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Abstract. In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has
a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion,
we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of
the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the marginal
distribution, to the associated steady regimes. When the memory is too long, we show that in general, the dynamical system has a
tendency to explode, and in the particular Gaussian case, we explicitly obtain the rate of divergence.

Résumé. Nous nous intéressons dans ce travail à une diffusion issue d’une descente de gradient, dont le terme de dérive utilise
une mémoire sur le passé de la trajectoire. Le processus ainsi introduit est non-Markovien. Nous étudions les propriétés de stabilité
et de convergence à l’équilibre des mesures d’occupation des trajectoires. Dans les situations stables, nous donnons des vitesses
de convergence à la stationnarité alors que dans les cas où la mémoire possède une longue portée, nous prouvons l’explosion du
système dynamique. Nous exhibons enfin des formules précises dans le cas gaussien.
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1. Introduction

We are interested in this work in the evolution of a diffusion with a drift defined as an average over all past positions
of a gradient of a functional. If k and h are two positive and increasing maps, the process can be written as

dXt = −
(

1

k(t)

∫ t

0
h(s)∇U(Xs)ds

)
dt + σ(t,Xt )dWt. (1.1)

Such diffusions are naturally derived from the family of deterministic ordinary differential equations given by

x′
s = − 1

k(s)

∫ s

0
h(u)∇U(xu)du. (1.2)

For optimization procedure, this deterministic equation may be useful since the solution (xs)s≥0 behaves like an
inertial gradient descent: this point enables the solution to avoid some local traps although this property is of course
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false with a simple gradient descent. In some recent works of [14] and [13], the authors propose a tricky change of
variable to link the behaviour of (1.2) with the second order differential equation with a damping coefficient a:

∀t ≥ 0 z′′(t) + a(t)z′(t) + ∇U
[
z(t)
]= 0. (1.3)

More precisely, if τ is the solution initialized with τ(0) = 0 of the ordinary differential equation

τ ′(t) =
√

k(τ (t))

h(τ (t))
,

[13] shows that if x satisfies (1.2), then z = x ◦ τ satisfies (1.3) with a damping effect a given by

a(t) =
(

k′h + kh′

2h3/2k

)
◦ τ(t) = 1

2

√
k

h

(
h′

h
+ k′

k

)(
τ(t)

)
.

Equation (1.3) is indeed a generalization of the so-called dissipative Heavy Ball with Friction (HBF) system whose
equations were first introduced by [37] and [3]. If U is a real positive map from R

d to R+, the HBF models the evo-
lution of a ball left on the graph of U and which is submitted to the action of the gravity with some friction resistance
proportional to its speed, the friction here is described through the application a. There exists a large bibliography on
equation (1.3) among the convex and optimization community, and most of these works are concerned with the con-
vergence of the trajectory and its optimization properties. Most of the past works dealt with these properties depending
on U and the repelling coefficient a(t) that may (or not) depend on time t . When a is constant, some old result of
[29] establishes the convergence of solutions through some critical point of U in the one dimensional case when U

is a bounded from below and coercive potential. More recently, [1] shows the asymptotic convergence of solutions of
equation (1.3) to some minimum point of the potential U in Hilbert spaces with constant damping function a and any
convex potential U . In much more general cases, [2] yield some weak convergence of the trajectory to some minimizer
(resp. critical point) of U (always for constant friction effect a) when the potential U is convex (resp. analytic) and
the trajectory is weakly compact. At last, in a recent paper, [14] establish some convergence results and optimization
properties of the trajectories with general vanishing (or not) damping effect a and potential U .

In the sequel, we will be interested in the stochastic evolution of equations similar to (1.2) in the special case of
h = k′ for k any positive increasing application. It can be shown that if k increases at least as

√
t , then a is likely to

be positive. In this situation, it is easy to compute τ for special memory functions.

• If k(t) = eλt , one can show that τ ′(t) = t/
√

λ and a(t) = √
λ.

• If k(t) = tα with α ≥ 1/2, it is also immediate to see that τ(t) = t2/4α and a(t) = 2α−1
t

.

Note that for each of these two situations, [14] and [15] have shown that the deterministic trajectory (zs)s≥0 solution
of (1.3) converges to a critical point of U which is generically a local minimum of U (the set of initialization points for
whom (zs)s≥0 converges to a minimum is open and dense). Hence, we will be interested in this work in the behaviour
of the system (1.1) for these two typical cases of memory.

One may rely the behaviour of (1.1) to a stochastic HBF as follows. Indeed, a stochastic version of (1.3) with any
variance ΣHBF(s, ·) can be expressed as a couple (z1, z2) satisfying{

dz1(s) = −z2(s)ds + ΣHBF
(
s, z1(s)

)
dWs,

dz2(s) = −a(s)z2(s)ds − ∇U
(
z1(s)

)
ds.

Following the reparametrization Xt = z1 ◦ τ−1, it is easy to show that (Xt )t≥0 and (z1(t))t≥0 are equivalent up to the
change of parametrisation τ if σ and ΣHBF satisfy

Σ2
HBF(t, ·) = σ 2(t, ·)

√
τ ′(τ−1(t)

)
.

For instance, when k(t) = eλt , a time homogeneous σ in the average gradient descent (1.1) is equivalent to a time
homogeneous ΣHBF in the stochastic HBF. At last, in the case k(t) = tα , a time homogeneous ΣHBF in the stochastic
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(HBF) system corresponds to an annealing situation where σ 2(t) = Σ2
HBF{α/t}1/4 although conversely, a time homo-

geneous σ in the average gradient system (1.1) implies an increasing amount of noise in the stochastic HBF. In this
work, we will only consider the case of time-homogeneous σ since our main objective is to understand the effect of
the memory on the dynamical system with a fixed level of noise.

Regarding now the probabilistic past works, in a sense, our work belongs to the large class of self-interacting
diffusions introduced by [19] that describe some non Markovian dynamical system whose evolution depends on the
whole past of the trajectory. Such processes have been extensively studied in the discrete settings within the case of
Random Walks with Reinforcement by [36] for the evolution of a growing polymer model.

In the continuous settings, [21] have studied a process (denoted (Xt )t≥0) that looks similar to the one introduced in
(1.1) and have established the almost sure behaviour of Xt/t for a special drift based on a functional of the differences
(Xt − Xs)0≤s≤t . The process is then reinforced by the occupation measure

∫ t

0 δXs ds (see also the work of [38] for

an averaged drift based on Xt−Xs‖Xt−Xs‖ as well as the initial work of [26]). Further works of [10], [11] provided some
complete study of self-attractive or interactive diffusions with values in a compact set when the process is reinforced
by its normalized occupation measure (μt ). They obtained some convergence of (μt ) towards a measure defined as a
fixed point of an equation derived through a Gibbs field. Their work is mainly based on the powerful tool of asymptotic
pseudo-trajectory introduced by [9] and a compactness assumption. Further results can be obtained in the special case
of symmetric self-interactions as pointed by [11]. In some very recent works [18,34], some study of the asymptotics of
such types of nonhomogeneous Markov processes has been extended to the noncompact setting. At last, one may also
refer to the interesting works of [4] and [6] where the authors define in a very general case some diffusion for which
the drift depends on the whole past trajectory: the drift coefficient of the equation is a nonlinear functional of the
past history of the solution and they provide sufficient conditions for the existence and uniqueness of such solutions.
Another common point with this work is the intensive use of Lyapunov function (see e.g. [30]) of the system. Note
that such infinite memory diffusions may have some applications for stochastic Navier–Stokes equations (see e.g. [5]
for further details).

From a pure technical point of view, we will use a dimensional increment to treat (1.1) with Markovian tools.
Hence, this space enlargement will naturally yield some coupled Langevin equations on the position and speed of a
particle. Some recent works have dealt with the study of some processes (Xt ,Vt )t≥0 based on:{

dXt = Vt dt,

dVt = F(Xt ,Vt )dt + σ(Xt ,Vt )dWt,

and such coupled equations cover a large number of situations such that the kinetic Fokker Planck equation for instance
(one may find many details and references in [41], page 11 and Section 7 of Chapter 1). To the best of our knowledge,
the noise term dW always acts directly on the speed component and not on the position increment. Note that in our
work, the noise will act on the position of the particle itself but not on its speed.

