper, we denote indifferently the associated random environment by E = (f1, f2, . . .) and E =
(Q1,Q2, . . .). The characterization (1.2) of the law of Z becomes

E
[
sZn |E ,Z0, . . . ,Zn−1

] = fn(s)
Zn−1 a.s. (0 ≤ s ≤ 1, n ≥ 1).

Many properties of Z are mainly determined by the random walk associated with the environment (Sn: n ∈ N0)

which is defined by

S0 = 0, Sn − Sn−1 = Xn (n ≥ 1),

where

Xn := logmQn = logf ′
n(1)

are i.i.d. copies of the logarithm of the mean number of offsprings X := log(mQ) = log(f ′(1)).
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Thus, one can check easily that

E[Zn|Q1, . . . ,Qn,Z0 = 1] = eSn a.s. (1.3)

There is a well-known classification of BPRE [7], which we recall here in the case E[|X|] < ∞. In the subcritical case
(E[X] < 0), the population becomes extinct at an exponential rate in almost every environment. Also in the critical
case (E[X] = 0), the process becomes extinct a.s. if we exclude the degenerated case when P(Z1 = 1|Z0 = 1) = 1.
In the supercritical case (E[X] > 0), the process survives with positive probability under quite general assumptions
on the offspring distributions (see [29]). Then E[Z1 log+(Z1)/f

′(1)] < ∞ ensures that the martingale e−SnZn has a
positive finite limit on the non-extinction event:

lim
n→∞ e−SnZn = W a.s., P(W > 0) = P(∀n ∈ N: Zn > 0|Z0 = 1) > 0.

The problem of small positive values is linked to the left tail of W and the existence of harmonic moments. In the
Galton–Watson case, we refer to [6,15,28]. For BPRE, Hambly [19] gives the tail of W in 0, whereas Huang and Liu
[20,21] have obtained other various results in this direction.

2. Probability of staying bounded without extinction

Given the initial population size k, the associated probability is denoted by Pk(·) := P(·|Z0 = k). For convenience,
we write P(·) when the size of the initial population is taken equal to 1 or does not matter. Let fi,n be the probability
generating function of Zn started in generation i ≤ n:

fi,n := fi+1 ◦ fi+2 ◦ · · · ◦ fn, fn,n = Id a.s.

We will now specify the asymptotic behavior of Pi (Zn = j) for i, j ≥ 1, which may depend both on i and j . One
can first observe that some integers j cannot be reached by Z starting from i owing to the support of the offspring
distribution.

The first result below introduces the rate of decrease � of Pi (Zn = j) for i, j ≥ 1 and gives a trajectorial interpre-
tation of the associated rare event {Zn = j}. The second one provides general conditions to ensure that � > 0. It also
gives an upper bound of �, which may be reached, in terms of the rate function of the random walk S. This bound
corresponds to the environmental stochasticity, which means that the rare event {Zn = j} is explained by rare environ-
ments. The next result yields an explicit expression of the rate � in the case of linear fractional offspring distributions,
where two supercritical regimes appear. The last corollary considers the most recent common ancestor, where a third
regime appears which is located at the borderline of the phase transition.

Let us define

I := {
j ≥ 1: P

(
Q(j) > 0,Q(0) > 0

)
> 0

}
and introduce the set Cl({z}) of integers that can be reached from z ∈ I , i.e.

Cl
({z}) := {

k ≥ 1: ∃n ≥ 0 with Pz(Zn = k) > 0
}
.

Analogously, we define Cl(I) as the set of integers which can be reached from I by the process Z. More precisely,

Cl(I) := {
k ≥ 1: ∃n ≥ 0 and j ∈ I with Pj (Zn = k) > 0

}
.

We observe that I ⊂ Cl(I) and if P(Q(0) + Q(1) < 1) > 0 and P(Q(0) > 0,Q(1) > 0) > 0, then Cl(I) = N.
We are interested in the event {Zn = j} for large n. First, we recall that the case P(Z1 = 0) = 0 is easier and

the rate of decrease of the probability is known [9]. Indeed, then Z is nondecreasing and for k ≥ j ∈ N such that
Pk(Zl = j) > 0 for some l ≥ 0, we have

lim
n→∞

1

n
logPk(Zn = j) = −k�, with � = − logP1(Z1 = 1).
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We note that in the case P1(Z1 = 1) = P(Z1 = 0) = 0, the branching process grows exponentially in almost every
environment and the probability on the left-hand side is zero if n is large enough. Thus, let us now focus on the
supercritical case with possible extinction, which ensures that I is not empty. The expression of ρ in the next theorem
will be used to get the other forthcoming results.

Theorem 2.1. We assume that E[X] > 0 and P(Z1 = 0) > 0. Then the following limits exist and coincide for all
k, j ∈ Cl(I),

� := − lim
n→∞

1

n
log Pk(Zn = j) = − lim

n→∞
1

n
logE

[
Qn(z0)f0,n(0)z0−1

n−1∏
i=1

f ′
i

(
fi,n(0)

)]

where z0 is the smallest element of I . The common limit � belongs to [0,∞).

The proof is given in Section 4 and results from Lemmas 4.1 and 4.2.
The right-hand side expression of � correspond to the event {Zn = j} explained by a “spine structure”. More

precisely, one individual survives until generation n and gives birth to the j survivors in the very last generations,
whereas the other subtrees become extinct (see forthcoming Lemma 3.2 for details). However, we are seeing in the
linear fractional case (Corollary 2.3) that a multi-spine structure can also explain {Zn = j} in some regime. Thus the
optimal strategy is nontrivial and will here only be discussed in the linear fractional case.

The proof of Theorem 2.1 is easy if we consider the limit of 1
n

logP1(Zn = 1) as n → ∞. In this case, a direct
calculation of the first derivative of f0,n yields the claim. However, the proof for the general case is more involved.
Here, we use probabilistic arguments, which rely on a spine decomposition of the conditioned branching tree via
Geiger construction.

We also note that we need to focus on i, j ∈ Cl(I). Indeed, limn→∞ 1
n

logP1(Zn = i) and limn→∞ 1
n

logP1(Zn =
j) may both exist and be finite for i 
= j , but have different values. To see that, one can consider two environments q1
and q2 such that

P(Q1 = q1) = 1 − P(Q1 = q2) > 0; q1(1) = 1;q2(0) + q2(2) = 1.

Moreover, the case −∞ < lim supn→∞ 1
n

logPk(Zn = k) < lim infn→∞ 1
n

logP1(Zn = k) < 0 with k > 1 is also pos-
sible. These results are developed in the two examples given in Section 7 at the end of this paper.

In the Galton–Watson case, f is constant and for every i ≥ 0, fi = f a.s. Then fi,n(0) → pe as n → ∞ and we
recover the classical result (1.1).

The results and remarks above could lead to the conjecture � = − logE[f ′(p(f ))], where p(f ) = inf{s ∈
[0,1]: f (s) = s}. Roughly speaking, it would correspond to integrate the value obtained in the Galton–Watson case
with respect to the environment. The two following results show that this is not true in general.

To prove that the probability of staying small but alive decays exponentially (i.e. ρ > 0) requires some assumptions.
To avoid too much technicalities, we are assuming

Assumption 1. There exists γ > 0 such that Q(0) < 1 − γ a.s. and E[|X|] < ∞.

Similarly, to give an upper bound of � in terms of the rate function of the random walk S, we require the following
Assumption. The non-lattice condition is only required for a functional limit result which is taken from [2], whereas
the truncated moment assumption is classically used for lower bounds of the survival probability of BPREs.

Assumption 2. We assume that S is non-lattice, i.e. for every r > 0, P(X ∈ rZ) < 1.
Moreover, there exist ε > 0 and a ∈ N such that for every x > 0,

E
[(

log+ ξQ(a)
)2+ε|X > −x

]
< ∞,

where log+ x := log(max(x,1)) and ξq(a) is the truncated standardized second moment

ξq(a) :=
∞∑

y=a

y2q(y)/m2
q, a ∈ N, q ∈ Δ.
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Proposition 2.2. We assume that there exists s > 0 such that E[e−sX] < ∞.

(i) If Assumption 1 is fulfilled, then ρ > 0.
(ii) If P(X ≥ 0) = 1 or Assumption 2 holds, then

� ≤ − log inf
λ≥0

E
[
exp(λX)

]
.

We note that the exponential moment assumption is equivalent to the existence of a proper rate function Λ for
the lower deviations of S. The lower bound (i) is proved in Section 5.2. The second bound is the rate function of the
random walk S evaluated in 0, say Λ(0). Indeed, recalling that E[X] > 0, the supremum in the Legendre transform
can be taken over R

+ instead of R. Exctracting −1 yields the upper bound above. It is proved in Section 5.3 and used
for the proof of the next Corollary 2.3. It can be reached and has a natural interpretation in terms of environmental
stochasticity. Indeed, one way to keep the population bounded but alive comes from a ‘critical environment’, which
means Sn ≈ 0. Then E[Zn|E ] = exp(Sn) is neither small nor large and one can expect that the population is positive
but bounded. The event {Sn ≈ 0} is a large deviation event whose probability decreases exponentially with rate Λ(0).
This bound is thus directly explained by the environmental stochasticity.

Now, we focus on the linear fractional case. We derive an explicit expression of � and describe the position of
the most recent common ancestor of the population conditioned to be positive but small. We recall that a probability
generating function of a random variable R is linear fractional (LF) if there exist positive real numbers m and b such
that

f (s) = 1 − 1 − s

m−1 + bm−2(1 − s)/2
,

where m = f ′(1) and b = f ′′(1). This family includes the probability generating function of geometric distributions,
with b = 2m2. More precisely, LF distributions are geometric laws with a second free parameter b which allows to
change the probability of the event {R = 0}.
Corollary 2.3. We assume that f is a.s. linear fractional, E[|X|] < ∞, E[X2e−X] < ∞ and P(Z1 = 0) > 0.

We assume also that either P(X ≥ 0) = 1 or Assumption 2 hold. Then

� =
{− logE

[
e−X

]
, if E

[
Xe−X

] ≥ 0,

− log infλ≥0 E
[
exp(λX)

]
(= Λ(0)), else.

(2.1)

This result is also stated in the Ph.D. of one of the authors and can be found in [11]. On the level of large deviation
(log scale), two regimes in the supercritical case are visible.

If E[Xe−X] < 0, the event {Zn = k} is a typical event in a suitable exceptional environment, say “critical”. This
rare event is then explained (only) by the environmental stochasticity.

If E[Xe−X] ≥ 0, we recover a term analogous to the Galton–Watson case, which is smaller than Λ(0). The rare
event is then due to demographical stochasticity.

These two regimes seem to be analogous to the two regimes in the subcritical case, which deal with the asymptotic
behavior of Zn > 0, see e.g. [13,17,18]. Such regimes for supercritical branching processes have already been observed
in [23] in the continuous framework (which essentially represents linear fractional offspring-distributions).

Let us now focus on the most recent common ancestor (MRCA) of the population conditionally on this rare event.
More precisely, let T n be the set of all ordered, rooted trees of height exactly n. We refer to [27] for classical def-
initions. We say that an individual in2 in generation n2 > n1 stems from an individual in1 iff there are individuals
in2−1, . . . , in1+1 such that in2 is a child of in2−1, in2−1 is a child of in2−2, . . . and in1+1 is a child of in1 . Let Tn ∈ Tn

be the random branching tree, generated by the process (Zk)0≤k≤n conditioned on Zn > 0 and denote by MRCAn the
most recent common ancestor of the population at time n. More precisely, we consider the events

An
k := {all individuals in generation n stem from one individual in generation n − k}

and define the age of the MRCA in generation n as the number of generations one has to go back in the past until all
individuals in generation n have a single common ancestor:

MRCAn := min
{
k = 1,2 . . . , n|An

k holds
}
.
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The case P(Z1 = 0) = 0 is trivial: extinction is not possible, so � = − logP1(Z1 = 1) and P2(MRCAn = n|Zn =
2) = 1. It is excluded in the statement below. Moreover, for the sake of simplicity, we restrict the study of the MRCA
to starting from one individual and conditioning on Zn = 2.

Corollary 2.4. We make the same assumptions as in the previous corollary.

(i) If E[Xe−X] < 0, then

lim inf
n→∞ P1(MRCAn = n|Zn = 2) > 0; lim inf

n→∞ P1(MRCAn = 1|Zn = 2) > 0.

(ii) If E[Xe−X] = 0, then for every sequence (xn)n∈N such that xn ∈ [1, n] for every n, we have

lim
n→∞

1

n
logP1(MRCAn = xn|Zn = 2) = 0.

Moreover, under the additional assumption E[f ′′(1)] < ∞, there exist two positive finite constants c,C such that
for every n ∈ N,

c ≤ nP1(MRCAn = n|Zn = 2) ≤ C

and if E[f ′′(1)/(1 − f (0))2] < ∞, then for every δ ∈ (0,1), there exist two positive finite constants c′,C′ such
that for every n ∈ N,

c′ ≤ n3/2
P1

(
MRCAn = �δn�|Zn = 2

) ≤ C′.

(iii) If E[Xe−X] > 0 and E[e(−1−s)X] < ∞ for some s > 0, then for every δ ∈ (0,1],

lim sup
n→∞

1

n
logP1(MRCAn > δn|Zn = 2) < 0.