Let us now describe the main objective of the paper that is to study the long time behaviour of the dynamical system
defined by (1.1), in terms of U , σ and especially to t 
→ k(t) that plays the role of the “memory” of the system. More
precisely, we will be interested in the long-time stability of this process (i.e. existence and uniqueness of a steady
regime, convergence properties to this steady regime including rate of convergence), and a description of this steady
regime when it is possible. The paper is organized as follows. In Section 2, we first state our basic definitions and a
description of (Xt ) (solution to (1.1)) as a component of a generally nonhomogeneous R

d × R
d -Markov process that

we denote (Xt , Yt )t≥0 (see (2.3)). Then, we give some preliminary results about the existence of solutions and on the
hypoelliptic nature of (Xt , Yt )t≥0. Under some nondegeneracy conditions, this second result leads to uniqueness of
the invariant distribution in the homogeneous case. In Section 3, we state our main results about the long-time stability
of the of our process in terms of the memory function t 
→ k(t) or more precisely of r∞ := lim inf( k′

k
)(t) as t → +∞.

Throughout the paper, we assume that k is a positive increasing function. Thus, r∞ belongs to [0,+∞]. In Section 3.1,
we focus on the (stable) case: r∞ ∈ (0,+∞]. Under some repelling condition on U , we build a Lyapunov function for
the dynamical system and state a series of results about the long-time weak convergence of the occupation measures,
some properties of the invariant distribution and convergence rates for the marginal distribution of (Xt , Yt )t≥0 to
the steady regime. Then, in Section 3.2, we show that when r∞ = 0 (i.e. when the dynamical system has too much
memory), (Xt )t≥0 has some long-time explosion properties. More precisely, we show that there exists a subsequence
(tn)n≥0 such that tn → +∞ and E[|Xtn |2] → +∞. Furthermore, when U(x) = x2/2, we obtain a CLT that gives the
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explicit rate of divergence of (Xt )t≥0 in this particular case. Finally, Sections 4, 5, 6 and 7 are devoted to the proofs
of the main results.

2. Setting and general statements

Before a precise definition of the dynamical system, let us list a short series of notations. The scalar product and
the Euclidean norm on R

d are respectively denoted by 〈 , 〉 and | · |. The set of d × q matrices is denoted by Md,q

and we adopt the notation ‖ · ‖ for every nonexplicit norm on this finite-dimensional vector space. For a C 3-function
f : Rd → R, ∇f , D2f denote respectively the gradient of f and the Hessian matrix of f and D3f is defined for
every i, j , k ∈ {1, . . . , d} by (D3f (x))i,j,k = ∂3

xi ,xj ,xk
f (x). For every x ∈ R

d , we set

∥∥∣∣D3f (x)
∥∥∣∣= (∑

i,j,k

∣∣∂3
xi ,xj ,xk

f (x)
∣∣2)1/2

.

Given any C 2-function f : Rd × R
d → R, ∇xf : Rd × R

d → R
d and D2

xf : Rd × R
d → Md,d denote the functions

respectively defined by (∇xf (x, y))i = ∂xi
f (x, y) and (D2

xf (x, y))i,j = ∂xi
∂xj

f (x, y). For a measure μ and a μ-
integrable function f , we set μ(f ) = ∫ f dμ. The Lebesgue measure on R

d is denoted by λd . Finally, we will denote
by C every nonexplicit positive constant.

Throughout this paper, we denote by U : Rd 
→ R a smooth (at least C 2) function on R
d satisfying the following

coercivity conditions:

lim|x|→+∞U(x) = +∞, inf
x∈Rd

U(x) > 0 and lim inf|x|→+∞
〈
x,∇U(x)

〉
> 0. (2.1)

We consider the following SDE:

dXt = σ(Xt )dWt − 1

k(t)

(∫ t

0
k′(s)∇U(Xs)ds

)
dt, (2.2)

where σ : Rd → Md,d is a continuous function, (Wt )t≥0 is a d-dimensional standard Brownian motion and (k(t))t≥0

is a deterministic positive increasing C 2-function. Denoting by (Yt )t≥0 the process defined by

Yt = 1

k(t)

∫ t

0
k′(s)∇U(Xs)ds,

we observe that dYt = (k′/k)(t)(∇U(Xt ) − Yt )dt . This means that SDE (2.2) can be viewed as a 2d-dimensional
nonhomogeneous Markovian dynamical system given by the following SDE:{

dXt = σ(Xt )dWt − Yt dt,

dYt = r(t)
(∇U(Xt) − Yt

)
dt,

(2.3)

where r(t) = k′
k
(t) is a C 1-function, σ : Rd → Md,d is at least continuous and U satisfies (2.1). These assumptions

will hold throughout the paper. Note that r is a nonnegative function on R+ owing to our assumption on k. We denote
by (Zt )t≥0, the coupled general solution to (2.3): Zt = (Xt , Yt ), and by, (Zz

t )t≥0, the coupled solution starting from
z = (x, y) for x, y ∈ R

d . Integrating by parts equations (2.3), one checks that:

Y z
t = yk(0)

k(t)
+ 1

k(t)

∫ t

0
k′(s)∇U

(
Xz

s

)
ds. (2.4)

This means in particular that the previously defined process (Xt , Yt )t≥0 with X0 = x corresponds to the solution of
(2.3) starting from z = (x,0).
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Under some classical conditions about existence and uniqueness of the solutions (see Section 2.1), (Xt , Yt , t)t≥0 is
an homogeneous Markov process whose infinitesimal generator A is defined for every f ∈ C 2

K(Rd × R
d × R+), by:

Af (x, y, t) = −〈y,∇xf 〉 + r(t)
〈∇U(x) − y,∇yf

〉+ 1
2 Tr
(
σ ∗(x)D2

xf (x, y)σ (x)
)+ ∂tf. (2.5)

With a slight abuse of notation, in the particular case r(t) = λ > 0 for every t ≥ 0, we will also denote by A the
infinitesimal generator of the homogeneous Markov process (Xt , Yt )t≥0. Note also that in the proofs, we will write
(Xt , Yt ) instead of (Xz

t , Y
z
t ) in order to alleviate the notations.

2.1. Existence of solutions

First, let us state a result about existence of solutions for (2.3). In this way, we denote by (H0) the following growth
assumption:

(H0): There exists C > 0 such that Tr[σ ∗(x)D2U(x)σ (x)] ≤ CU(x) for every x ∈ R
d .

This assumption is satisfied for a very large class of potentials U (including potentials with nonsublinear gradient).
(H0) is true for potential U with asymptotic behaviour U(x) ∼∞ C1|x|p and D2U(x) ∼∞ C2|x|p−2 as soon as
‖σ(x)‖ = O(|x|). It is even true for potential U with very weak growth: U(x) ∼∞ C1 ln |x| and D2U(x) ∼∞ C2|x|−2

as soon as ‖σ(x)‖ = O(1 + |x|) also satisfies (H0).

Proposition 2.1. Assume (H0), then strong existence holds for SDE (2.3). Moreover, if (X0, Y0) satisfies E[U(X0) +
|Y0|2] < +∞, then for every T > 0, supt∈[0,T ] E[U(Xt) + |Yt |2] < +∞.

Remark 2.1. Furthermore, if ∇U and σ are locally Lipschitz continuous functions, one checks classically that path-
wise uniqueness also holds for (2.3).

Proof of Proposition 2.1. Consider h : R2d+1 → R+ defined by h(x, y, t) = U(x) + |y|2/(2r(t)). Let T > 0. Then,
for every t ∈ [0, T ], one checks that (2.5) applied to h implies

Ah(x, y, t) = 1

2
Tr
(
σ ∗(x)D2U(x)σ (x)

)+ |y|2
(

−1 − r ′(t)
2r2(t)

)
≤ CT h(x, y, t), (2.6)

under (H0). Then, a classical Picard iteration leads to the strong existence of the solutions. Now, let (Xt , Yt )t≥0 be a
solution of (2.3) starting from (X0, Y0) with E[U(X0) + Y 2

0 ] < +∞. Then, Itô formula yields:

h(Xt ,Yt , t) = h(X0, Y0,0) +
∫ t

0
Ah(Xs,Ys, s)ds + Mt,

where (Mt)t≥0 is the local martingale defined by

Mt :=
∫ t

0

〈∇U(Xs), σ (Xs)dWs

〉=∑
i,j

∫ t

0
∂xi

U(Xs)σi,j (Xs)dW
j
s .

Let (Tn)n≥1 denote an increasing sequence of stopping times such that (Mt∧Tn)t≥0 is a martingale for every n ≥ 1.
Using Fatou’s lemma and the monotone convergence theorem, we deduce from (2.6) that

E
[
h(Xt ,Yt , t)

]≤ E
[
h(X0, Y0,0)

]+ CT

∫ t

0
E
[
h(Xs,Ys, s)

]
ds ∀t ≤ T . (2.7)

Now, E[h(X0, Y0,0)] < +∞ and the second result follows from the Gronwall lemma. �

In the proof of the previous proposition, we observe that the function h leads to a finite-time control of the behaviour
of (Zt )t≥0 but, owing to (2.6), it appears that this function will not be adapted for the study of the long-time stability of
the dynamical system because there is only a mean-repelling effect for the second component Y . In other words, one
can say that h is not a Lyapunov function for (2.3). In order to generate a mean-repelling effect for the first component
X, we will have to consider a more complex function V that will be introduced in Proposition 3.1.
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2.2. Density with respect to the Lebesgue measure

In this part, we focus on the smoothness of the semi-group associated with the homogeneous Markov process
(Xt , Yt , t)t≥0 and deduce a uniqueness property of the stationary distribution of the Markov process (Xt , Yt )t≥0 in the
homogeneous case r(t) = λ for every t ≥ 0. Let us first remind some tool of hypoelliptic theory for inhomogeneous
Markov stochastic processes described in [16] and [17]. Note that in some special cases, r may not depend on time
t and the coupled Markov process may be homogeneous. These very special cases occur only for exponential mem-
ory terms k(t) = λ1eλ2t , (λ1, λ2) ∈ R

2+. In the sequel, we will avoid any distinction between the homogeneous and
inhomogeneous setting and treat directly the general inhomogeneous case.

We first state some elementary notations for the vector fields which govern our equation (2.3). As the process may
be inhomogeneous, these vector fields depend on the three variables (t, x, y). We denote by σ1, . . . , σd the vector
fields defined as

∀j ∈ {1 . . . d}: σj (x) =
d∑

i=1

σ i
j (x)∂xi

. (2.8)

We also introduce the drift vector field LD defined by

LD(t, x, y) = −〈y,∇x〉 + r(t)
〈∇U(x) − y,∇y

〉
,

as well as the diffusion one:

Lσ (x)(f ) = 1

2

d∑
j=1

〈∇x(σj )(x), σj (x)(f )
〉
.

Following the convention of [16], we define the vector field LZ as

LZ(t, x, y) = LD(t, x, y) − Lσ (x).

If A1, . . . ,Ap are a set of p vector fields, we denote Span Lie(A1, . . . ,Ap) the Lie algebra generated by the Lie
bracket of vector fields [Ai,Aj ], [Ai, [Aj ,Ak]], [Ai, [Aj , [Ak,Al]]] . . . .

Let us define EU as

EU = {x ∈ R
d,det

(
D2U(x)

) �= 0
}
, (2.9)

and MU the complementary manifold MU = R
d \ EU . We next state two hypothesis needed to obtain hypoellipticity

of the process.

(I1): σ and U are C∞ and there exists ε0 > 0 such that σσ ∗ ≥ ε0Id (uniformly elliptic on R
d ).

(I2): dim(MU) ≤ d − 1.

We are now able to state the following theorem whose proof is deferred to Section 4.1.

Theorem 2.1. Assume (I1) and (I2). Then, for any z, the process (Xz
t , Y

z
t )t≥0 is hypoelliptic and for any z ∈ R

d ×R
d

and t > 0, the density pt(z, ·) of (Xz
t , Y

z
t )t≥0 (w.r.t. the Lebesgue measure on R

d × R
d ) is C∞. Furthermore, if

lim|x|→+∞ U(x)
|x| > 0, then for every z ∈ R

d × R
d , SuppPt (z, ·) = R

d × R
d and when r(t) = r∞ > 0 for every t ≥ 0,

there is at most one invariant distribution for the homogeneous Markov process (Xz
t , Y

z
t )t≥0.

Remark 2.2. 1. Assumption (I1) is somewhat more classical and the uniform ellipticity of σ seems necessary. Let
us briefly discuss on the technical hypothesis (I2). It is possible to state some less restrictive condition. We denote
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∂i1,...,ipU(x) = ∂xi1
∂xi2

· · · ∂xip
U(x) and we define ẼU the set of x ∈ R

d such that there exists d finite sequence s1 :=
(i1,1, . . . , i1,p1), . . . , sd := (id,1 . . . id,pd

) for which the matrix

Ms1,...,sd (x) =

⎛
⎜⎜⎜⎜⎜⎝

∂
p1+1
s1,1

U(x) · · · ∂
p1+1
s1,j

U(x) · · · ∂
p1+1
s1,d

U(x)

∂
p2+1
s2,1

U(x) · · · ∂
p2+1
s2,j

U(x) · · · ∂
p2+1
s2,d

U(x)

... ∂
pi+1
si ,j

U(x) ∂
pi+1
si ,d

U(x)

∂
pd+1
sd ,1 U(x) · · · ∂

pd+1
sd ,j U(x) · · · ∂

pd+1
sd ,d U(x)

⎞
⎟⎟⎟⎟⎟⎠

is invertible. Indeed, ẼU corresponds to the special case s1 = {1}, . . . , sd = {d} in the above definition and thus
EU ⊂ ẼU . Assumption (I2) may be replaced by the less restrictive one on ẼU :

(Ĩ2): dim(Rd \ ẼU) ≤ d − 1.

If we set d = 1 and assume that σ is constant, the condition (Ĩ2) states that the set of points x where all the derivatives
of the potential U are vanishing is Lebesgue-negligible.

2. Our theorem provides some smoothness properties of z 
→ pt (z0, z). As concerns z0 
→ pt (z0, z), it seems that
under some polynomial growth assumptions for the vector fields, such properties could be obtained using some Malli-
avin calculus arguments (see [28] for instance) but we will not focus on this point in the sequel.

3. The fact that Supp(Pt (z0, ·)) = R
d × R

d (for every z0 ∈ R
2d ) and the uniqueness of the invariant distribution

are proved in Lemma 4.2. The proof is strongly based on the surjectivity of x 
→ ∇U(x) and lim|x|→+∞ U(x)
|x| = +∞

is a convenient assumption to ensure this property (see proof of Lemma 4.2 for details). Note that when x 
→ ∇U(x)

is bounded on R
d , (Yt )t≥0 is a bounded process (see (2.4)) and thus, Supp(Pt (z, ·)) �= R

d × R
d in this case.

3. Asymptotic behaviour

We now focus on the main objective of this paper: the study of the ergodic properties of the process solution to (2.3),
these properties strongly rely on the asymptotic behaviour of t 
→ r(t). In this way, we set r∞ = lim inft→+∞ r(t) and
divide this section into two parts corresponding to the cases r∞ > 0 and r∞ = 0 respectively.

3.1. The stable case: r∞ > 0

First, note that r∞ > 0 occurs in the two following cases:

• k(t) = exp(λt): in this case, r(t) = r∞ = λ and (Xz
t , Y

z
t )t≥0 is an homogeneous Markov process.

• k(t) = exp(tα) with α > 1: in this case, r∞ = limt→+∞ r(t) = +∞.

Even if a part of the main results about the asymptotic behaviour of the process is stated together, the reader has to
keep in mind that there is an important difference for the two previous cases. Under some mean-repelling assumptions,
we will show in particular, that in the first case, the stochastic process has its own stationary regime while in the
second case, the nonhomogeneous Markov process has some convergence properties to the stationary regime of the
memoryless stochastic differential equation

dSt = −∇U(St )dt + σ(St )dWt, (3.1)

whose infinitesimal generator L is defined for every g ∈ C 2
K(Rd) by

Lg(x) = −〈∇U(x),∇g(x)
〉+ 1

2 Tr
(
σ(x)D2g(x)σ ∗(x)

)
. (3.2)

Let us now introduce a Lyapunov-type stability assumption (H1) and an assumption on the asymptotic behaviour of
the function t 
→ r(t):

(H1): There exist m ∈ (0, r∞) and ε ∈ (0, r∞ − m) such that

lim sup
|x|→+∞

(
−m
〈
x,∇U(x)

〉+ 1

2
Tr
(
σ ∗(x)

(
D2U(x) + (m + ε)Id

)
σ(x)

))= −∞.
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Note that in the homogeneous case (r(t) = r∞ for every t ≥ 0), we could take ε = 0.

(R1):
r ′(t)
r2(t)

t→+∞−−−−→ 0.