Thus three regimes appear for the most recent common ancestor of the population.
If E[Xe−X] > 0, which we call the ‘strongly’ supercritical case, the MRCA is at the end (close to the actual

time). The probability that the MRCA is far away from the final generations decreases exponentially. Such a result is
classical for branching processes which do not explode, such as subcritical Galton–Watson processes conditioned on
survival. It corresponds to a spine decomposition of the population whose subtrees become extinct [22]. Conditionally
on {Zn = 2}, S is still a random walk with positive drift and will be typically large. Thus the conditioned process is
typically small throughout all generations (as in the Galton–Watson case) as growing and then becoming small again
within the favorable environment has a very small probability. Consequently, the MRCA will be close to generation n.

But in the ‘weakly’ supercritical case (E[Xe−X] < 0), conditionally on {Zn = 2}, the MRCA is either at the
beginning (close to the root of the tree) or at the end (close to generation n). Such a situation is much less usual. It has
already been observed in [14] for the subcritical reduced tree of linear fractional BPRE conditioned to survive. Here,
as indicated in the proof of Proposition 2.2(ii), the random walk S conditioned on {Zn = 2} typically looks like an
excursion. It means that S is conditioned on the event {min{S0, . . . , Sn} ≥ 0, Sn ≤ c}. In such an environment, subtrees
that are either born at the beginning or at the end may survive until the end. All subtrees being born at some generation
�δn�, δ ∈ (0,1) experience an unfavorable environment and become extinct. This can be seen as follows. During an
excursion from 0 to n, typically S�δn� � 0 and thus eSn−S�δn� � 0 and the corresponding subtree will become extinct.

Finally, in the intermediate case (E[Xe−X] = 0), the MRCA is close to the end, but the probability that the MRCA
is far away from the end only decreases polynomially. The intermediately supercritical regime is in-between the two
regimes described above and conditioned on {Zn = 2}, the typical environment will neither be an excursion nor a
random walk with positive drift.

One can expect several more detailed results describing the three regimes, which are beyond the scope of this paper.



776 V. Bansaye and C. Böinghoff

3. The Geiger construction for a branching process in varying environment (BPVE)

In this section, we work in a quenched environment, which means that we fix the environment e := (q1, q2, . . .). We
consider a branching process in varying environment e and denote by P(·) (resp. E) the associated probability (resp.
expectation), i.e.

P(Z1 = k1, . . . ,Zn = kn) = P(Z1 = k1, . . . ,Zn = kn|E = e).

Thus (f1, f2, . . .) is now fixed and the probability generating function of Z is given by

E
[
sZn |Z0 = k

] = f0,n(s)
k (0 ≤ s ≤ 1).

We use a construction of Z conditioned on survival, which is due to [16], Proposition 2.1, and extends the spine con-
struction of Galton–Watson processes [22]. In each generation, the individuals are labeled by the integers i = 1,2, . . .

in a breadth-first manner (“from the left to the right”). We follow then the ‘ancestral line’ of the leftmost individual
having a descendant in generation n. This line is denoted by L. It means that in generation k, the descendance of the
individual labeled Lk survives until time n, whereas all the individuals whose label is less than Lk become extinct
before time n. The Geiger construction ensures that to the left of L, independent subtrees conditioned on extinction
in generation n are growing. To the right of L, independent (unconditioned) trees are evolving. Moreover the joint
distribution of Lk and the number of offsprings in generation k is known (see e.g. [1] for details, where L := L − 1,
and Figure 1) and for every k ≥ 1, z ≥ 1 and 1 ≤ 1l ≤ z,

P(Zk = z,Lk = l|Zk−1 = 1,Zn > 0) = qk(z)
P(Zn > 0|Zk = 1)P(Zn = 0|Zk = 1)l−1

P(Zn > 0|Zk−1 = 1)
. (3.1)

Let us give more details of this construction. We assume that the process starts with Z0 = z and denote Pz(·) :=
P(·|Z0 = z). We define for 0 ≤ k < n,

pk,n := P(Zn > 0|Zk = 1) = 1 − fk,n(0), pn,n := 1.

We can specify the distribution of the number Yk of unconditioned trees founded by the ancestral line in generation k,
at the right of Lk . In generation 0, for 0 ≤ i ≤ z − 1,

Pz(Y0 = i|Zn > 0) := Pz(L0 = z − i|Zn > 0) = P(Zn > 0|Z0 = 1)P(Zn = 0|Z0 = 1)z−i−1

P(Zn > 0|Z0 = z)

= 1 − f0,n(0)

Pz(Zn > 0)
f0,n(0)z−i−1. (3.2)

More generally, for all 1 ≤ k ≤ n and i ≥ 0, (3.1) yields

P(Yk = i|Zn > 0) := P(Zk − Lk = i|Zn > 0,Zk−1 = 1)

=
∞∑

j=i+1

P(Zk = j,Lk = j − i|Zn > 0,Zk−1 = 1)

= pk,n

pk−1,n

∞∑
j=i+1

qk(j)fk,n(0)j−i−1. (3.3)

Finally, we note that fn,n(0) = 0, thus for k = n, we have P(Yn = i|Zn > 0) = qn(i+1)
pn−1,n

.
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Fig. 1. Geiger construction with T (c) trees conditioned on extinction and T (u) unconditioned trees.

Here, we do not require the full description of the conditioned tree since we are only interested in the population
alive at time n. Thus we do not have to consider the trees conditioned on extinction, which grow to the left of L. We can
construct the population alive in generation n using the i.i.d random variables Ŷ0, Ŷ1, Ŷ2, . . . , Ŷn whose distribution is
specified by (3.2) and (3.3):

P(Ŷk = i) = P(Yk = i|Zn > 0).

Let (Ẑ
(k)
j )j≥0 be independent branching processes in varying environment which are distributed as Z for j > k and

satisfy

Ẑ
(k)
j := 0 for j < k, Ẑ

(k)
k := Ŷk.

More precisely, for all 0 ≤ k ≤ n and z0, . . . , zn ≥ 0,

P
(
Ẑ

(k)
0 = 0, . . . , Ẑ

(k)
k−1 = 0, Ẑ

(k)
k = zk, Ẑ

(k)
k+1 = zk+1, . . . , Ẑ

(k)
n = zn

)
= P(Ŷk = zk)P(Zk+1 = zk+1, . . . ,Zn = zn|Zk = zk).

The sizes of the independent subtrees generated by the ancestral line in generation k, which may survive until gener-
ation n, are given by (Ẑ

(k)
j )0≤j≤n, 0 ≤ k ≤ n − 1. In particular,

L(Zn|Zn > 0) = L
(
Ẑ(0)

n + · · · + Ẑ(n−1)
n + Ŷn + 1

)
. (3.4)

Lemma 3.1. The probability that all subtrees emerging before generation n become extinct before generation n is
given for z ≥ 1 by

Pz

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0

) =
n−1∏
k=0

Pz

(
Ẑ(k)

n = 0
) = pn−1,n

p−1,n

n−1∏
k=0

f ′
k

(
fk,n(0)

)
,

where we use the following convenient notation f0(s) := sz, p−1,n := Pz(Zn > 0).
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Proof. First, we compute the probability that the subtree generated by the ancestral line in generation k does not
survive until generation n, i.e. {Ẑ(k)

n = 0}. By (3.3), for k ≥ 1,

P
(
Ẑ(k)

n = 0
) =

∞∑
i=0

Pz(Ŷk = i)P(Zn = 0|Zk = i)

= pk,n

pk−1,n

∞∑
i=0

∞∑
j=i+1

qk(j)fk,n(0)j−i−1 · fk,n(0)i

= pk,n

pk−1,n

∞∑
i=0

∞∑
j=i+1

qk(j)fk,n(0)j−1

= pk,n

pk−1,n

∞∑
j=1

jqk(j)fk,n(0)j−1

= pk,n

pk−1,n

f ′
k

(
fk,n(0)

)
. (3.5)

Similarly, we get from (3.2) that

Pz

(
Ẑ(0)

n = 0
) =

z−1∑
i=0

Pz(Y0 = i|Zn > 0)P(Zn = 0|Z0 = i)

=
z−1∑
i=0

1 − f0,n(0)

Pz(Zn > 0)
f0,n(0)z−i−1f0,n(0)i

= p0,n

p−1,n

zf0,n(0)z−1 = p0,n

p−1,n

f ′
0

(
f0,n(0)

)

with the convention f0(s) = sz. Adding that the subtrees given by (Ẑ
(k)
j )j≥0 are independent, a telescope argument

yields the claim. �

For the next lemma, we introduce the last generation before n when the environment allows extinction:

κn := sup
{
1 ≤ k ≤ n: qk(0) > 0

}
, (sup ∅ = 0).

Note that κn only depends on the environment up to generation n.

Lemma 3.2. Let z0 be the smallest element in I . Then,

Pz0(Zn = z0|Zn > 0) = qκn(z0)

pκn−1,κn

×
κn−1∏
k=0

pk,κn

pk−1,κn

f ′
k

(
fk,κn(0)

) ×
n∏

j=κn+1

qj (1)z0 ,

where we recall the following convenient notation f0(s) = sz, p−1,n = Pz(Zn > 0).

Proof. By definition of I and z0, q(0) > 0 implies q(k) = 0 for every 1 ≤ k < z0. We first deal with the case κn > 0.
Then,

qκn(0) > 0, qκn(k) = 0 if 1 ≤ k < z0; qκn+1(0) = · · · = qn(0) = 0.

In particular the number of individuals in generation κn is at least z0 times the number of individuals in generation
κn − 1 who leave at least one offspring in generation κn. Moreover, as extinction is not possible after generation κn, it
holds that Zκn ≤ Zκn+1 ≤ · · · ≤ Zn.
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Fig. 2. Illustration of the proof of Lemma 3.2.

Let us consider the event Zn = z0 > 0. Then Zκn−1 > 0 and Zκn ≥ z0. So Zκn = Zκn+1 = · · · = Zn = z0 and only
a single individual in generation κn − 1 leaves one offspring (or more) in generation κn. This individual lives on the
ancestral line. Thus all the subtrees to the right of the ancestral line which are born before generation κn have become
extinct before generation κn, i.e. Ẑ

(0)
κn = · · · = Ẑ

(κn−1)
κn = 0. In generation κn − 1, the individual on the ancestral line

has z0 offsprings and Ŷκn = z0 − 1. After generation κn, all the individuals must leave exactly one offspring to keep
the population constant until generation n, since qκn+1(0) = · · · = qn(0) = 0. This probability is then given by qj (1)z0

in generation j > κn. Moreover, (3.3) simplifies to P(Ŷκn = z0 − 1) = qκn(z0)/pκn−1,κn . We refer to Figure 2 for a
picture. Using the previous lemma, it can be written as follows:

Pz0(Zn = z0)

= Pz0

(
Ẑ(0)

κn
= · · · = Ẑ(κn−1)

κn
= 0

)
P(Ŷκn = z0 − 1)Pz0

(
Ẑ(κn)

n + · · · + Ẑ(n−1)
n + Yn + 1 = z0

)

=
[

κn−1∏
k=0

pk,n

pk−1,n

f ′
k

(
fk,κn(0)

)] qκn(z0)

pκn−1,κn

Pz0

(
Ẑ(κn)

n + · · · + Ẑ(n−1)
n + Yn + 1 = z0

)

= qκn(z0)

pκn−1,κn

[
κn−1∏
k=0

pk,n

pk−1,n

f ′
k

(
fk,κn(0)

)] n∏
j=κn+1

qj (1)z0 .

Recall that after generation κn, each individual has at least one offspring and thus pj,n = pj,κn for any j < κn. This
ends up the proof in the case κn > 0. The case when κn = 0 is easier. Indeed,

Pz0(Zn = z0) = Pz0(Z1 = · · · = Zn = z0) =
n∏

j=1

qj (1)z0

since qκn+1(0) = · · · = qn(0) = 0 and Z is nondecreasing until generation n. �

4. Proof of Theorem 2.1: The probability of staying positive but bounded

In this section, we prove Theorem 2.1 with the help of two lemmas. The first lemma establishes the existence of a
proper ‘common’ limit.

Lemma 4.1. Assume that z ≥ 1 satisfies P(Q(0) > 0,Q(z) > 0) > 0.
Then for all k, j ∈ Cl({z}), the following limits exist in [0,∞) and coincide

lim
n→∞

1

n
logPk(Zn = j) = lim

n→∞
1

n
logPz(Zn = z).
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Moreover, for every sequence kn such that kn ≥ z for n large enough and kn/n → 0 as n → ∞,

lim
n→∞

1

n
log Pz(Zn = z) = lim

n→∞
1

n
log Pz(1 ≤ Zn ≤ kn).

Proof. Note that for every k ≥ 1, Pk(Z1 = z) > 0 since

Pk(Z1 = z|Q1) ≥ Q1(0)k−1Q1(z), P
(
Q(0) > 0,Q(z) > 0

)
> 0.

We know that by Markov property, for all m,n ≥ 1,

Pz(Zn+m = z) ≥ Pz(Zn = z)Pz(Zm = z). (4.1)

Adding that Pz(Z1 = z) > 0, we obtain that the sequence (an)n∈N defined by an := − log Pz(Zn = z) is finite and
subadditive. Then Fekete’s lemma ensures that limn→∞ an/n exists and belongs to [0,∞). Next, if j, k ∈ Cl({z}),
there exist l,m ≥ 0 such that Pz(Zl = j) > 0 and Pz(Zm = k) > 0. We get

Pk(Zn+l+1 = j) ≥ Pk(Z1 = z)Pz(Zn = z)Pz(Zl = j)

and

Pz(Zm+n+1 = z) ≥ Pz(Zm = k)Pk(Zn = j)Pj (Z1 = z).