Remark 3.1. Condition (H1) is not restrictive and is satisfied for a large class of potentials U . For instance, for
constant covariance matrix σ , (H1) is satisfied for all potentials U(x) ∼|x|→+∞ |x|q as soon as q > 0. This is even
true for all U(x) ∼|x|
→+∞ ln(|x| + 1)β for β > 1. For varying σ , (H1) is satisfied provided σ is not asymptotically
too large:

• For asymptotic polynomial U : U(x) ∼|x|→+∞ |x|q with q > 0, (H1) is true if ‖σ(x)σ ∗(x)‖ = o(|x|q∧2) as |x| →
+∞.

• For asymptotic logarithmic U : U(x) ∼|x|→+∞ ln(|x| + 1)β with β > 1, (H1) is true if ‖σ(x)σ ∗(x)‖ = o(ln(|x| +
1)β−1) as |x| → +∞.

As concerns (R1), note that this assumption is satisfied in the two cases mentioned before: k(t) = exp(λt) and k(t) =
exp(tα), α ≥ 1. Indeed, (R1) is true as soon as k̇ ≥ Ck for t large enough. This is generally true in our case r∞ > 0.

The next proposition (whose proof is given in Section 4.2) establishes the existence of a Lyapunov function V for
(Zt )t≥0 = (Xt , Yt )t≥0. In this way, we need to introduce ρ : R+ → R+ defined by

ρ(t) =
(∫ +∞

t

k(t)

k(s)
ds

)−1

. (3.3)

Owing to Lemma 4.3, ρ is well-defined when r∞ ∈ (0,+∞] and is a positive C 1-solution to u̇(t) = u2(t) − r(t)u(t)

that satisfies ρ(t) ∼ r(t) as t → +∞.

Proposition 3.1. Assume (H1) and (R1) and suppose that lim inft→+∞ r(t) = r∞ > 0. Set mε = m + ε. Then,
V : Rd × R

d × R+ → R defined by

V (x, y, t) = U(x) + |y|2
2r(t)

+ mε

( |x|2
2

− 〈x, y〉
ρ(t)

)
, (3.4)

is a Lyapunov function for the SDE in the following sense: there exists t0 ≥ 0 such that V is positive for every t ≥ t0
and,

lim sup
|(x,y)|→+∞

(
sup
t≥t0

AV (x, y, t)
)

= −∞. (3.5)

If moreover, lim supt→+∞ r(t) < +∞, there exists t1 > 0 such that

lim|(x,y)|→+∞

(
inf
t≥t1

V (x, y, t)
)

= +∞. (3.6)

Remark 3.2. The construction of this nontrivial Lyapunov function is a key step for the sequel of the paper. The
reader will remark a nonclassical point in the proof of this lemma: the mean-repelling effect of the first coordinate is
generated by −〈x,y〉

ρ(t)
.

We should note that this Lyapunov function is very similar to the one used in several works on the Vlasov–
Fokker–Planck equation. For instance, a recent paper by [12] (see also [7] and [42]) used a coupling argument
with a Lyapunov function of the form Q(x,y) = a|y|2 + b〈x, y〉 + c|x|2 to establish exponential rates of conver-
gence to equilibrium of solutions of Vlasov–Fokker–Planck equations with respect to the Wasserstein distance. Con-
versely, [41] obtains lower bounds for the solutions of the kinetic Fokker–Planck equations using another function
Q(t, x, y) = a(t)|y|2 + b(t)〈x, y〉 + c(t)|x|2 with a suitable choice of a, b and c (see Theorem A.19 of [41]). Thus,
in such coupled stochastic equation, the term implying 〈x, y〉 (or 〈x, v〉 with the standard notations of Fokker–Planck
equations) seems to play a key role to obtain lower and upper bounds.
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3.1.1. Convergence properties of the occupation measures
For a fixed initial value z = (x, y) ∈ R

d × R
d , we consider some families of occupation measures (νz

t (ω,dx,dy))t≥1
and (μz

t (dx,dy))t≥1 respectively defined for every bounded continuous function f : Rd × R
d → R, for every t ≥ 0

by:

νz
t (ω,f ) = 1

t

∫ t

0
f
(
Xz

s ,Y
z
s

)
ds,

and by

μz
t (f ) = 1

t

∫ t

0
E
[
f
(
Xz

s ,Y
z
s

)]
ds = E

[
νz
t (ω,f )

]
.

We first focus on the asymptotic behaviour of (μz
t )t≥0 and obtain the following result:

Theorem 3.1. Assume that r∞ ∈ R
∗+ ∪{+∞}. Assume (H0), (H1) and (R1). Then, for every z = (x, y) ∈ R

d ×R
d , the

family of probabilities (μz
t )t≥1 is tight on R

d ×R
d . Let μ∞ denote an accumulation point of (μz

t )t≥1 when t → +∞:

(i) If r∞ = +∞, the first marginal of μ∞ is an invariant distribution for the stochastic differential equation (3.1).
(ii) If r(t)

t→+∞−−−−→ r∞ < +∞, μ∞ is an invariant distribution of the homogeneous Markov process solution to (2.3)
with r(t) = r∞, ∀t ≥ 0.

Remark 3.3. In particular, the second statement implies that under (H0) and (H1), existence holds for the invariant
distribution in the homogeneous case.

We now focus on the family of random occupation measures (νz
t (ω,dx,dy))t≥1 for which we want to obtain a

“quenched” version of Theorem 3.1. In this way, we need to introduce a little stronger assumption (H′
a) (compared

to (H1)):

(H′
a): There exists a ∈ (0,1], β ∈ R and α > 0 such that

(i) −〈x,∇U(x)
〉≤ β − α

(
U(x) ∨ |x|2)a ∀x ∈ R

d ,

(ii)
(
1 + Tr

(
σσ ∗)(x)

)(
1 + |∇U(x)|2

U(x)
+ ∥∥D2U(x)

∥∥+ ∥∥∣∣D3U(x)
∥∥∣∣) |x|→+∞= o

((
U(x) ∨ |x|2)a).

Remark 3.4. Assumption (i) is a mean-repelling assumption whose intensity depends on the parameter a. Assumption
(ii) is a growth assumption that is essentially needed to control the part of the dynamical system that hampers the
mean-repelling effect. Coming back to the examples of Remark 3.1, one checks that if U is a C 3-function such that
U(x) = |x|q (q > 0) for |x| large enough, assumption (H′

a) is fulfilled with a = (q/2)∧1 if ‖σ(x)σ ∗(x)‖ = o(|x|q∧2)

as |x| → +∞. However, when U(x) ∼ ln(1 + |x|)β , one observes that (H′
a)(i) is not satisfied, i.e. that the mean-

repelling effect is too weak.

Theorem 3.2. Assume that r∞ ∈ R
∗+ ∪ {+∞}. Assume (H′

a) and (R1). Then, for every z = (x, y) ∈ R
d × R

d , for
every p ≥ 1,

sup
t≥1

1

t

∫ t

0

((
U
(
Xz

s

)∨ ∣∣Xz
s

∣∣2)p+a−1 + ∣∣Y z
s

∣∣2p)ds < +∞ a.s. (3.7)

In particular, the family of probabilities (νz
t )t≥1 is a.s. tight on R

d × R
d . Let ν∞ denote an accumulation point of

(νz
t )t≥1 when t → +∞:

• (i) If r∞ = +∞, ν∞(dx,dy) = δ∇U(x)(dy)π(dx) where π is a.s. an invariant distribution for the stochastic differ-
ential equation (3.1).
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• (ii) If r(t)
t→+∞−−−−→ r∞ ∈ R

∗+, ν∞ is a.s. an invariant distribution of the homogeneous Markov process solution to
(2.3) with r(t) = r∞, ∀t ≥ 0.

Remark 3.5.

• Under the hypotheses of Theorem 2.1, uniqueness holds for the invariant distribution ν of (2.3) with r(t) = r∞ ∈
R

∗+, ∀t ≥ 0. In this case, it follows from Theorems 3.1(ii) and 3.2(ii), that when r(t) → r∞ ∈ R
∗+, for every bounded

continuous function f : Rd → R, (μz
t (f ))t≥1 and (νz

t (ω,f )t≥1 converge (a.s. in the second case) to ν(f ) as t →
+∞. Obviously, the same remark holds when r∞ = +∞ and when uniqueness holds for the invariant distribution
of (3.1).

Furthermore, these convergence properties can be extended to nonbounded continuous functions using (3.7) and
uniform integrability arguments.