Adding that Pj (Z1 = z) > 0, we obtain

lim inf
n→∞

1

n
log Pk(Zn = j) ≥ lim

n→∞
1

n
log Pz(Zn = z) ≥ lim sup

n→∞
1

n
log Pk(Zn = j),

which yields the first result.
For the second part of the lemma, we first observe that Pz(Zn = z) ≤ Pz(1 ≤ Zn ≤ kn) for n large enough. To prove

the converse inequality, we define for ε > 0 the set

Aε := {
q ∈ Δ|q(0) > ε, q(z) > ε

}
.

According to the definition of I and the assumption, P(Q ∈ Aε) > 0 if ε is chosen small enough. Thus, we get

Pz(Zn = z) ≥ Pz(1 ≤ Zn−1 ≤ kn) min
1≤j≤kn

Pj (Z1 = z)

≥ Pz(1 ≤ Zn−1 ≤ kn)P(Q ∈ Aε) min
1≤j≤kn

E
[
P1(Z1 = z)P1(Z1 = 0|Q)j−1|Q ∈ Aε

]
≥ Pz(1 ≤ Zn−1 ≤ kn)P(Q ∈ Aε)ε

kn .

Using the logarithm of this expression and letting n → ∞ yields

lim
n→∞

1

n
log Pz(Zn = z) ≥ lim sup

n→∞

(
1

n
log Pz(1 ≤ Zn−1 ≤ kn) + log(ε)

kn

n

)
.

Adding that kn = o(n) by assumption gives the claim.
Now, we prove a representation of the limit ρ in terms of generating functions. It will be useful in the rest of the

paper. �

Lemma 4.2. Assume that P1(Z1 = 0) > 0. Then for all i, j ∈ Cl(I),

lim
n→∞

1

n
log Pi (Zn = j) = lim

n→∞
1

n
log E

[
Qn(z0)f0,n(0)z0−1

n−1∏
i=1

f ′
i

(
fi,n(0)

)]
,

where z0 is the smallest element in I .
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We note that P1(Z1 = 0) > 0 is equivalent to P(Q(0) > 0) > 0 and in view of Lemma 4.1, we only have to prove
the result for k = j = z0, where z0 is the smallest element in I . Differentiation of the probability generating function
of Zn yields the result for z0 = 1. The generalization of the result for z0 
= 1 via higher order derivatives of generating
functions appears to be complicated. Instead, we use probabilistic arguments, involving the Geiger construction of the
previous section.

Proof of Lemma 4.2. First, the result is obvious when z0 = 1 ∈ I since

P(Zn = 1|E ) = d

ds
f0,n(s)

∣∣∣∣
s=0

= f ′
n(0) ·

n−1∏
i=1

f ′
i

(
fi,n(0)

)
.

For the case z0 > 1, we start by proving the lower bound. Using (3.4), Lemma 3.1, (3.2) and recalling that Pz0(Zn >

0|E ) = p−1,n, we have

Pz0(Zn = z0) = E
[
Pz0(Zn = z0|Zn > 0, E )Pz0(Zn > 0|E )

]
= E

[
Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n + Ŷn + 1 = z0|E

)
Pz0(Zn > 0|E )

]
≥ E

[
Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0, Ŷn = z0 − 1|E

)
Pz0(Zn > 0|E )

]
= E

[
Pz0(Zn > 0|E )

Qn(z0)

pn−1,n

pn−1,n

p−1,n

n−1∏
i=0

f ′
i

(
fi,n(0)

)]

= E

[
Qn(z0)

n−1∏
i=0

f ′
i

(
fi,n(0)

)]
. (4.2)

Recalling also that f ′
0(s) = z0s

z0−1, we get

lim
n→∞

1

n
logPz0(Zn = z0) ≥ lim sup

n→∞
1

n
logE

[
Qn(z0)f

z0−1
0,n (0)

n∏
i=1

f ′
i

(
fi,n(0)

)]
.

Let us now prove the converse inequality. Following the previous section, z0 is the smallest element in I and κn is
the (now random) last moment when an environment satifies Q(0) > 0. We decompose the event {Zn = z0} according
to κn:

Pz0(Zn = z0) =
n∑

k=0

E
[
Pz0(Zn = z0|E ,Zn > 0)Pz0(Zn > 0|E );κn = k

]
.

Using that conditionally on κn = k, Pz0(Zn > 0|E ) = Pz0(Zk > 0|E ) and Lemma 3.2, we get by indepen-
dence

Pz0(Zn = z0) =
n∑

k=0

E

[
Pz0(Zk > 0|E )

Qk(z0)

pk−1,k

pk−1,k

p−1,k

k−1∏
i=0

f ′
i

(
fi,k(0)

) n∏
j=k+1

Qj(1)z0;κn = k

]

≤
n∑

k=0

E

[
Qk(z0)

k−1∏
i=0

f ′
i

(
fi,k(0)

)] n∏
j=k+1

E
[
Qj(1)z0

]

=
n∑

k=1

E

[
Qk(z0)

k−1∏
i=0

f ′
i

(
fi,k(0)

)]
E

[
Q(1)z0

]n−k−1 + E
[
Q(1)z0

]n
.
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Let (an)n∈N be a sequence in R
+ and b > 0. Then, by standard results on the exponential rate of sums, we

have

lim sup
n→∞

1

n
log

n∑
k=1

akb
n−k = max

{
lim sup
n→∞

1

n
logan, logb

}
.

Thus

lim
n→∞

1

n
logPz0(Zn = z0)

≤ max

{
lim sup
n→∞

1

n
logE

[
Qn(z0)

n∏
i=0

f ′
i

(
fi,n(0)

)]; logE
[
Q(1)z0

]}
.

We now prove that the first term always realizes the maximum. Using that f ′
0(f0,n(0)) = z0f

z0−1
0,n (0) = z0P1(Zn =

0|E )z0−1 and f ′
i (fi,n(0)) ≥ f ′(0), we have

E

[
Qn(z0)

n−1∏
i=0

f ′
i (0)

]
≥ z0E

[
Qn(z0)P1(Zn = 0|E )z0−1

n−1∏
i=1

Qi(1)

]

≥ z0E

[
Qn(z0)

(
Qn(0)

n−1∏
i=1

Qi(1)

)z0−1 n−1∏
i=1

Qi(1)

]

≥ z0E
[
Qn(z0)Qn(0)z0−1]

E
[
Q(1)z0

]n
.

By definition of z0, E[Qn(z0)Qn(0)z0−1] > 0, and we can conclude

lim
n→∞

1

n
logPz0(Zn = z0) ≤ lim sup

n→∞
1

n
log E

[
Qn(z0)f0,n(0)z0−1

n∏
i=1

f ′
i

(
fi,n(0)

)]
.

We end up the proof by checking the convergence of the sequence on the right-hand side above. We use again (3.4)
and Lemma 3.1 to write

φn := Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0,Zn = z0

)
= E

[
Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0|E

)
P(Ŷn = z0 − 1)

]
= E

[
Qn(z0)

n∏
i=0

f ′
i

(
fi,n(0)

)]
. (4.3)

It is the probability of having z0-many individuals in generation n, where all individuals in generation n have a
common ancestor in generation n − 1. By Markov property, for k = 1, . . . , n

Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0,Zn = z0

)
≥ Pz0

(
Ẑ

(0)
k + · · · + Ẑ

(k−1)
k = 0,Zk = z0

)
Pz0

(
Ẑ

(0)
n−k + · · · + Ẑ

(n−k−1)
n−k = 0,Zn−k = z0

)
.

The same subadditivity arguments as in the proof of Lemma 4.1 applied to φn yield the existence of the limit of
1
n

logφn and

lim
n→∞

1

n
logPz0(Zn = z0) = lim

n→∞
1

n
logφn = lim

n→∞
1

n
logE

[
Qn(z0)f0,n(0)z0−1

n∏
i=1

f ′
i

(
fi,n(0)

)]
. (4.4)

This ends up the proof. �
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5. Proof of Proposition 2.2

5.1. Preliminaries on random walks

In this section, we will shortly present some standard results on random walks which we use. In all following results,
we take S0 = 0. We assume that there exists s > 0 such that E[Xe−sX] = 0. This suggests to change to a measure P,
defined by

P(X ∈ dx) := e−sx
P(X ∈ dx)

μ
,

where μ := E[e−sX]. We note that E[X] = μ−1
E[Xe−sX] = 0, and that S is a recurrent random walk under P. In the

following proofs, we use the change of measure described here. We define

Ln := min{S1, . . . , Sn}

and

Mn := min{S1, . . . , Sn}.

The following result is directly derived from [2], Proposition 2.1. For lattice random walks, the claims result e.g. from
[30], Theorem 6.

Lemma 5.1. Assume that E[X] = 0 and Var(X) < ∞. Then for every θ > 0, there exists d = d(θ) such that

E
[
e−θSn;Ln ≥ 0

] ∼ dn−3/2 (n → ∞)

and

E
[
eθSn;Mn < 0

] ∼ dn−3/2 (n → ∞).

The following lemma results from [2], Equation (2.5) therein.

Lemma 5.2. Assume that E[X] = 0 and Var(X) < ∞. Then for every c > 0 large enough, there exists d = d(c) such
that

P(Ln ≥ 0, Sn ≤ c) ∼ dn−3/2 (n → ∞).

Remark. In the non-lattice case, the result holds for every c > 0. In the lattice case, c must be chosen such that
P(0 ≤ S1 ≤ c) > 0.

From the previous results, it follows that

Corollary 5.3. Assume that E[X] = 0 and Var(X) < ∞. Then for every θ > 1,

E
[
e−Sn+θLn

] = O
(
n−3/2).

Proof. We use a decomposition according to the first minimum of the random walk, i.e. let

τn := min
{
k ∈ {0, . . . , n}|Sk = Ln ∧ 0

}
.
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Decomposing at the first minimum and using duality yields

E
[
e−Sn+θLn

] =
n∑

k=0

E
[
e−(Sn−θSk); τn = k

]

=
n∑

k=0

E
[
e−(Sn−Sk)e(θ−1)Sk ; τk = k, min

i=k,...,n
{Sn − Si} ≥ 0

]

=
n∑

k=0

E
[
e(θ−1)Sk ; τk = k

]
E

[
e−Sn−k ;Ln−k ≥ 0

]

=
n∑

k=0

E
[
e(θ−1)Sk ;Mk < 0

]
E

[
e−Sn−k ;Ln−k ≥ 0

]
.

The last step follows from duality (see e.g. [1]). Recall that by assumption, θ − 1 > 0. Applying Lemma 5.1 now
yields that there is a c < ∞ such that for n large enough

E
[
e−Sn+θLn

] ≤ c

(
1

n3/2
+

n−1∑
k=1

1

(n − k)3/2k3/2

)

≤ c

(
2d

n3/2
+ 2d

�n/2�3/2
∑�n/2�

k=0 k3/2

)
= O

(
n−3/2),

which is the claim of the corollary. �

In the next lemma, we will use probability measures P+ and P− which e.g. have been introduced in [2]. Here, we
recall the definition. Define the renewal functions u : R → R and v : R → R by

u(x) = 1 +
∞∑

k=1

P
(−Sk ≤ x,max{S1, . . . , Sk} < 0

)
, x ≥ 0,

v(x) := 1 +
∞∑

k=1

P
(−Sk > x,min{S1, . . . , Sk} ≥ 0

)
, x ≤ 0,

v(0) = u(0) = 1,

and 0 elsewhere. Using the identities

E[u(x + X);X + x ≥ 0] = u(x), x ≥ 0,
(5.1)

E[v(x + X);X + x < 0] = v(x), x ≤ 0,

which hold for every oscillating random walk, one can construct probability measures P+ and P−: Define the filtration
F = (Fn)n≥0, where Fn = σ(Q1, . . . ,Qn,Z0, . . . ,Zn). Then S is adapted to F and Xn+1 (as well as Qn+1) is
independent of Fn for all n ≥ 0. Now, for every bounded, Fn-measurable random variable Rn we can define

E+
x [Rn] = 1

u(x)
Ex

[
Rnu(Sn);Ln ≥ 0

]
, x ≥ 0,

E−
x [Rn] = 1

v(x)
Ex

[
Rnv(Sn);Mn < 0

]
, x ≤ 0.

The probability measures P+
x and P−

x correspond to conditioning the random walk S on not to enter (−∞,0) and
[0,∞) respectively.
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More precisely, if Rn → R a.s. with respect to P+ (resp. P−), then

lim
n→∞ P(Rn ∈ ·|Ln ≥ 0) → P+(R ∈ ·),
lim

n→∞ P(Rn ∈ ·|Mn < 0) → P−(R ∈ ·).

The first result is proved in [4], Lemma 2.5, in the more general setting of random walks in the domain of attraction
of a stable law. The proof of the second claim is analogous.

We end up with an asymptotic result in the critical case, which is stated and proved only in the non-lattice case.

Lemma 5.4. We assume that E[X] = 0, Var(X) < ∞, and that E[(log+ ξQ(a))2+ε] < ∞ for some ε > 0. Then, for
every c > 0,

lim inf
n→∞ P(Zn > 0|Ln ≥ 0, Sn ≤ c) > 0.