• Note also that the condition on D3U in (H′
a) is only necessary for the identification of ν∞ when r∞ = +∞ (for

more details, see the proof of Proposition 4.2).

3.1.2. Properties of the “invariant distribution” and convergence rates
We will only talk of invariant distributions within the classical homogeneous case when k(t) = exp(r∞t). In the
nonhomogeneous setting, we will be interested in the set of accumulation points of mean occupation measures
(μz

t )t≥0,z∈Rd×Rd .
In the next proposition, we focus on the homogeneous case and provide some properties of the invariant distribution

unde assumptions (I1) and (I2) introduced for Theorem 2.1.

Proposition 3.2. Assume (H0), (H1) and r(t) = r∞ ∈ R
∗+. Assume (I1), (I2) and lim|x|→+∞ U(x)

|x| = +∞. Then, there
exists a unique invariant distribution ν satisfying the following properties:

• (i) ν is absolutely continuous w.r.t. the Lebesgue measure. Let pr∞ denote the associated C∞(Rd ×R
d,R+) density.

Then, pr∞ is the unique nonnegative solution to

〈y,∇xpr∞〉 + 1
2 Tr
(
σ ∗D2

xpr∞σ
)+ r∞

[〈
y − ∇U(x),∇ypr∞

〉+ pr∞
]= 0, (3.8)

which satisfies
∫

R2d pr∞(x, y)dx dy = 1.
• (ii) Assume d = 1, U(x) = x2/2, σ(x) = σ > 0 ∀x ∈ R, and r(t) = r∞ ∈]0;+∞[. Then, pr∞ is the centered

Gaussian measure on R × R whose covariance matrix is given by

Σ2(r∞) = σ 2

2

( r∞+1
r∞ 1

1 1

)
.

Remark 3.6. The proof of (3.8) is based on the fact that
∫

Ag(x, y)pr∞(x, y)λ2d(dx,dy) = 0 for every g ∈ C 2
K(Rd ×

R
d). Extending and applying this identity to the nonbounded particular functions f (x, y) = x and f (x, y) = y, one

obtains the following simple properties:∫
ypr∞(x, y)λ2d(dx,dy) = 0 and

∫
∇U(x)pr∞(x, y)λ2d(dx,dy) = 0.

As concerns (ii), remark that when r∞ → +∞, the limit variance of (Xz
t )t≥0 is equal to σ 2/2. We recover here the

standard variance of the Ornstein–Uhlenbeck process that corresponds to the nonmemory case. Note also that when
r∞ decreases, the limit variance increases. This means that more the process remembers the past, less the dynamical
system is long-time stable. This point will be emphasized in the next subsection in which we focus on the case r∞ = 0.

We now want to state some results about the convergence in distribution as t → +∞.
Let us first focus on the homogeneous case r(t) = r∞ where we derive some controls of the distance in total

variation between the semi-group P λ
t ((x, y), ·) (associated (Xt , Yt )t≥0) and the invariant distribution from “Meyn–

Tweedie”-type techniques.
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Theorem 3.3. Assume r(t) = r∞ > 0, (H′
a) (a ∈ (0,1]), (I1), (I2), lim|x|→+∞ U(x)

|x| = +∞. Assume that there exists

a local minimum x∗ of U such that D2U(x∗) �= 0. Then, for every p ≥ 1 and for any t ≥ 0:

sup
{f,|f |≤1}

∣∣P r∞
t (z0, f ) − ν(f )

∣∣≤ Ca,p,r∞V p
∞(z0)

{
exp(−γp,r∞ t) if a = 1,

t−(p+a−1)/(1−a) if a ∈ (0,1),

where z = (x, y), V∞ is a positive function defined by V∞(z) = U(x) + r∞
2 |x − y

r∞ |2, γp,r∞ and Ca,p,r∞ are some
positive constants which do not depend on z0 and t .

Proof. The proofs in cases a = 1 and a < 1 rely respectively on Theorem 5.2 of [25] and Theorem 3.10 of [24]. The
first assumption to check is that compact sets are petite, i.e. to show that for every compact set K of R

2d , there exist a
probability a on R+ and a nontrivial σ -finite measure νa on B(R2d) such that for every z0 ∈ K ,

∫
t≥0 Pt (z0, ·)a(dt) ≥

νa(·). This point is a straightforward consequence of Lemma 4.2(ii).
Following the assumptions of [25] (when a = 1) and [24] (when a < 1), we want now to prove that there exists a

compact set C and some suitable positive α̃ and β̃ such that

AV
p∞ ≤ β̃ − α̃V

p+a−1∞ . (3.9)

First, by inequality (4.23) (applied with r(t) = r∞), there exist some positive α1 and β1 such that

AV
p∞ ≤ β1 − α1

[(
U(x) ∨ |x|2)p+a−1 + |y|2p

]
.

Second, one checks easily that V∞(x) ≤ C(1 + U(x) ∨ |x|2 + |y|2). Thus, using that |y|2p ≥ (|y|2(p+a−1) − 1) and
the elementary inequality |u + v|p ≤ cp(|u|p + |v|p), it follows that there exist some positive α2 and β2 such that,

AV
p∞ ≤ β2 − α2V

p+a−1∞ (x, y) ∀x, y ∈ R
d .

Finally, the fact that limV∞(x, y) = +∞ as |(x, y)| → +∞ (see (3.6)) implies that we can build a compact set K

such that β2 ≤ β21K + α2
2 V

p+a−1∞ (x, y) for every x, y ∈ R
d . Thus, we deduce (3.9) (with β̃ = β2 and α̃ = α2

2 ) and
this concludes the proof when a = 1 owing to Theorem 5.2 of [25]. When a < 1, we remark that (3.9) can be written

AV
p∞ ≤ β̃1C − φ

(
V

p∞
)

with φ(u) = α̃u(p+a−1)/p . A simple computation shows that

Hφ(u) :=
∫ u

1

ds

φ(s)
= p

α̃(1 − a)

[
u(1−a)/p − 1

]
.

Thus, a simple equivalent to r�(s) := φ ◦ H−1
φ (s) is given by

r�(s) ∼ α̃p/(1−a)(1 − a)(p+a−1)/(1−a)

p(p+a−1)/(1−a)
s(p+a−1)/(1−a) as s → +∞.

The second result follows applying (3.6) of [24] with Ψ1 = Id and Ψ2 = 1. �

Finally, we focus on the nonhomogeneous case r(t) → +∞. In this case, by Theorems 3.1 and 3.2, it seems that
(Xt )t≥0 has some convergence properties to the invariant distribution π of the classical diffusion dSt = −∇U(St )dt +
σ(St )dWt . In the following theorem, we derive a result about the Wasserstein distance between PXt and π from a
coupling with the classical diffusion (St )t≥0 under the additional following assumption:

(AC): There exists ρ > 0 such that for every x1, x2 ∈ R
d ,〈

x1 − x2,∇U(x2) − ∇U(x1)
〉+ 1

2 Tr
((

σ̃ σ̃ ∗)(x1, x2)
)≤ −ρ|x2 − x1|2, (3.10)

where σ̃ (x, y) = σ(y) − σ(x).
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Remark 3.7. Note that under (AC), existence and uniqueness hold for the invariant distribution π of the classical
diffusion dSt = −∇U(St )dt + σ(St )dWt (see e.g. [25]). Here, this assumption will have two roles: we will use it
classically to control the (Wasserstein) distance between the distribution of (Sx

t )t≥0 and π but also to control the
L2-distance between the trajectory of (Sx

t )t≥0 and (Xx
t )t≥0 (built with the same Brownian Motion).

For any μ,ν ∈ P (Rd), we recall that the 2nd-Wasserstein distance is defined by W2(μ, ν) = inf E[|X − Y |2]1/2

where the infimum is taken over every couple (X,Y ) with marginal distribution μ and ν respectively.

Theorem 3.4. Assume r∞ = +∞, (H′
1), (AC) and that t → ∫ t

0 k(s)ds/k(t) is a nonincreasing function that tends
to 0 as t → +∞. Suppose that ∇U and σ are locally Lispchitz functions and denote by π the unique invariant
distribution of (3.1). Then, there exist some positive C1 and C2 such that for every positive t ,

W2(PXt ,π) ≤ C1e−ρ(t−u) + C2

k(u)

∫ u

0
k(v)dv ∀u ∈ [0, t].

In particular, W2(PXt ,π) �⇒ 0 as t → +∞.

Owing to an optimization of the preceding inequality, the next corollary follows.

Corollary 3.1. Under the assumptions of Theorem 3.4,

W2(PXt ,π) ≤ C1

(
1 + ρ

r ◦ H−1(t)

)
e−ρ(t−H−1(t)) + C2

r ◦ H−1(t)
,

where H is defined by:

H(u) = u − 1

ρ
log

[
C2

C1ρ

(
r(u)

k(u)

∫ u

0
k(v)dv + k(0)

k(u)
− 1

)]
.

Remark 3.8. We can provide some explicit bound of W2 for some specific memory functions k.

• If k(t) = αtα−1etα for α > 1, then r(t) ∼ αt2α−2 and H−1(t) ∼ t whereas

t − H−1(t) ∼ α

ρ
log t,

and the bound obtained is

W2(PXt ,π) ≤ Ct1−α

for a suitable constant C > 0.
• If k(t) = eteet

, then H−1(t) ∼ ρ
ρ+1 t and for a suitable constant C > 0

W2(PXt ,π) ≤ Ce−(ρ/(ρ+1))t .

3.2. The nonstable case: r∞ = 0

In this part, we focus on the long memory case: r(t) → 0. For instance, one can think to k(t) = (1 + t)α with α > 0
or to k(t) = e(1+t)α , α ∈ (0;1). We prove first that in this case, the dynamical system is not stable for subquadratic
case.



576 S. Gadat and F. Panloup

3.2.1. Subquadratic case
We show that when U has at most quadratic growth and the diffusion part is not degenerated (in a sense being precised
below), the dynamical system has a tendency to explode.

Theorem 3.5. Assume that |∇U |2 ≤ C(1 + U) and that there exists λ0 > 0 such that Tr(σ ∗D2Uσ)(x) ≥ λ0 > 0.
Assume that r(t) → 0 and that one can find t0 ≥ 0 such that r ′(t) + 2r2(t) ≥ 0 for every t ≥ t0. Then, for every initial
value z = (x, y),

lim sup
t→+∞

r(t)E
[∣∣Xz

t

∣∣2]> 0.

In particular, there exists a subsequence (tn)n≥1 such that E[|Xz
tn
|2] → +∞.

Remark 3.9. One observes that the condition on r(t) is satisfied as soon as k(t) = e(1+t)α with α ∈ (0;1) or k(t) =
(1 + t)α with α > 1

2 . In particular, it contains the “nonweighted” averaged case where Yt = 1
1+t

∫ t

0 ∇U(Xs)ds.

3.2.2. The quadratic case
In this second part of the long memory case, we want to specify the previous result in the very particular quadratic
case. More precisely, we assume that U(x) = x2/2, that d = 1 and that the memory is polynomial: k(t) = (1 + t)α

and r(t) = α/(1 + t). In fact, in this case, the long-time behaviour of the process is given by that of its covariance
matrix. Setting f (t) = E[X2

t ], g(t) = E[Y 2
t ] and h(t) = E[XtYt ], we derive from Itô formula that

(S)

⎧⎨
⎩

f ′(t)1 − 2h(t),

g′(t)2r(t)
[
h(t) − g(t)

]
,

h′(t) − g(t) + r(t)
[
f (t) − h(t)

]
.

Then, some sharp computations on this differential system (see Section 7) yield the following result:

Theorem 3.6. Let d = 1, U(x) = x2/2 and k(t) = (1 + t)α with α > 1/2, we have:

(i) The process (Xt , Yt )t≥0 is asymptotically centered.
(ii) The process (Xt , Yt )t≥0 satisfies

lim
t→∞ EY 2

t = α

2α + 1
and EX2

t ∼ t

2α + 1
as t → +∞.

(iii)

(√
2α + 1

t
Xt ,

√
2α + 1

α
Yt

)
L�⇒ N (0, I2) as t → +∞.

4. Proofs of hypoellipticity and convergence to steady regime

4.1. Proof of Theorem 2.1 (Hypoellipticity)

The first part of Theorem 2.1 is given by the conclusions of Lemma 4.1 and 4.2 whereas the uniqueness of the invariant
distribution (in the homogeneous case) comes from Lemma 4.2.

Lemma 4.1. Assume (I1) and (I2). Then, for any z ∈ R
d × R

d and any t > 0, Pt (z, ·) is absolutely continuous with
respect to the Lebesgue measure over R

d × R
d . Moreover, for any time t > 0 and every z0 ∈ R

d × R
d , z 
→ pt (z0, z)

is C∞ on R
d × R

d .
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Proof. Recall the notation Zt = (Xt , Yt ) for a solution of Eq. (2.3) and the definition of EU and MU given by (2.9).
Our coupled process can be written in an homogeneous way considering (Zt , ξt ) with ξt defined through dξt = dt .
The system is thus equivalent to{dXt = −Yt dt + σ(Xt )dWt,

dYt = r(ξt )
(∇U(Xt) − Yt

)
dt,

dξt = dt.

Fix any z = Z0, we first show that for all t , Pt (z, ·) is absolutely continuous with respect to the Lebesgue measure. As
x and y belong to R

d , in order to apply the Hörmander’s sum of square theorem (see e.g. [31]), we must establish that

∀(x, y, ξ) ∈ R
d × R

d × R+ dim span Lie

(
∂

∂ξ
+ LZ,σ1, . . . , σd

)
(x, y, ξ) = 2d + 1,

where σ1, . . . , σd are defined by (2.8). Note that following the [33] argument (detailed in [33,40]), no assumption on
the growth of the vector fields is needed for the existence pt(z0, ·) of the density with respect to the Lebesgue measure
and the regularity of z 
→ pt (z0, z).

Remark first that since σ is uniformly elliptic over R
d , we have the simplification:

span(σ1, . . . σd) = span(∂x1 , . . . ∂xd
).

Thus, we obtain

Lie

(
∂

∂ξ
+ LZ,σ1, . . . , σd

)
= Lie

(
∂

∂ξ
+ LD − Lσ ,σ1, . . . , σd

)

= Lie

(
∂

∂ξ
+ LD − Lσ , ∂x1 , . . . , ∂xd

)

= Lie

(
∂

∂ξ
+ LD,∂x1 , . . . , ∂xd

)
.

The last equality is true since from the definition of the vector field Lσ , this vector field belongs to span(∂x1 , . . . , ∂xd
).

Thus, σ1, . . . , σd trivially provides the ∂
∂x

component (of dimension d) as well as ∂
∂ξ

+LD ensures the presence of ∂
∂ξ

(of dimension 1). Thus it remains to obtain the ∂
∂y

component (of dimension d). A simple computation yields for any

f ∈ C∞(Rd × R
d × R+):

[
∂xi

,
∂

∂ξ
+ LD

]
(f ) = r(ξ)

d∑
j=1

∂2
xi ,xj

U∂yj
(f ).

Now, suppose x ∈ EU , then D2U(x) is invertible and it implies that

∀(x, y, ξ) ∈ (Rd \ MU

)× R
d × R+ dim span Lie

(
∂

∂ξ
+ LZ,σ1, . . . , σd

)
(x, y, ξ) = 2d + 1.

As the manifold MU has a vanishing Lebesgue measure, it shows that for any time t > 0, Pt (z0, ·) is absolutely
continuous with respect to the Lebesgue measure and C∞ on R

d × R
d . �

If we replace (I2) by (Ĩ2), the same result holds. One just have to use a convenient set of sequences of multi-indices
which depends on the x ∈ ẼU . These sequences (s1, . . . , sd) are defined in Remark 2.2, and it is enough to compute
the several bracketing rules([

∂si∪{i},
∂

∂ξ
+ LD

])
i=1...d

,
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to obtain the hypo-elliptic condition

∀(x, y, ξ) ∈ (Rd \ MU

)× R
d × R+ dim span Lie

(
∂

∂ξ
+ LZ,σ1, . . . , σd

)
(x, y, ξ) = 2d + 1.

Lemma 4.2. Assume (I1), (I2) and lim|x|→+∞ U(x)
|x| = +∞.

(i) For any T > 0, for every z0 ∈ R
d × R

d and any open set O ⊂ R
d × R

d , the transition kernel associated to
a solution of (2.3) satisfies PT (z0, O) > 0. As a consequence, for every z0 ∈ R

2d , Supp(PT (z0, ·)) = R
d × R

d

and there exists at most one invariant probability measure for (Xt , Yt ) in the homogeneous setting and when
r(t) 
−→ r∞ ∈ (0;+∞).