Proof. The proof follows essentially [2] and we just present the main steps. First, Lemmas 5.1 and 5.2 ensure that for
all θ, c > 0 large enough, there exists d > 0 such that

E
[
e−θSn;Ln ≥ 0

] ∼ dP(Ln ≥ 0, Sn ≤ c) (n → ∞). (5.2)

Secondly, we recall the well-known estimate (see e.g. [5], Lemma 2)

P(Zn > 0|E ) ≥ 1

e−Sn + ∑n−1
i=0 ηi+1e−Si

a.s.,

where ηi := ∑∞
y=1 y(y − 1)Qi(y)/m2

Qi
. Then, we rewrite

E
[

1

e−Sn + ∑n−1
i=0 ηi+1e−Si

;Ln ≥ 0, Sn ≤ c

]

≥ E
[

1

1 + ∑�n/2�
i=0 ηi+1e−Si + e−S�n/2� ∑n−1

i=�n/2�+1 ηi+1eS�n/2�−Si

;Ln ≥ 0, Sn ≤ c

]

≥ E
[

(c − Sn)
+ ∧ 1

1 + ∑�n/2�
i=0 ηi+1e−Si + ∑n−1

i=�n/2�+1 ηi+1eS�n/2�−Si

;Ln ≥ 0

]

= E
[
ϕ(Un, Ṽn, Sn);Ln ≥ 0

]
≥ e−c/2E

[
e−Sn/2ϕ(Un, Ṽn, Sn);Ln ≥ 0

]
,

where Un := ∑�n/2�
i=0 ηi+1e−Si , Ṽn := ∑n−1

i=�n/2�+1 ηi+1eS�n/2�−Si and ϕ(u, v, z) = (1 + u + v)−1(c − z)+ ∧ 1. Using

(5.2), it becomes (with θ = 1
2 )

lim inf
n→∞ P(Zn > 0|Ln ≥ 0, Sn ≤ c) ≥ d−1 lim inf

n→∞
e−c/2E[e−Sn/2ϕ(Un, Ṽn, Sn);Ln ≥ 0]

E[e−Sn/2;Ln ≥ 0] .

Due to monotonicity and Lemma 3.1 in [2], the limits of U∞ = limn→∞ Un and V∞ = limn→∞
∑�n/2�

i=0 ηieSi exist
and are finite respectively under the probabilities P+-a.s. and P−-a.s. Thus all conditions of Proposition 2.5 in [2] are
met. Applying this proposition with θ = 1/2, there exists a non zero measure ν1/2 on R

+ which gives the convergence
of the right-hand side above and

lim inf
n→∞ P (Zn > 0|Ln ≥ 0, Sn ≤ c) ≥

∫
R

3+
ϕ(u, v,−z)P+(U∞ ∈ du)P−(V∞ ∈ dv)ν1/2(dz) > 0.
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Note that in the function ϕ, z is changed to −z for duality reasons (see [2] for details). As U∞ and V∞ are a.s. finite
with respect to the corresponding measures, this yields the claim. �

Remark. The proof may be adapted to the lattice case, by proving for example that

lim inf
n→∞ P+

(
n/2∑
i=0

ηi+1e−Si < d,Sn/
√

n ∈ (a, b)

)
> 0.

We note that P+(
∑∞

i=0 ηi+1e−Si < ∞) = P−(
∑∞

i=1 ηieSi < ∞) = 1 has been proved in [4] also for the non-lattice
case. But the main remaining problem is that Proposition 2.5 in [2] is only stated for non-lattice random walks. The
generalization of this result is a technically involved task and beyond the scope of this paper.

5.2. Proof of Proposition 2.2(i): ρ > 0

Under Assumption 1, we now prove that ρ > 0. It means that the probability of staying small but alive is exponentially
small. The proof relies again on the Geiger construction and results of the previous section.

We assume that there exists γ > 0 such that Q(0) < 1 − γ a.s. and E[|X|] < ∞. Let z0 be the smallest element in
I . Using (4.3) and (4.4), we get

lim
n→∞

1

n
logPz0(Zn = z0) = lim

n→∞
1

n
logE

[
Pz0

(
Ẑ(0)

n + · · · + Ẑ(n−1)
n = 0, Ŷn = z0 − 1|E

)
Pz0(Zn > 0|E )

]

≤ lim inf
n→∞

1

n
logE

[
n−1∏
j=0

P
(
Ẑ

(j)
n = 0|E

)]

= lim inf
n→∞

1

n
logE

[
exp

(
n−1∑
j=0

log P
(
Ẑ

(j)
n = 0|E

))]
.

The fact that log(x) ≤ x − 1 yields

E

[
exp

(
n−1∑
j=0

logP
(
Ẑ

(j)
n = 0|E

))]
≤ E

[
exp

(
−

n−1∑
j=0

P
(
Ẑ

(j)
n > 0|E

))]
.

It remains to prove that this last expectation decreases exponentially. From (3.5), we get

P
(
Ẑ

(j)
n = 0|E

) = pj,n

pj−1,n

f ′
j

(
fj,n(0)

) = 1 − fj,n(0)

1 − fj (fj,n(0))
f ′

j

(
fj,n(0)

) = hj

(
fj,n(0)

)
, (5.3)

where for s ∈ [0,1),

h(s) := f ′(s)
g(s)

, g(s) := 1 − f (s)

1 − s
.

We will now show that g(1) = f ′(1), h(1) = 1. As already noticed in [12], for every s ∈ [0,1)

g(s) =
∞∑

k=0

1 − sk

1 − s

f (k)(0)

k! =
∞∑

k=1

(
1 + s + s2 + · · · + sk−1)f (k)(0)

k! .

Thus f ′(1) = g(1) = 1 and h(1) = 1. Moreover, f ′(0) 
= 1 ensures that for every k > 1 and s < 1, ksk−1 < (1 + s +
s2 +· · ·+sk−1), so h(s) < 1. A straightforward calculation shows that h has exactly one minimum in some s0 ∈ (0,1).
Adding that h is increasing for s > s0 and h(s0) ≤ h(0), we have every t ∈ (0,1) that

h(s) ≤ max
{
h(0), h(t)

}
for s ≤ t. (5.4)
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First, we deal with fj,n(0) = P(Zn = 0|E ,Zj = 1) in (5.3). For this purpose, we use a truncation argument. Let a ∈ N

be fixed for the moment and introduce

Q̄(j) := Q(j), 1 ≤ j < a, Q̄(a) = Q
([a,∞)

)
.

We refrain from indicating the dependence on a in our notation. The corresponding truncated random variables are
denoted similarly, e.g. by X̄, S̄, f̄ . Note that f̄ ′′(1) ≤ a2. By dominated convergence, we get that

lim
a→∞ E[X̄] = E[X] > 0.

Thus if a is chosen large enough, S̄ is still a random walk with positive drift and E[f̄ ′(1)] > 1. Also note that with
respect to the truncated offspring distributions, Z̄n is stochastically smaller than Zn and thus P(Z̄n = 0) ≥ P(Zn = 0).
Applying this together with a well-known formula for the extinction probability (see e.g. [5], Lemma 2), we get that

P(Zn = 0|E ,Zj = 1) ≤ P1(Z̄n = 0|E ) ≤ 1 − 1

e−S̄n + ∑n−1
k=j η̄k+1e−(S̄k−S̄j )

≤ 1 − 1

a2
∑∞

k=j e−2X̄k+1−(S̄k−S̄j )
,

where we used that η̄ = f̄ ′′(1)/f̄ ′(1)2 ≤ a2e−2X̄ a.s. We now aim at bounding
∑∞

k=j exp(−2X̄k+1 − (S̄k − S̄j )). First,

the assumption Q(0) < 1 − γ implies that X̄ ≥ log(γ ) a.s. Thus

P(Zn = 0|E ,Zj = 1) ≤ P1(Z̄n = 0|E ) ≤ 1 − γ 2

a2
∑∞

k=j e−(S̄k−S̄j )
.

Next, we introduce the random walk S̆n := S̄n − εn with 0 < ε < E[X̄]. It is still a random walk with positive drift
and we have

fj,n(0) ≤ 1 − γ 2

a2
∑∞

k=j e−(S̆k−S̆j )e−(k−j)ε
.

Let us now consider the prospective minima (see e.g. [4], p. 661) of S̆ which are defined by ν(0) := 0 and

ν(j) := inf
{
n > ν(j − 1): S̆k > S̆n ∀k > n

}
.

Then we can estimate for j ≥ 1 (note that S̆k ≥ S̆ν(j) for all k ≥ ν(j), j ≥ 1)

fν(j),n(0) ≤ 1 − γ 2

a2
∑∞

k=ν(j) e−(S̆k−S̆ν (j))e−(k−ν(j))ε

≤ 1 − γ 2

a2
∑∞

k=ν(j) e−(k−ν(j))ε
= 1 − γ 2(1 − e−ε)

a2
.

From (5.4), setting d := γ 2(1 − e−ε)/a2 ∈ (0,1), we get for j ≥ 1,

P
(
Ẑ

(ν(j))
n > 0|E

) = 1 − hν(j)

(
fν(j),n(0)

) ≥ 1 − max
{
h(0), hν(j)(1 − d)

}
= min

{
1 − h(0),1 − hν(j)(1 − d)

} =: Aν(j).

From the classical random walk theory, Uj := ν(j) − ν(j − 1) (and also Qν(j)) are i.i.d. random variables (see [4]).
We now prove that for δ > 0 small enough that the probability that there are less than {δn}-many prospective minima
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is exponentially small. Note that E[X̆] > 0 implies E[ν(1)] < ∞. Let 0 < δ < E[ν(1)]−1. Then

P
(
�
{
j ≥ 0: ν(j) ≤ n

}
< δn

) ≤ P
(
ν
(�δn�) > n

) ≤ P

(�δn�∑
j=1

Uj >
1

δ
nδ

)
≤ e−δnΨ (δ−1), (5.5)

where Ψ is the rate function of the process (
∑n

j=1 Uj )n, which is a random walk with nonnegative increments. Thus
it remains to prove that Ψ (θ) > 0 for some θ > E[U1] = E[ν(1)]. From large deviations theory, we just need to check
that the tail of ν(1) decreases exponentially. This follows from

P
(
ν(1) > k

) ≤ P(Sj ≤ 0 for some j > k) ≤
∞∑

j=k

P(Sj ≤ 0)

≤
∞∑

j=k

e−Λ̆(0)j = e−Λ̆(0)k

1 − e−Λ̆(0)
,

where Λ̆ is the rate function of S̆. This rate function is proper since log(1 − γ ) ≤ X̆ ≤ a a.s. Adding that E[X̆] > 0
ensures that Λ̆(0) > 0 and we can conclude that Ψ (θ) > 0.

Finally, we use that Aν(j) are independent to get

Pz0(Zn = z0) ≤ E

[
exp

(
−

n−1∑
j=0

P
(
Ẑ

(j)
n > 0|E

))]

≤ P
(
�
{
j ≥ 0: ν(j) ≤ n

}
< δn

) + E

[
exp

(
−

�δn�∑
j=0

Aν(j)

)]

≤ P
(
�
{
j ≥ 0: ν(j) ≤ n

}
< δn

) + E
[
exp(−Aν(1))

]�δn�
.

Recalling that Aν(j) ≥ 0 and P(Aν(j) > 0) = P(h(0) < 1) = P(f ′(0) 
= 1) > 0, we get

E
[
exp(−Aν(j))

]
< 1.

Then (5.5) ensures that ρ > 0.

Remark. To get Proposition 2.2(i), Assumption 1 can be replaced by assuming that there exists c such that η ≤ c a.s.
The proof is very similar. In this case, the truncation is not required and we may estimate

P(Zn = 0|E ,Zj = 1) ≤ P̄(Zn = 0) ≤ 1 − 1

e−Sn + ∑n−1
k=j ηk+1e−(Sk−Sj )

≤ 1 − 1

c
∑∞

k=j e−(Sk−Sj )
.

5.3. Proof of Proposition 2.2(ii): � ≤ Λ(0)

Here, we prove the second part of Proposition 2.2 which ensures that � ≤ Λ(0). It means that small but positive values
can always be realized by a suitable exceptional environment, which is ‘critical’. We focus on the nontrivial case
when Λ(0) < ∞. The proof of Proposition 2.2(ii) can then be splitted into two subcases, which correspond to the two
following propositions.

Proposition 5.5. Under Assumption 2 and P(X < 0) > 0, we have ρ ≤ Λ(0).

Proposition 5.6. Assume that P(X ≥ 0) = 1 and P(X = 0) > 0. Then

ρ ≤ − logP(X = 0) = Λ(0). (5.6)
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Proof of Proposition 5.5. We recall that I := {j ≥ 1: P(Q(j) > 0,Q(0) > 0) > 0}. We use a standard approximation
argument and consider the event Ex,n := {mini=1,...,n Xi > x} for x < 0. Then, P(X > x) > 0 since we are in the
supercritical regime and for every s ≥ 0, E[|X|e−sX|X > x] < ∞. As P(X < 0) > 0, we may choose x small enough
such that P(x < X < 0) > 0. Then E[|X|e−sX|X > x] tends to infinity as s → ∞. Moreover E[e−sX|X > x] is
differentiable with respect to s for s > 0. We call s = νx a point where the minimum of this function is reached. In
particular,

inf
s≥0

E
[
e−sX|X > x

] = E
[
e−νxX|X > −x

]
,

d

ds
E

[
e−sX|X > x

]∣∣∣∣
s=νx

= E
[
Xe−νxX|X > x

] = 0.