(ii) Furthermore, if r(t) = λ > 0 and if there exists a local minimum x∗ of U such that D2U(x∗) is an invertible
matrix, then, there exists T > 0 such that for every compact set K of R

2d , there exists rK > 0 and α(T ,K) > 0
such that

∀z ∈ K, PT (z, ·) ≥ α(T ,K)λ2d

(· ∩ B
(
z∗, rK

))
with z∗ = (x∗,0).

Remark 4.1. In fact, these properties are strongly linked to the controllability of the dynamical system. In the first part
where we end the proof of Theorem 2.1, the result relies on an approximate controllability property of the dynamical
system.

The second one which is based on a local lower bound of the density of the semi-group involves some (local) exact
controllability. This property is ensured by the nondegeneracy of D2U(x∗). Note that (ii) implies that compact sets
are petite (see [25]), which is a fundamental point of the proof of Theorem 3.3.

Proof of Lemma 4.2. Proof of (i): Let T > 0. Our first objective is to show that the dynamical is approximatively
controllable, i.e. that, for every z0 = (x0, y0) and z1 = (x1, y1) ∈ R

d × R
d , for every η > 0, there exists a continuous

function (uη(t))t∈[0,T ] such that (zuη (t)) defined as the unique solution starting from z0 to{
ẋ(t) = −y(t) + σ

(
x(t)

)
uη(t),

ẏ(t) = r(t)
(∇U

(
x(t)

)− y(t)
)
,

(4.1)

satisfies |zuη (T ) − z1| ≤ η. In the sequel, when z0, z1 and η are fixed, we will say that (zuη (t)) is a solution to
the (z0, z1, η)-controllability problem. Note that it is enough to prove this approximate controllability problem when
σ = Id . Indeed, if (zuη (t))t∈[0,T ] is a solution to the problem with σ = Id , then (z̃σ−1(x(t))uη(t))t∈[0,T ] is a solution to
the corresponding problem of approximate controllability with σ(·).

Then, let us assume that σ = Id and consider a trajectory (xη(t))t≥0 that belongs to C∞(R+,R
d) such that

xη(0) = x0, ẋη(0) = −y0, xη(T ) = x1 and ẋη(T ) = −y1. (4.2)

We deduce from (4.1) that for a function (uη(t)), the process (xη(t), yη(t)) with yη(t) := uη(t)− ẋ(t), is a solution to
the (z0, z1, η) controllability problem if, uη(0) = 0, |uη(T )| ≤ η and

∀t ∈ [0, T ], u̇η(t) + λuη(t) = ẍη(t) + r(t)ẋη(t) + r(t)∇U
(
xη(t)

)
.

Solving the above differential equation with initial condition uη(0) = 0, we obtain

uη(t) = 1

k(t)

∫ t

0
k(s)

(
ẍη(s) + r(s)ẋη(s) + r(s)∇U

(
xη(s)

))
ds

= 1

k(t)

∫ t

0

.︷ ︸︸ ︷(
k(s)ẋη(s)

)+k̇(s)∇U
(
xη(s)

)
ds.
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In particular, we have

uη(T ) = y0

k(T )
− y1 +

∫ T

0

k(s)

k(T )
∇U

(
xη(s)

)
ds.

Thus, it is enough to show that there exists (xη(t))t≥0 satisfying (4.2) such that∣∣∣∣ y0

k(T )
− y1 +

∫ T

0

k(s)

k(T )
∇U

(
xη(s)

)
ds

∣∣∣∣≤ η. (4.3)

In this way, we first check that x 
→ ∇U(x) is surjective on R
d using the Fenchel–Legendre transform. Actu-

ally, for every v ∈ R
d , let Fv be defined for every x ∈ R

d by Fv(x) = 〈x, v〉 − U(x). Owing to the assumption
lim|x|→+∞ U(x)/|x| = +∞, we have lim|x|→+∞ Fv(x) = −∞. As a consequence, the function Fv has a global max-
imum xv . In particular, ∇Fv(xv) = 0 and thus, v = ∇U(xv).

Then, set v0 = k(T )y1−y0
k(T )−k(0)

and let xv0 ∈ R
d be such that ∇U(xv0) = v0. Note that for this choice, we have

y0

k(T )
− y1 +

∫ T

0

k(s)

k(T )
∇U(xv0)ds = 0. (4.4)

The idea is then to consider a trajectory (xη(t))t∈[0,T ] which spends almost all the time in xv0 . In this way, let δη > 0
and consider (xη(t))t∈[0,T ] be a C 2 function which satisfies (4.2),

xη(t) = xv0 on [δη, T − δη] and ∀t ∈ [0, T ] ∣∣x(t)
∣∣≤ M := 1 + max

{|x0|, |x1|, |xv0 |
}
. (4.5)

Such a function clearly exists and owing to (4.4), the associated function uη satisfies:∣∣uη(T )
∣∣≤ CT sup

|x|≤M

∣∣∇U(x)
∣∣δη.

Choosing δη small enough yields the (z0, z1, η)-controllability.
Now, let O denote an open set of R

d × R
d , choose z1 = (x1, y1) and η > 0 such that B(z1,2η) ⊂ O and let

T > 0. We want to show that for every z0 ∈ R
d × R

d , PT (z0, O) > 0. Let (zuη (t))t∈[0,T ] be a solution to the
(z0, z1, η)-controllability problem, i.e. such that |zuη (T ) − z1| ≤ η. Then, we can deduce that PT (z0, O) > 0 if
P(|Zz0

T − zuη (T )| < η) > 0. This point is implied by the Support theorem of [39] (see e.g. [32]).
Now, under (I1) and (I2), we know that Pt (z0, ·) has a density pt(z0, ·) with respect to the Lebesgue measure and

that (Pt )t≥0 is almost strong Feller in the following sense: for any Γ ∈ B(Rd × R
d), z 
−→ Pt(z,Γ ) is continuous on

EU , which is an open set whose complementary MU has a vanishing Lebesgue measure. Then, owing to a straight-
forward adaptation of Proposition 4.1.1. of [22], we obtain that for any (z, z′) ∈ (Rd × R

d)2, for any postive t and
T , Pt+T (z, ·) and Pt+T (z′, ·) are equivalent. The uniqueness of the invariant distribution then follows from Doob’s
theorem (see e.g. [22], Theorem 4.2.1). This concludes the proof of (i).

Proof of (ii): We first need to show that the system is locally exactly controllable near z∗ = (x∗,0) in a sense made
precise below.

Let us define

F(x, y) =
( −y

λ(∇U(x) − y)

)
, B =

(
Id 0
0 0

)
and A =

(
0 −Id

λD2U(x∗) −λId

)
. (4.6)

Recall that we denote z := (x, y), the linear system ż = Az + Bσ(x∗)u is called the linearized system of
ż = F(z) + Σ(x)u at z∗. In fact, since σ(x∗) and D2U(x∗) are invertible matrices, one checks easily that
Span(Bσ(x∗)u,AΣ(x∗)u,u ∈ R

2d) = R
2d . As a consequence, the linearized system solves the so-called Kalman

condition. Thus, it follows from Theorems 1.16 and 3.8 of [20] that the system ż = F(z) + σ(x)u is locally exactly
controllable at z∗. More formally, it means that for every positive T and ε, there exists η > 0 such that for every
(z1, z2) ∈ B(z∗, η),

∃(z(t), u(t)
)
t∈[0,T ] with ‖u‖∞,T := sup

t∈[0,T ]
∣∣u(t)

∣∣≤ ε and

{
z(0) = z1, z(T ) = z2,

ż = F(z) + Bσ(x)u.
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Owing to the exact controllability, the idea is now to obtain some lower bounds for the transition density around z∗
by localizing the work of [23] (see also [8] for other results on the subject). In this view, we follow the notations and
the numbering of [23] and observe that our equation (2.3) is a particular case of [23], (1.1), with F1(t, x, y) = −y and
F2(t, x, y) = ∇U(x) − y.