The second part of Lemma 4.1 ensures that for every z ∈ I and for every sequence kn = o(n),

lim
n→∞

1

n
logPz(Zn = z) = lim

n→∞
1

n
logPz(1 ≤ Zn ≤ kn) = −ρ.

Let us now change to the measure P, defined by

P(X ∈ dy) = e−νxy
P(X ∈ dy|X > x)

μ
, (5.7)

where μ := E[e−νxX|X > x]. Under P, E[X] = 0 and S is a recurrent random walk.
Let c > 0 be so large such that P(Ln ≥ 0, Sn ≤ c) > 0 for every n. Then

Pz(1 ≤ Zn ≤ kn|Ex,n) = μnE
[
Pz(1 ≤ Zn ≤ kn|E )eνxSn

]
≥ μnE

[
Pz(1 ≤ Zn ≤ kn|E );Ln ≥ 0, Sn ≤ c

]
. (5.8)

We note that Pz(1 ≤ Zn ≤ kn|E ) = Pz(Zn > 0|E ) − Pz(Zn > kn|E ) a.s. and by Markov inequality, Pz(Zn > k|E ) ≤
zeSn

k
a.s. It ensures that

Pz(1 ≤ Zn ≤ kn|Ex,n) ≥ μnE
[
P(Zn > 0|E ) − zec/kn;Ln ≥ 0, Sn ≤ c

]
.

Plugging this into (5.8) and setting bn := P(Ln ≥ 0, Sn ≤ c), we get

Pz(1 ≤ Zn ≤ kn) ≥ Pz(1 ≤ Zn ≤ kn|Ex,n)P(Ex,n)

= μnbn

[
P(Zn > 0|Ln ≥ 0, Sn ≤ c) − zec/kn

]
P(X > x)n. (5.9)

By construction of E, Var(X) ≤ μ−1
E[X2e−νxX|X > x] < ∞. Then from Lemma 5.2, we have bn = O(n−3/2) and

limn→∞ 1
n

logbn = 0. Let kn = n−1/2. The fact that Assumption 2 holds under P entails that it holds also under P.
Indeed,

E
[(

log+ ξQ(a)
)2+ε|X > x

] = μE
[
eνxX

(
log+ ξQ(a)

)2+ε]
≥ μeνxxE

[(
log+ ξQ(a)

)2+ε]
,

as X > x (x < 0) P-a.s. Thus we can use Lemma 5.4 and (5.9) to get

lim inf
n→∞

1

n
logPz(1 ≤ Zn ≤ kn) ≥ logμ + logP(X > x)

= logE
[
e−νxX|X > x

] + logP(X > x)

= − sup
s≤0

{− logE
[
e−sX;X > x

]}
.
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By monotone convergence, we let x → −∞ and

lim inf
n→∞

1

n
logPz(1 ≤ Zn ≤ kn) ≥ − sup

s≤0

{− logE
[
e−sX

]} = −Λ(0).

As kn = o(n), we apply Lemma 4.1 to end up the proof. �

Proof of Proposition 5.6. As P(X ≥ 0) = 1, we have P(Sn = 0) = P(X = 0)n and Λ(0) = − logP(X = 0).
If P(Q(1) = 1|X = 0) = 1, the proof is trivial. So let us work with the assumptions P(X = 0) > 0 and P(Q(1) =

1|X = 0) < 1.
By conditioning on the environment, we get for z ∈ I that

Pz(Zn = z) ≥ P(X = 0)n · Pz(Zn = z|X1 = 0, . . . ,Xn = 0).

For simplicity, we introduce a new measure P̄ on the space of all probability measures on N0 with expectation 1. It is
defined for every measurable A ⊂ Δ by

P̄(Q ∈ A) := P(Q ∈ A;mQ = 1)

P(mQ = 1)
= P(Q ∈ A;mQ = 1)

P(X = 0)
.

Note that P̄(X = 0) = 1 and there exists z ≥ 1 such that P̄(Q(z) > 0,Q(0) > 0) > 0. With respect to P̄, (Zn: n ∈ N0)

is still a branching process in random environment. By Lemma 4.1, there exists ρ̄ ∈ [0,∞) such that

ρ̄ = − lim
n→∞

1

n
log P̄z(Zn = z)

= − lim
n→∞

1

n
logPz(Zn = z|X1 = 0, . . . ,Xn = 0)

= − lim
n→∞

1

n
logE

[
Qn(z)f

z−1
0,n (0)

n−1∏
i=1

f ′
i

(
fi,n(0)

)∣∣∣X1 = 0, . . . ,Xn = 0

]
.

Next, we use convexity arguments. First, for all i ≤ k and s ∈ [0,1], fi,k(s) ≥ 1−f ′
i,k(1)(1−s). As P̄(f ′

i,k(1) = 1) = 1,
we get

fi,k(s) ≥ s P̄-a.s. (5.10)

Also recall that f0,n(0) = f0,n−1(fn(0)) and by (5.10), fi,n(0) ≥ fn(0) = Qn(0). Thus, for every a ∈ N,

lim inf
n→∞

1

n
logE

[
Qn(z)f

z−1
0,n (0)

n−1∏
i=1

f ′
i

(
fi,n(0)

)∣∣∣X1 = 0, . . . ,Xn = 0

]

≥ lim inf
n→∞

1

n
log Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′
i

(
fn−a,n(0)

) n−1∏
i=n−a+1

f ′
i

(
fi,n(0)

)]
.

For ε > 0 fixed, we choose k = kε ∈ N large enough such that P̄(Q([1, k]) > ε) ≥ 1 − ε. Then, conditionally on
{Q([1, k]) > ε}, f ′(s) ≥ ∑k

j=1 Q(k)sk ≥ εsk a.s. for s ∈ [0,1]. Using this inequality, (5.10) and fi,n(0) ≤ fi,n−1(0),
we have

Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′
i

(
fn−a,n(0)

) n−1∏
i=n−a+1

f ′
i

(
fi,n(0)

)∣∣∣Q1, . . . ,Qn−a

]

≥ Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′
i

(
fn−a,n(0)

)
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×
n−1∏

i=n−a+1

f ′
i

(
Qn(0)

);Qn−a+1
([1, k]) > ε, . . . ,Qn−1

([1, k]) > ε

∣∣∣Q1, . . . ,Qn−a

]

≥ Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′
i

(
fn−a,n−1(0)

)

×
n−1∏

i=n−a+1

εQn(0)k;Qn−a+1
([1, k]) > ε, . . . ,Qn−1

([1, k]) > ε

∣∣∣Q1, . . . ,Qn−a

]

≥ Ē

[
n−a∏
i=1

f ′
i

(
fn−a,n−1(0)

);Qn−a+1
([1, k]) > ε, . . . ,Qn−1

([1, k]) > ε

∣∣∣Q1, . . . ,Qn−a

]

× Ē
[
εa−2Qn(z)Qn(0)z−1+(a−2)k

]
,

where the second expectation is strictly positive as P̄(Q(z) > 0,Q(0) > 0) > 0. The product of two generating func-
tions (and thus the product of finitely many) is again convex. Indeed generating functions, as well as all their deriva-
tives are convex, nonnegative and nondecreasing functions, thus

(fg)′′ = f ′′g + 2g′f ′ + fg′′ ≥ 0.

Similarly, the product of the derivatives of generating functions is again convex. For more details on the product
of nonnegative, convex and nondecreasing functions, we refer to [26]. Applying Jensen’s inequality to the convex
function

∏n−a
i=1 f ′

i , the independence of the environments ensures that

Ē

[
n−a∏
i=1

f ′
i

(
fn−a,n−1(0)

);Qn−a+1
([1, k]) > ε, . . . ,Qn−1

([1, k]) > ε

∣∣∣Q1, . . . ,Qn−a

]

≥
n−a∏
i=1

f ′
i

(
Ē

[
fn−a,n−1(0);Qn−a+1

([1, k]) > ε, . . . ,Qn−1
([1, k]) > ε

∣∣∣Q1, . . . ,Qn−a

])

=
n−a∏
i=1

f ′
i

(
Ē

[
f0,a−1(0);Q1

([1, k]) > ε, . . . ,Qa−1
([1, k]) > ε

])
P̄-a.s.

Using this inequality yields

lim inf
n→∞

1

n
logE

[
f z−1

0,n (0)

n∏
i=1

f ′
i

(
fi,n(0)

)∣∣∣X1 = 0, . . . ,Xn = 0

]

≥ lim inf
n→∞

1

n
log

(
Ē

[
n−a∏
i=1

f ′
i

(
Ē

[
f0,a−1(0);Q1

([1, k]) > ε, . . . ,Qa−1
([1, k]) > ε

])]

× Ē
[
εa−2Qn(z)Qn(0)z−1(0)Qn(0)(a−2)k

])

= lim inf
n→∞

1

n
log Ē

[
f ′(Ē

[
f0,a−1(0);Q1

([1, k]) > ε, . . . ,Qa−1
([1, k]) > ε

])]n−a

= log Ē
[
f ′(Ē

[
f0,a−1(0);Q1

([1, k]) > ε, . . . ,Qa−1
([1, k]) > ε

])]
.

Finally, Z is a critical branching process in random environment under the probability P̄ so P̄(Za−1 = 0|E ) =
f0,a−1(0) → 1 P̄-a.s. as a → ∞ (see e.g. [29]). Letting a → ∞, ε → 0 and recalling that P̄(Q([1, k]) > ε) ≥ 1 − ε
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yields by dominated convergence

log Ē
[
f ′(Ē

[
f0,a−1(0);Q1

([1, k]) > ε, . . . ,Qa−1
([1, k]) > ε

])] → log Ē
[
f ′(1)

] = 0.

Then,

lim inf
n→∞

1

n
logE

[
f z−1

0,n (0)

n−1∏
i=1

f ′
i

(
fi,n(0)

)∣∣∣X1 = 0, . . . ,Xn = 0

]
≥ 0.

This yields the claim. �

Remark. Note that the bound f ′(s) ≤ f ′(1) for s ∈ [0,1] immediately yields that lim supn→∞ 1
n

log Pz(Zn = z) ≤
logE[X]. In particular, we recover that for a BPRE with X = 0 a.s., the probability of staying bounded but positive is
not exponentially small.

6. The linear fractional case: Proof of Corollary 2.3

In this section, we assume that the offspring distributions have generating functions of linear fractional form, i.e.

f (s) = 1 − 1 − s

m−1 + bm−2(1 − s)/2
,

where m = f ′(1) and b = f ′′(1).
Under this assumption, direct calculations with generating functions are feasible, i.e. we can explicitly calculate

the generating function of Zn, conditioned on the environment. We also assume that E[|X|] < ∞, P(Z1 = 0) > 0 and
that either P(X ≥ 0) = 1 or Assumption 2 hold, such that Proposition 2.2(ii) holds.

In the next subsection, we prove Corollary 2.3. It gives an expression of � which depends on the sign of
E[X exp(−X)]. Afterwards, we prove Corollary 2.4 which concerns the MRCA. Let us define ηk := bkm

−2
k /2 and

recall that fj,n = fj+1 ◦ · · · ◦ fn. Then for all n ∈ N and s ∈ [0,1] (see [24], p. 156)

f0,n(s) = 1 − (1 − s)

e−Sn + (1 − s)
∑n−1

k=0 ηk+1e−Sk

resp.

fj,n(0) = 1 − 1

e−(Sn−Sj ) + ∑n
k=j+1 ηke−(Sk−1−Sj )

. (6.1)

Let us state some direct consequences resulting from this formula which will be used later. Taking the derivative,

f ′
0,n(s) = e−Sn

(e−Sn + (1 − s)
∑n−1

k=0 ηk+1e−Sk )2
. (6.2)

Note that for every s ∈ [0,1), applying (6.1)

f ′
0,n(s)(1 − s)2 = e−Sn

((1 − s)−1e−Sn + ∑n−1
k=0 ηk+1e−Sk )2

≤ e−Sn
1

(e−Sn + ∑n−1
k=0 ηk+1e−Sk )2

= e−Sn
(
1 − f0,n(0)

)2 = e−SnP(Zn > 0|E )2. (6.3)
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Moreover,

f ′
j (s) = e−Xj

(e−Xj + ηj (1 − s))2
(6.4)

and we can now compute the value of �.

6.1. Determination of the value of �

By Proposition 2.2(ii), ρ ≤ Λ(0). Then it remains to prove that ρ = − logE[e−X] if E[Xe−X] ≥ 0 and ρ ≥ Λ(0)

otherwise. For that purpose, we use the representation of ρ in terms of generating functions. Combining (6.1) and
(6.4) we get

f ′
j

(
fj,n(0)

) = e−Xj

(
e−Xj + ηj

e−(Sn−Sj ) + ∑n
k=j+1 ηke−(Sk−1−Sj )

)−2

= e−Xj

( e−(Sn−Sj ) + ∑n
k=j+1 ηke−(Sk−1−Sj )

e−(Sn−Sj−1) + ∑n
k=j ηke−(Sk−1−Sj−1)

)2

= e−Xj

(
P(Zn > 0|Zj−1 = 1, E )

P(Zn > 0|Zj = 1, E )

)2

.

Since P(Zn > 0|Zn = 1) = 1, we get

P1(Zn = 1) = E1

[
n∏

j=1

f ′
j

(
fj,n(0)

)]

= E1

[
n∏

j=1

e−Xj
P(Zn > 0|Zj−1 = 1, E )2

P(Zn > 0|Zj = 1, E )2

]

= e−SnP(Zn > 0|E ,Z0 = 1)2. (6.5)

First, we consider the case E[Xe−X] ≥ 0. Bounding the probability above by 1 immediately yields

E

[
n∏

j=1

f ′
j

(
fj,n(0)

)] ≤ E
[
e−Sn

] = E
[
e−X

]n
.

Thus ρ ≥ − logE[e−X]. To get the converse inequality, we change to the measure P̂, defined by

P̂(X ∈ dx) = e−x
P(X ∈ dx)

E[e−X] .

This measure is well-defined as E[X2e−X] < ∞ implies E[e−X] < ∞. Then by Jensen’s inequality,

E1
[
e−SnP(Zn > 0|E )2] = E

[
e−X

]n
Ê

[
P1(Zn > 0|E )2] ≥ E

[
e−X

]n
P̂1(Zn > 0)2.

We observe that Ê[X] = E[Xe−X] ≥ 0, such that under P̂, Sn is a random walk with nonnegative drift. It ensures
that the branching process is still critical or supercritical with respect to P̂. Thus, under Assumption 2 and as Ê[X] =
E[X2e−X] < ∞, P̂(Zn > 0) > Cn−1/2 for some C > 0 as n → ∞ (see e.g. [4] for the critical case, whereas P(Zn > 0)

has a positive limit in the supercritical case). Letting n → ∞ and adding that 1 ∈ I , we get

ρ = − lim
n→∞

1

n
logE

[
n∏

j=1

f ′
j

(
fj,n(0)

)] ≤ − logE
[
e−X

]
.
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Secondly, we consider E[Xe−X] < 0. Then there exists ν ∈ (0,1) such that E[Xe−νX] = 0 and we change to the
measure P defined in (5.7) (here without truncation). Applying this change of measure and the well-known estimate
P(Zn > 0|E ) ≤ eLn∧0 a.s., we get that

E
[
e−SnP(Zn > 0|E ,Z0 = 1)2] ≤ E

[
e−νX

]nE
[
e(−1+ν)Sn+2Ln∧0].

Note that Ln ∧ 0 ≤ min(Sn,0) and ν ∈ (0,1) that (−1 + ν)Sn + 2Ln ∧ 0 ≤ 0, and thus

E
[
e−SnP(Zn > 0|E ,Z0 = 1)2] ≤ E

[
e−νX

]n
.

This yields ρ ≥ − logE[e−νX] = Λ(0) since Λ(0) = sups≤0{− logE[esX]} and the condition E[Xe−νX] = 0 implies
that the supremum is taken in s = −ν.

6.2. Proof of the limit theorems for the MRCA

The three cases (i–ii–iii) in Corollary 2.4 result respectively from Lemma 6.1, Lemmas 6.2, 6.4, 6.5 and Lemma 6.7
below. In all this section, we assume that the assumptions of Corollary 2.3 are met, i.e. that E[X2e−X] < ∞, E[|X|] <

∞ and either P(X ≥ 0) = 1 or Assumption 2 holds.

Lemma 6.1. If E[Xe−X] < 0, then

lim inf
n→∞ P1(MRCAn = n|Zn = 2) ∈ (0,1)

and

lim inf
n→∞ P1(MRCAn = 1|Zn = 2) ∈ (0,1).

Proof. Conditionally on E , the branching property holds and ensures that

P1(MRCAn = n|Zn = 2) ≥ P1(Z1 = 2) · E[P1(Zn−1 = 1|E )2]
P1(Zn = 2)

,

which corresponds to two subtrees being founded by Z0 = 1 and staying equal to 1 in all generations.
Next, we recall that linear fractional offspring distributions are stable with respect to compositions and have geo-

metrically decaying probability weights (see e.g. [24]). In particular,

P1(Zn = 2|E ) ≤ P1(Zn = 1|E ) (6.6)

and therefore

P1(MRCAn = n|Zn = 2) ≥ P1(Z1 = 2) · E[P1(Zn−1 = 1|E )2]
P1(Zn = 1)

. (6.7)

Note that E[Xe−X] < 0 implies that there exists ν ∈ (0,1) such that E[Xe−νX] = 0. Thus we can apply the same
change of measure as in the proof of Proposition 5.5. With the definition of P therein (again without truncation), we
get

E[P1(Zn = 1|E )2]
P1(Zn = 1)

= E[eνSnP1(Zn = 1|E )2]
E[eνSnP1(Zn = 1|E )] . (6.8)

From (6.5), we know that

P1(Zn = 1|E ) = f ′
0,n(1) = e−SnP1(Zn > 0|E )2 ≤ e−Sn+2Ln a.s. (6.9)
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Combining this with Jensen inequality yields for every c > 0,

E
[
eνSnP1(Zn = 1|E )2] ≥ E

[
e−2Sn+νSnP1(Zn > 0|E )4;Ln ≥ 0, Sn < c

]
≥ e(−2+ν)cE

[
P1(Zn > 0|E )4;Ln ≥ 0, Sn < c

]
≥ e(−2+ν)cP(Ln ≥ 0, Sn < c)E

[
P1(Zn > 0|E )4|Ln ≥ 0, Sn < c

]
≥ e(−2+ν)cP(Ln ≥ 0, Sn < c)P(Zn > 0|Ln ≥ 0, Sn < c)4

≥ dP(Ln ≥ 0, Sn < c) (6.10)

for some constant d > 0, where the last line follows from Lemma 5.4. For the denominator in (6.8), by (6.9), we get
similarly

E
[
eνSnP1(Zn = 1|E )

] ≤ E
[
e−(1−ν)Sn+2Ln

]
.

Finally, we use E[X2 exp(−X)] to ensure that E[X2] < ∞ and apply Lemmas 5.1 and 5.2. Then,

lim inf
n→∞

E[eνSnP1(Zn = 1|E )2]
E[eνSnP1(Zn = 1|E )] ≥ lim inf

n→∞
P(Ln ≥ 0, Sn < c)

E[e−(1−ν)Sn+2Ln ] > 0.

Recalling (6.7) yields the first part of the lemma.
Similarly, we note that by the Markov property,

P1(MRCAn = 1,Zn = 2) ≥ P1(Zn−1 = 1)P(Z1 = 2).

Recalling that P1(Zn−1 = 1) ≥ P1(Zn−1 = 2) from (6.6) yields the second claim. �

The next three lemmas cover the ‘intermediate’ regime. First, we prove that the probability of {MRCAn = xn}
doesn’t decay exponentially for every 1 ≤ xn ≤ n.

Lemma 6.2. If E[Xe−X] = 0, then for every 1 ≤ xn ≤ n

lim
n→∞

1

n
logP1(MRCAn = xn|Zn = 2) = 0.

Proof. Let E[Xe−X] = 0 and note that MRCAn ≥ 1. Conditionally on E , the branching property holds and guarantees
that as in the previous proof that for every 1 ≤ xn ≤ n,

P1(MRCAn = xn|Zn = 2) ≥ P1(Zn−xn = 2) · E[P1(Zxn = 1|E )2]
P1(Zn = 2)

.

As E[X exp(−X)] ≥ 0, we know from the previous subsection that logE[e−X] = limn→∞ P1(Zn = 2). Thus we get
for 1 ≤ xn ≤ n,

lim inf
n→∞

1

n
logP1(MRCAn = xn|Zn = 2)

≥ lim inf
n→∞

{
(1 − xn/n) logE

[
e−X

] + 1

n
logE

[
P1(Zxn = 1|E )2]} − logE

[
e−X

]
.

For the last term, we use the change of measure of the previous lemma with ν = 1, i.e.

P(X ∈ dx) = e−x
P(X ∈ dx)

E[e−X] .
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Applying (6.10), we get that

E
[
P1(Zxn = 1|E )2] ≥ dE

[
e−X

]xnP(Lxn ≥ 0, Sxn < c).

As E[Xe−X] = 0, S is a recurrent random walk under P. Using again Lemma 5.2, P(Ln ≥ 0, Sn < c) ∼ dn−3/2, and

lim inf
n→∞

1

n
logP1(MRCAn = xn|Zn = 2)

≥ logE
[
e−X

] − logE
[
e−X

] + lim inf
n→∞

{−xn/n logE
[
e−X

] + xn/n logE
[
e−X

]} = 0.

It gives the expected lower bound, whereas the upper bound follows is simply due to the fact that the probabilities are
less than 1. �

The following lemma is required to prove limit results for the MRCA in the intermediately supercritical case. To
avoid technicalities, we impose an additional moment condition.

Lemma 6.3. Let E[Xe−X] = 0 and γ = E[e−X]. Assume that E[f ′′(1)e−X] < ∞. Then

0 < lim inf
n→∞ γ −nn1/2

P1(Zn = 2) ≤ lim sup
n→∞

γ nn1/2
P1(Zn = 2) < ∞,

i.e. P1(Zn = 2) is of the order γ nn−1/2.

Proof. Using the change of measure to P and (6.9),

P1(Zn = 2) = E
[
e−SnP1(Zn > 0|E )2]

= γ nE
[
P(Zn > 0|E )2] ≥ γ nP(Zn > 0). (6.11)

Under P, E[X] = 0 and Z is a critical branching process in random environment. Under our assumptions, there is a
constant d > 0 such that (see [3], Theorem 1.1)

P(Zn > 0) ∼ dn−1/2. (6.12)

Following the proof of the upper bound, using (6.11) and that P(Zn > 0) ≤ eLn a.s., we have

P1(Zn = 2) = γ nE
[
P(Zn > 0|E )2] ≤ γ nE

[
e2Ln

]
.

Our assumptions imply E[X2] < ∞ and thus, as a direct consequence of [4], Lemma 2.1 and
∫ 0
−∞ exu(−x)dx < ∞,

E
[
e2Ln

] = O
(
n−1/2).

This proves the upper bound. �

The next lemma describes the probability of {MRCAn = n} in the intermediate regime.

Lemma 6.4. Let E[Xe−X] = 0 and assume that E[f ′′(1)] < ∞. Then

0 < lim inf
n→∞ nP1(MRCAn = n|Zn = 2) ≤ lim sup

n→∞
nP1(MRCAn = n|Zn = 2) < ∞,

i.e. P1(MRCAn = n|Zn = 2) is of the order n−1.
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Proof. First, the event {MRCAn = n} implies that there are at least two individuals in generation 1 and that from this
generation on, at least two subtrees survive until generation n. We use the branching property and a decomposition
according to the two subtrees which survive and get that

P1(MRCAn = n,Zn = 2|E )

=
∞∑

k=2

(
k

2

)
P1(Z1 = k|E )P(Zn = 1|E ,Z1 = 1)2

P(Zn = 0|E ,Z1 = 1)k−2

≤
∞∑

k=2

k(k − 1)

2
P1(Z1 = k|E )P(Zn = 1|E ,Z1 = 1)2

≤ P(Zn = 1|E ,Z1 = 1)2f ′′
1 (1) a.s., (6.13)

since f ′′
1 (1) = ∑∞

k=2 k(k − 1)P1(Z1 = k|E ). Using (6.9) and independence yields

P1(MRCAn = n,Zn = 2)

≤ E
[
f ′′(1)

]
E

[
e−2Sn−1P(Zn−1 > 0|E )4] ≤ E

[
f ′′(1)

]
E

[
e−2Sn−1+4Ln−1

]
. (6.14)

Again, we change to the measure P. Note that the assumptions of the lemma E[f ′′(1)] < ∞ ensures that Var(X) < ∞.
Using also Corollary 5.3, s we get

P1(MRCAn = n,Zn = 2) ≤ E
[
f ′′(1)

]
γ n−1E

[
e−Sn−1+4Ln−1

] = O
(
γ nn−3/2).

Inserting this and applying Lemma 6.3 yields

lim sup
n→∞

nP1(MRCAn = n|Zn = 2) < ∞.

For the lower bound, we use similar arguments. First,

P1(MRCAn = n,Zn = 2|E ) ≥ P1(Z1 = 2|E )P1(Zn−1 = 1|E ,Z1 = 1)2 a.s.

Let c > 0. Taking the expectation and using (6.9) yields

P1(MRCAn = n,Zn = 2)

≥ P1(Z1 = 2)E
[
e−2Sn−1P1(Zn−1 > 0|E )4]

≥ P1(Z1 = 2)γ n−1e−cE
[
P1(Zn−1 > 0|E )4|Ln−1 ≥ 0, Sn−1 ≤ c

]
P(Ln−1 ≥ 0, Sn−1 ≤ c).

Moreover, by Lemma 5.4 and Jensen’s inequality,

lim inf
n→∞ E

[
P1(Zn > 0|E )4|Ln ≥ 0, Sn ≤ c

]
> 0.

Applying Lemma 6.3 again, we get that

lim inf
n→∞ nP1(MRCAn = n|Zn = 2) > 0. �

The next Lemma describes the probability that the MRCA is neither at the beginning nor at the end:

Lemma 6.5. Let E[Xe−X] = 0 and E[f ′′(1)/(1 − f (0))2] < ∞. Then for every δ ∈ (0,1)

0 < lim inf
n→∞ n3/2

P1
(
MRCAn = �δn�|Zn = 2

) ≤ lim sup
n→∞

n3/2
P1

(
MRCAn = �δn�|Zn = 2

)
< ∞,

i.e. P1(MRCAn = �δn�|Zn = 2) is of the order n−3/2.
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Proof. First, the event {MRCAn = �δn�,Zn = 2} implies that the two individuals in generation n stem from one
individual in generation n − �δn� = �(1 − δ)n�. If there are k individuals in this generation, there are k possibilities
for the ancestor from which the two surviving individuals in generation n stem from. All others have to become
extinct. We use the branching property and a decomposition according to the two subtrees which survive to get that
a.s.