In particular, since D2U(x∗) is invertible and x → D2U(x) is continuous, since σ is uniformly elliptic and locally
Lipschitz continuous, we can check that assumption (A) of [23] is satisfied on a sufficiently small ball B(z∗, ρ) but
not obviously on the whole space R

d . However, following carefully the proofs of [23], we can check that, owing to
the local exact controllability around z∗, the lower bound obtained in Theorem 1.1 of [23] remains true if T , ε and η

are small enough (see the Appendix for details).
As a consequence, there exists T > 0, ηT > 0 and CT > 0 such that for every t ∈ (0, T ], for every z1, z2 ∈

B(z∗, ηT ),

pt (z1, z2) ≥ C−1
T t−2d exp

(−CT t
∣∣T−1

t

(
θt (z1) − z2

)∣∣2) where Tt =
(

tId 0
0 t2Id

)
,

and (θt (z1))t≥0 denotes the solution to ż = F(z). It follows in particular that there exists positive C1
T and C2

T such that
for every z1, z2 ∈ B(z∗, ηT ),

pT (z1, z2) ≥ C1
T exp

(−C2
T

∣∣θT (z1) − z2
∣∣2). (4.7)

We denote in the sequel θt = (θ1
t , θ2

t ) and remark that for every t ≥ 0 and any trajectory initialised at z1:

U
(
θ1
t (z1)

)+ |θ2
t (z1)|2

2λ
= U(x1) + |y1|2

2λ
−
∫ t

0

∣∣θ2
s (z1)

∣∣2 ds ≤ U(x1) + |y1|2
2λ

. (4.8)

Hence, we deduce easily that

sup
z1,z2∈B(z∗,ηT )

∣∣θT (z1) − z2
∣∣2 < +∞.

By (4.7), it follows that there exists αT > 0 such that for every z1, z2 ∈ B(z∗, ηT ),

pT (z1, z2) ≥ αT > 0.

We are now able to end the proof of (ii). Let B be a Borel subset of O := B(z∗, ηT ). We have for every z ∈ K :

P2T (z,B) ≥
∫

B

∫
O

pT (z, z1)pT (z1, z2)λ2d(dz1)λ2d(dz2) ≥ αT λ2d(B) inf
z∈K

PT (z, O).

Then, it remains to show that infz∈K PT (z, O) > 0 and this point follows again from controllability argument: denote
by (u

(z,z∗)
ηT /2 )t∈[0,T ] the control built in (i) that yields the (z, z∗, ηT

2 )-controlability. Since z ∈ K , we deduce from the

construction of xη defined in (4.5) that u
(z,z∗)
ηT /2 can be built such that supz∈K

∫ T

0 |u(z,z∗)
ηT /2 |2 ds < +∞. As a consequence,

it follows from the support Theorem that infz∈K P(|Zz
T − z2| ≤ ηT

2 ) > 0. The result follows. �

4.2. Building the Lyapunov function

We first show a key lemma for the construction of the Lyapunov function in Proposition 3.1.

Lemma 4.3. Assume (R1) and r∞ > 0. Then, (ρ(t))t≥0 defined by (3.3) is a positive C 1-solution to the differential
equation u̇(t) = −r(t)u(t) + u2(t) which satisfies ρ(t)

r(t)

→ 1 as t → +∞.
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Proof. First, (ρ(t))t≥0 is a positive solution to u̇(t) = −r(t)u(t) + u2(t) on R+ if and only if z(t) = 1
ρ(t)

is solution
to v′(t) − r(t)v(t) = −1. The general solution is given by:

v(t) = e
∫ t

0 r(s)ds

(
C −

∫ t

0
e− ∫ s

0 r(x)dx ds

)
,

with C ∈ R. Since r∞ > 0, we can set C = ∫ +∞
0 e− ∫ s

0 r(x)dx ds and we obtain the following positive particular solution
on R+:

z(t) = e
∫ t

0 r(s)ds

∫ +∞

t

e− ∫ s
0 r(x)dxds =

∫ +∞

t

ft (s)ds,

where ft (s) = e− ∫ s
t r(x)dx = k(t)/k(s). Since f ′

t (s) = −r(s)ft (s), an integration by parts yields:

z(t) =
∫ +∞

t

f ′
t (s)

r(s)
ds =

[
ft (s)

r(s)

]+∞

t

+
∫ +∞

t

ft (s)r
′(s)

r2(s)
ds = 1

r(t)
+
∫ +∞

t

ft (s)r
′(s)

r2(s)
ds.

By Assumption (R1),∫ +∞

t

ft (s)r
′(s)

r2(s)
= o
(
z(t)
)

as t → +∞.

It follows that r(t)z(t) → 1 as t 
→ +∞. Finally, ρ = 1/z satisfies ρ(t)
r(t)

→ 1 as t → +∞. This completes the proof. �

With the result of Lemma 4.3, one can choose a suitable ρ to build a Lyapunov functional V as pointed in Propo-
sition 3.1 whose proof can be found below.

Proof of Proposition 3.1.
(i) First, one checks that V can be written:

V (x, y, t) = U(x) + |y|2
2

(
1

r(t)
− mε

ρ2(t)

)
+ mε

2

∣∣∣∣x − y

ρ(t)

∣∣∣∣2. (4.9)

Then, since mε < r∞ and ρ(t)
r(t)


→ 1 as t → +∞ we deduce that

lim inf
t→+∞

(
1

r(t)
− mε

ρ2(t)

)
≥ 0.

It follows that V is positive for t large enough. If moreover, lim supt→+∞ r(t) < +∞, we have

lim inf
t→+∞

(
1

r(t)
− mε

ρ2(t)

)
> 0,

and (3.6) follows.
Second,

AV (x, y, t) = −mε

r(t)

ρ(t)

〈
x,∇U(x)

〉− |y|2
(

1 − mε

ρ(t)
+ r ′(t)

2r2(t)

)

+ mε〈x, y〉
(

−1 + r(t)

ρ(t)
+ ρ′(t)

ρ2(t)

)
+ 1

2
Tr
(
σ ∗(x)

(
D2U(x) + mεId

)
σ(x)

)
.

On the one hand, ρ satisfies

−1 + r(t)

ρ(t)
+ ρ′(t)

ρ2(t)
= 0.
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On the other hand, mε ∈ (0, r∞). Thus, since r ′(t)/r2(t) → 0 and ρ(t) ∼ r(t) as t → +∞,

lim inf
t→+∞

(
1 − mε

ρ(t)
+ r ′(t)

2r2(t)

)
> 0. (4.10)

We deduce that there exist t1 ≥ 0 and α1 > 0 such that

AV (x, y, t) ≤ −mε

r(t)

ρ(t)

〈
x,∇U(x)

〉+ 1

2
Tr
(
σ ∗(x)

(
D2U(x) + mεId

)
σ(x)

)− α1|y|2 ∀t ≥ t1. (4.11)

Now, since mε > m and r(t)
ρ(t)

→ 1, there exists t0 ≥ t1 such that mε
r(t)
ρ(t)

≥ m for every t ≥ t0. Using that

lim inf|x|→+∞〈x,∇U(x)〉 > 0, we deduce that there exists a compact subset K of R
d such that

−mε

r(t)

ρ(t)

〈
x,∇U(x)

〉≤ −m
〈
x,∇U(x)

〉 ∀x ∈ Kc.

Finally, using the Lyapunov stability assumption (H1) and (4.11), we obtain that for every t ≥ t0,

lim sup
|(x,y)|→+∞

AV (x, y, t) = −∞.

This ends the proof. �

4.3. Proofs of Theorems 3.1 and 3.2

Both theorems rely on a first step concerning the tightness of (μz
t )t≥1 and (νz

t )t≥1. This step is detailed in Proposi-
tion 4.1. The proof of Proposition 4.1 requires some technical results detailed in Lemma 4.4 (which concerns exclu-
sively the tightness of the stochastic occupation measures (νz

t )t≥1 and not (μz
t )t≥1). Next, the identification steps of

Theorems 3.1 and 3.2 are provided by Proposition 4.2.

Lemma 4.4. Assume (R1) and lim inft→+∞ r(t) = r∞ ∈ (0,+∞].
(i) Let a ∈ (0,1] such that (H′

a) holds. Let η : R+ → R+ be a decreasing C 1 function such that
∫ +∞

0 ηs ds < +∞.
Then, for every z ∈ R

d × R
d , for every p ≥ 1,∫ +∞

0
ηs

(
E
[(

U
(
Xz

s

)∨ (Xz
s

)2)p+a−1]+ E[|Y z
s |2p]

r(s)p−1

)
ds < +∞, (4.12)

sup
t≥0

ηt

[(
U
(
Xz

t

)∨ ∣∣Xz
t

∣∣2)p + ∣∣Y z
t

∣∣2p]
< +∞ a.s. (4.13)

and

sup
t≥0

ηtE
[(

U
(
Xz

t

)∨ ∣∣Xz
t

∣∣2)p + ∣∣Y z
t

∣∣2p]
< +∞. (4.14)

(ii) Assume (H′
1). Then, for every z ∈ R

d × R
d ,

sup
t