P
(
MRCAn = �δn�,Zn = 2|E

)
=

∞∑
k=1

P(Z�(1−δ)n� = k|E )kP(Zn = 0|E ,Z�(1−δ)n� = k − 1)

× P
(
MRCAn = �δn�,Zn = 2|E ,Z�(1−δ)n� = 1

)
=

∞∑
k=1

P(Z�(1−δ)n� = k|E )kP(Zn = 0|E ,Z�(1−δ)n� = 1)k−1

× P
(
MRCAn = �δn�,Zn = 2|E ,Z�(1−δ)n� = 1

)
.

Next, we set

s := (s(E ) = P(Zn = 0|E ,Z�(1−δ)n�+1 = 1)

and note that

P(Zn = 0|E ,Z�(1−δ)n� = 1) = f�(1−δ)n�(s).

Thus we get that a.s.

P
(
MRCAn = �δn�,Zn = 2|E

)
= f ′

0,�(1−δ)n�
(
f�(1−δ)n�(s)

)
P1

(
MRCAn = �δn�,Zn = 2|E ,Z�(1−δ)n� = 1

)
. (6.15)

Next, using (6.13) and (6.9), we get that

P1
(
MRCAn = �δn�,Zn = 2|E ,Z�(1−δ)n� = 1

)
(6.16)

≤ f ′′
�(1−δ)n�+1(1)P(Zn = 1|E ,Z�(1−δ)n�+1 = 1)2

= f ′′
�(1−δ)n�+1(1)e−2(Sn−S�(1−δ)n�+1)P(Zn > 0|E ,Z�(1−δ)n�+1 = 1)4

= f ′′
�(1−δ)n�+1(1)e−2(Sn−S�(1−δ)n�+1)(1 − s)4. (6.17)

Combining (6.15) and (6.16), we have a.s.

P
(
MRCAn = �δn�,Zn = 2|E

) = f ′
0,�(1−δ)n�

(
f�(1−δ)n�(s)

)
f ′′

�(1−δ)n�+1(1)e−2(Sn−S�(1−δ)n�+1)(1 − s)4.

Moreover, from (6.3),

f ′
0,�(1−δ)n�

(
f�(1−δ)n�(s)

)(
1 − f�(1−δ)n�(s)

)2 ≤ e−S�(1−δ)n�P(Z�(1−δ)n� > 0|E )2 a.s.

So

P
(
MRCAn = �δn�,Zn = 2|E

)
= e−S�(1−δ)n�P(Z�(1−δ)n� > 0|E )2f ′′

�(1−δ)n�+1(1)e−2(Sn−S�(1−δ)n�+1)
(1 − s)4

(1 − f�(1−δ)n�(s))2
.
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As already used in [12], Proof of Lemma 1, we have for a generating function f of a random variable R

1 − f (s)

1 − s
=

∞∑
k=0

sk
P(R > k),

which is obviously increasing in s. Thus we get

1 − s

1 − f�(1−δ)n�(s)
≤ (

P(Z�(1−δ)n� > 0|Z�(1−δ)n�−1 = 1, E )
)−1 = 1

1 − f�(1−δ)n�(0)
.

Combining these identities and using the independence of the environments yields :

P
(
MRCAn = �δn�,Zn = 2

)
≤ E

[
e−S�(1−δ)n�P(Z�(1−δ)n� > 0|E )2]

E
[
f ′′(1)/

(
1 − f (0)

)2]
E

[
e−2S�δn�−1P1(Z�δn�−1 > 0|E )2],

where we recall that by assumption E[f ′′(1)/(1 − f (0))2] < ∞. As we have proved before, for every δ ∈ (0,1),

E
[
e−S�(1−δ)n�P(Z�(1−δ)n� > 0|E )2] ≤ γ �(1−δ)n�E

[
e2L�(1−δ)n�] = γ �(1−δ)n�O

(
n−1/2)

and

E
[
e−2S�δn�−1P1(Z�δn�−1 > 0|E )2] ≤ γ �δn�−1E

[
e−S�δn�−1+2L�δn�−1

] = γ �δn�−1O
(
n−3/2).

Together with Lemma 6.3, this yields the expected upper bound:

lim sup
n→∞

n3/2
P1

(
MRCAn = �δn�|Zn = 2

)
< ∞.

For the lower bound, we use

P1
(
MRCAn = �δn�,Zn = 2|E

)
≥ P1(Z�(1−δ)n� = 1|E )P1

(
MRCAn = �δn�,Zn = 2|E ,Z�(1−δ)n� = 1

)
a.s.

Both terms are independent and from Lemma 6.4, we get

lim inf
n→∞ γ −�δn�+1n3/2

P1
(
MRCAn = �δn�,Zn = 2|Z�(1−δ)n� = 1

)
> 0.

From the previous lemmas,

lim inf
n→∞ γ −�(1−δ)n�n1/2

P1(Z�(1−δ)n� = 1) > 0.

Thanks to Lemma 6.3, we obtain the expected lower bound. �

For the next proof, we require the following auxiliary result.

Lemma 6.6. We assume that E[Xe−X] > 0. Then for every c > 0,

lim
n→∞

1

n
log inf

z≥cn2
Pz(Zn = 2) = −∞, lim sup

n→∞
1

n
log P1

(
1 ≤ Zn ≤ cn2) = logE

[
e−X

]
.
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Proof. First, we observe that on the event {Zn = 2}, at most two initial subtrees survive until generation n. Using the
branching property conditionally on E , we have a.s.

inf
z≥cn2

Pz(Zn = 2|E ) ≤
∞∑

k=�cn2�

(
k

2

)
P1(Zn = 0|E )�cn2�−2

P1(1 ≤ Zn ≤ 2|E )2

+
∞∑

k=�cn2�

(
k

1

)
P1(Zn = 0|E )�cn2�−1

P1(1 ≤ Zn ≤ 2|E ).

Again, we use the geometric form of LF distributions to see that P(1 ≤ Zn ≤ 2|E ) ≤ 2P(Zn = 1|E ) a.s. Next, we
use

∞∑
k=n

k(k − 1)αk−2 ≤ n2 αn−2

(1 − α)3
,

∞∑
k=n

kαk−1 ≤ n
αn−1

(1 − α)2

to get

inf
z≥cn2

Pz(Zn = 2|E )

≤ n2
[
c2 P1(Zn = 0|E )�cn2�−2

P1(Zn = 1|E )2

(1 − P1(Zn = 0|E ))3
+ c

P1(Zn = 0|E )�cn2�−1
P1(Zn = 1|E )

(1 − P1(Zn = 0|E ))2

]

= n2
[
c2 P1(Zn = 0|E )�cn2�−2

P1(Zn = 1|E )2

P1(Zn > 0|E )3
+ c

P1(Zn = 0|E )�cn2�−1
P1(Zn = 1|E )

P1(Zn > 0|E )2

]

= n2[c2
P1(Zn = 0|E )�cn2�−2e−2SnP1(Zn > 0|E ) + cP1(Zn = 0|E )�cn2�−1e−Sn

]
by using (6.5). Finally, as P(Zn > 0|E ) ≤ eSn a.s., we get that a.s.

inf
z≥cn2

Pz(Zn = 2|E ) ≤ (
c2 + c

)
n2

P1(Zn = 0|E )�cn2�−1e−Sn .

Next, we use again the change of measure

P(X ∈ dx) = e−x
P(X ∈ dx)

E[e−X] .

Then

inf
z≥cn2

Pz(Zn = 2) ≤ (
c2 + c

)
n2

E
[
e−X

]nE
[
P(Z∞ = 0|E )�cn2�−2].

Using Jensen’s inequality yields

lim sup
n→∞

1

n
log inf

z≥cn2
Pz(Zn = 2) ≤ logE

[
e−X

] + lim sup
n→∞

nE
[
logP(Z∞ = 0|E )

]
.

Finally, note that E[Xe−X] > 0 implies E[X] > 0. Thus P(P(Z∞ = 0|E ) < 1) > 0 and therefore E[log P(Z∞ =
0|E )] < 0. This yields the first result.

For the second claim, we use again the geometric form of the probabilities of LF distributions to get

P1
(
1 ≤ Zn ≤ cn2|E

) ≤ ⌈
cn2⌉

P1(Zn = 1|E ).
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Thus, taking expectations yields

lim sup
n→∞

1

n
logP1

(
1 ≤ Zn ≤ cn2) ≤ lim sup

n→∞
1

n
log

(⌈
cn2⌉

P1(Zn = 1)
)

= lim sup
n→∞

1

n
logP1(Zn = 1) = logE

[
e−X

]
.

where the last result has been shown in the previous subsection. �

Lemma 6.7. We assume that E[Xe−X] > 0. Then, for every δ ∈ (0,1],

lim sup
n→∞

1

n
logP1(MRCAn > δn|Zn = 2) < 0.

Proof. First, we recall that the event {MRCAn = �δn�+ 1} implies that there are at least two individuals in generation
n−�δn� and that from this generation on, at least two subtrees survive until generation n. As in the preceding lemmas,
we use the branching property and a decomposition according to the two subtrees which survive and get that

P1
(
MRCAn = �δn� + 1,Zn = 2

)

≤
n2∑

k=2

(
k

2

)
P1(Zn−�δn� = k)E

[
P1(Z�δn� = 1|E )2

P(Z�δn� = 0|E )k−2] + inf
z≥n2

Pz(Z�δn� = 2)

≤ An + Bn,

where

An := n4
P1

(
1 ≤ Zn−�δn� ≤ n2)

E
[
P1(Z�δn� = 1|E )2], Bn := inf

z≥n2
Pz(Z�δn� = 2).

Letting n go to ∞ and applying Lemma 6.6 yields

lim sup
n→∞

1

n
logP1

(
MRCAn = �δn� + 1,Zn = 2

)

≤ max

{
lim sup
n→∞

1

n
logAn, lim sup

n→∞
1

n
logBn

}

= max

{
lim sup
n→∞

1

n
logAn,−∞

}
= lim sup

n→∞
1

n
logAn. (6.18)

Next, let us treat the term named An. By Lemma 6.6,

lim sup
n→∞

1

n
logP

(
1 ≤ Zn−�δn� ≤ n2) = (1 − δ) logE

[
e−X

]
. (6.19)

Using (6.5) and P(Zn > 0|E ) ≤ eLn a.s. yields

E
[
P1(Z�δn� = 1|E )2] ≤ E

[
e−2S�δn�P1(Z�δn� > 0|E )4] ≤ E

[
e−2S�δn�+4L�δn�]. (6.20)

We recall the change of measure

P(X ∈ dx) = e−x
P(X ∈ dx)

E[e−X] .



802 V. Bansaye and C. Böinghoff

Then E[Xe−X] > 0 assures that E[X] > 0 and under P, S is a random walk with positive drift. From (6.18), (6.19)
and (6.20) we get

lim sup
n→∞

1

n
logP1

(
MRCAn = �δn� + 1,Zn = 2

)

≤ (1 − δ) logE
[
e−X

] + lim sup
n→∞

1

n
log E

[
e−2S�δn�+4L�δn�]

= (1 − δ) log E
[
e−X

] + δ logE
[
e−X

] + lim sup
n→∞

1

n
log E

[
e−S�δn�+4L�δn�]

= logE
[
e−X

] + lim sup
n→∞

1

n
log E

[
e−S�δn�+4L�δn�].

As E[Xe−X] > 0, we know from the previous subsection that limn→∞ 1
n

logP1(Zn = 2) = log E[e−X]. So the previ-
ous inequality yields

lim sup
n→∞

1

n
logP 1

(
MRCAn = �δn� + 1|Zn = 2

) ≤ lim sup
n→∞

1

n
log E

[
e−S�δn�+4L�δn�].

Finally, we prove that lim supn→∞ 1
n

log E[e−S�δn�+4L�δn� ] < 0 to conclude. Decomposing the expectation with 0 <

c < E[X] and using 4L�δn� − S�δn� ≤ 0 yields

E
[
e−S�δn�+4L�δn�] ≤ e−c�δn� + P

(
4L�δn� − S�δn� > −c�δn�)

≤ e−c�δn� + P
(
S�δn� < c�δn�).

As 0 < c < E[X], by standard results of large deviation theory, the probability on the right-hand side is exponentially
small if E[e−sX] = E[e(−1−s)X] < ∞ for some s > 0. This yields that

lim sup
n→∞

1

n
logP1

(
MRCAn = �δn� + 1|Zn = 2

)
< 0

and thus

lim sup
n→∞

1

n
logP1(MRCAn > δn|Zn = 2) < 0. �

7. Examples with two environments: Dependence on the initial and final population

In this section, we focus on the importance of the initial population.

Example 1 (the limits of 1
n

log P1(Zn = i) and 1
n

log P1(Zn = j) may be both finite, negative but different). Assume
that the environment consists of two states q1 and q2 such that

r := P(Q1 = q1) = 1 − P(Q1 = q2) > 0; q1(1) = 1;q2(0) = p,q2(2) = 1 − p,

with p ∈ (0,1). Then

1

n
logP1(Zn = 1) = log r,

1

n
logP1(Zn = 2) ≥ max

{
log r; log

[
(1 − r)2(1 − p)p

]}
,

where the term log r comes from a population which stays equal to 1 in the environment sequence (q1, q1, q1, . . .) and
the last term comes from a population which stays equal to 2 in the environment sequence (q2, q2, q2, . . .). Thus if r

is chosen small enough (i.e. r <
2(1−p)p

1+2(1−p)p
),

lim
n→∞

1

n
logP1(Zn = 1) < lim

n→∞
1

n
logP1(Zn = 2).
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Example 2 (the limits of 1
n

logPk(Zn = k) and 1
n

logP1(Zn = k) with k > 1 may be both finite, negative but differ-
ent). Actually, in the case without extinction, we have

lim
n→∞

1

n
logPi (Zn = k) = i logP(Z1 = 1),

as soon as Pi (∃n: Zn = k) > 0 and the result is immediate. We give here an example with k = 2 and possible ex-
tinction. We first observe that such an example is not possible with one environment, i.e. in the Galton–Watson case.
Then we introduce a simple example in the random environment case and check that it is not in contradiction to
Theorem 2.1, before considering the asymptotic behavior of the probabilities involved.

Indeed, for Galton–Watson processes with reproduction law q such that q(0) > 0 and q(2) > 0, the fact that
q(1) > 0 already ensures that the limits of 1

n
logP2(Zn = 2) and 1

n
logP1(Zn = 2) are equal. In the case q(1) = 0, we

get that

P1(Zn+1 = 2) = P1(Z1 ≥ 2,Zn+1 = 2) =
∑
i≥2

q(i)Pi (Zn = 2)

whereas killing one of the initial individuals starting from 2 and letting the other survive yields:

P2(Zn+1 = 2) ≥ 2q(0)
∑
i≥2

q(i)Pi (Zn = 2).

Thus P2(Zn+1 = 2) ≥ 2q(0)P1(Zn = 2). A converse inequality is clear, so the limits of 1
n

logP2(Zn = 2) and
1
n

logP1(Zn = 2) have to be equal in the Galton–Watson case with possible extinction.
Thus, we consider two environments to provide an example that the initial population size is also of importance

even if extinction is possible. More precisely, let the environment consist of the two states q1 and q2 such that

r := P(Q1 = q1) = 1 − P(Q1 = q2) > 0,

q1(1) = p, q1(a) = 1 − p, q2(0) = p, q2(2) = p, q2(a) = 1 − 2p,

with p ∈ (0, 1
2 ) and a > 2. Note k = 1 /∈ Cl(I), so this example doesn’t contradict Theorem 2.1 where it is assumed

that the initial population size is in Cl(I).
To prove that P1(Zn = 2) � P2(Zn = 2), we first observe that

lim inf
n→∞

1

n
logP1(Zn = 2) ≥ log(rp), (7.1)

which comes from a population staying equal to 1 before the last generation in the environment sequence
(q1, q1, . . . , q1, q2).

Next, let us estimate the extinction probability, given the environment. We first observe that any BPVE whose
environments are either q1 or q2 is stochastically larger than the Galton–Watson process with reproduction law (and
unique environment) q2. As a consequence,

P1(Zn = 0|E ) ≤ P1(Zn = 0|Q1 = q2, . . . ,Qn = q2) ≤ P(Z∞ = 0|Q1 = q2,Q2 = q2, . . .) =: se a.s.

It is well-known that se is given as the first fix point of the generating function f2 of q2:

se = f2(se) = p + ps2
e + (1 − 2p)sa

e .

Let us now estimate se. For s = 2p, we have 2p > f2(2p) = p + 4p3 + (1 − 2p)2apa if a is large enough since
p < 1/2. Thus se ≤ 2p if only a is large enough.

We get then for all i ≥ 1, k ≤ n,

P(Zn = 0|E ,Zk = i) ≤ si
e ≤ (2p)i a.s.
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Using this estimate and the explicit law of P(Zk+1 = ·|Zk = 2,Qk = q1), we obtain a.s.

P2(Zn = 2|E ,Qk = q1,Zk = 2)

= p2
P(Zn = 2|E ,Zk+1 = 2) + 2(1 − p)pP(Zn = 2|E ,Zk+1 = 1 + a)

+ (1 − p)2
P(Zn = 2|E ,Zk+1 = 2a)

= P(Zn = 2|E ,Zk+1 = 2)

(
p2 + 2(1 − p)p

(
a + 1

2

)
P(Zn = 0|E ,Zk+1 = 1 + a − 2)

+ (1 − p)2
(

2a

2

)
P(Zn = 0|E ,Zk+1 = 2a − 2)

)

≤ P(Zn = 2|E ,Zk+1 = 2)

(
p2 + 2(1 − p)p

(
a + 1

2

)
(2p)a−1 + (1 − p)2

(
2a

2

)
(2p)2a−2

)
.

If p is small enough (depending on a > 2), we get that a.s.

P2(Zn = 2|E ,Qk = q1,Zk = 2) ≤ P(Zn = 2|E ,Zk+1 = 2)3p2.

Analogously, if the environment q2 occurs in generation k, we get that a.s.

P2(Zn = 2|E ,Qk = q2,Zk = 2)

= 2p2
P(Zn = 2|E ,Zk+1 = 2) + p2

P(Zn = 2|E ,Zk+1 = 4) + 2p(1 − 2p)P(Zn = 2|E ,Zk+1 = a)

+ 2p(1 − p)P(Zn = 2|E ,Zk+1 = a + 2) + (1 − 2p)2
P(Zn = 2|E ,Zk+1 = 2a)

≤ P(Zn = 2|E ,Zk+1 = 2)3p2.

Next, note that the population starting from Z0 = 2 is either always ≥ 2 or extinct. Thus in each generation, there are
at least two individuals and we may apply the estimates above for the subtrees emerging in generation k. Finally we
get that

lim sup
n→∞

1

n
logP2(Zn = 2) = lim sup

n→∞
1

n
logE

[
P2(Zn = 2|E )

] ≤ log
(
3p2).

We now choose p small enough such that 3p2 < rp and recall (7.1) to get

lim sup
n→∞

1

n
logP2(Zn = 2) < lim inf

n→∞
1

n
logP1(Zn = 2).

Finally, we note that this example shows that, as in the case without extinction in [9], the initial population may be of
importance for the asymptotic of the probability of staying small, but alive.

Acknowledgments

The authors wish to thank the anonymous referee for several comments and corrections of the earlier version of this
paper, which have significantly improved its quality. This work partially was funded by project MANEGE ‘Modèles
Aléatoires en Écologie, Génétique et Évolution’ 09-BLAN-0215 of ANR (French national research agency), Chair
Modelisation Mathematique et Biodiversite VEOLIA-Ecole Polytechnique-MNHN-F.X. and the professorial chair
Jean Marjoulet.

References

[1] V. I. Afanasyev, C. Böinghoff, G. Kersting and V. A. Vatutin. Conditional limit theorems for intermediately subcritical branching processes
in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014) 602–627. MR3189086

http://www.ams.org/mathscinet-getitem?mr=3189086


Small positive values for BPRE 805

[2] V. I. Afanasyev, C. Böinghoff, G. Kersting and V. A. Vatutin. Limit theorems for a weakly subcritical branching process in random environ-
ment. J. Theoret. Probab. 25 (2012) 703–732. MR2956209

[3] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin. Functional limit theorems for strongly subcritical branching processes in random
environment. Stochastic Process. Appl. 115 (2005) 1658–1676. MR2165338

[4] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin. Criticality for branching processes in random environment. Ann. Probab. 33 (2005)
645–673. MR2123206

[5] A. Agresti. On the extinction times of varying and random environment branching processes. J. Appl. Probab. 12 (1975) 39–46. MR0365733
[6] K. B. Athreya. Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790. MR1284985
[7] K. B. Athreya and S. Karlin. On branching processes with random environments: I, II. Ann. Math. Stat. 42 (1971) 1499–1520, 1843–1858.
[8] K. B. Athreya and P. E. Ney. Branching Processes. Dover, Mineola, NY, 2004. MR2047480
[9] V. Bansaye and J. Berestycki. Large deviations for branching processes in random environment. Markov Process. Related Fields 15 (2009)

493–524. MR2598126
[10] V. Bansaye and C. Böinghoff. Upper large deviations for branching processes in random environment with heavy tails. Electron. J. Probab.

16 (2011) 1900–1933. MR2851050
[11] C. Böinghoff. Branching processes in random environment. Ph.D. thesis, Goethe-Univ. Frankfurt/Main, 2010.
[12] C. Böinghoff and G. Kersting. Upper large deviations of branching processes in a random environment – Offspring distributions with geo-

metrically bounded tails. Stochastic Process. Appl. 120 (2010) 2064–2077. MR2673988
[13] F. M. Dekking. On the survival probability of a branching process in a finite state iid environment. Stochastic Process. Appl. 27 (1998)

151–157. MR0934535
[14] K. Fleischmann and V. Vatutin. Reduced subcritical Galton–Watson processes in a random environment. Adv. in Appl. Probab. 31 (1999)

88–111. MR1699663
[15] K. Fleischmann and V. Wachtel. On the left tail asymptotics for the limit law of supercritical Galton–Watson processes in the Böttcher case.

Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 201–225. MR2500235
[16] J. Geiger. Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Probab. 36 (1999) 301–309. MR1724856
[17] J. Geiger, G. Kersting and V. A. Vatutin. Limit theorems for subcritical branching processes in random environment. Ann. Inst. Henri Poincaré

Probab. Stat. 39 (2003) 593–620. MR1983172
[18] Y. Guivarc’h and Q. Liu. Asymptotic properties of branching processes in random environment. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001)

339–344. MR1821473
[19] B. Hambly. On the limiting distribution of a supercritical branching process in random environment. J. Appl. Probab. 29 (1992) 499–518.

MR1174427
[20] C. Huang and Q. Liu. Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process. Appl.

122 (2010) 522–545. MR2868929
[21] C. Huang and Q. Liu. Convergence in Lp and its exponential rate for a branching process in a random environment, 2011. Avialable at

http://arxiv.org/abs/1011.0533.
[22] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of L logL criteria for mean behavior of branching processes. Ann. Probab. 23 (1995)

1125–1138. MR1349164
[23] M. Hutzenthaler. Supercritical branching diffusions in random environment. Electron. Commun. Probab. 16 (2011) 781–791. MR2868599
[24] M. V. Kozlov. On large deviations of branching processes in a random environment: Geometric distribution of descendants. Discrete Math.

Appl. 16 (2006) 155–174. MR2283329
[25] M. V. Kozlov. On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny.

Theory Probab. Appl. 54 (2010) 424–446. MR2766343
[26] E. Marchi. When is the product of two concave functions concave? Int. J. Math. Game Theory Algebra 19 (2010) 165–172. MR2730404
[27] J. Neveu. Erasing a branching tree. Adv. Apl. Probab. suppl. (1986) 101–108. MR0868511
[28] A. Rouault. Large deviations and branching processes. In Proceedings of the 9th International Summer School on Probability Theory and

Mathematical Statistics (Sozopol, 1997) 15–38. Pliska Stud. Math. Bulgar. 13. Bulgarian Academy of Sciences, Sofia, 2000. MR1800359
[29] W. L. Smith and W. E. Wilkinson. On branching processes in random environments. Ann. Math. Stat. 40 (1969) 814–824. MR0246380
[30] V. A. Vatutin and V. Wachtel. Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009)

177–217. MR2449127

http://www.ams.org/mathscinet-getitem?mr=2956209
http://www.ams.org/mathscinet-getitem?mr=2165338
http://www.ams.org/mathscinet-getitem?mr=2123206
http://www.ams.org/mathscinet-getitem?mr=0365733
http://www.ams.org/mathscinet-getitem?mr=1284985
http://www.ams.org/mathscinet-getitem?mr=2047480
http://www.ams.org/mathscinet-getitem?mr=2598126
http://www.ams.org/mathscinet-getitem?mr=2851050
http://www.ams.org/mathscinet-getitem?mr=2673988
http://www.ams.org/mathscinet-getitem?mr=0934535
http://www.ams.org/mathscinet-getitem?mr=1699663
http://www.ams.org/mathscinet-getitem?mr=2500235
http://www.ams.org/mathscinet-getitem?mr=1724856
http://www.ams.org/mathscinet-getitem?mr=1983172
http://www.ams.org/mathscinet-getitem?mr=1821473
http://www.ams.org/mathscinet-getitem?mr=1174427
http://www.ams.org/mathscinet-getitem?mr=2868929
http://arxiv.org/abs/1011.0533
http://www.ams.org/mathscinet-getitem?mr=1349164
http://www.ams.org/mathscinet-getitem?mr=2868599
http://www.ams.org/mathscinet-getitem?mr=2283329
http://www.ams.org/mathscinet-getitem?mr=2766343
http://www.ams.org/mathscinet-getitem?mr=2730404
http://www.ams.org/mathscinet-getitem?mr=0868511
http://www.ams.org/mathscinet-getitem?mr=1800359
http://www.ams.org/mathscinet-getitem?mr=0246380
http://www.ams.org/mathscinet-getitem?mr=2449127

	Introduction
	Probability of staying bounded without extinction
	The Geiger construction for a branching process in varying environment (BPVE)
	Proof of Theorem 2.1: The probability of staying positive but bounded
	Proof of Proposition 2.2
	Preliminaries on random walks
	Proof of Proposition 2.2(i): rho>0
	Proof of Proposition 2.2(ii): rho<=Lambda(0)

	The linear fractional case: Proof of Corollary 2.3
	Determination of the value of rho
	Proof of the limit theorems for the MRCA

	Examples with two environments: Dependence on the initial and final population
	Acknowledgments
	References

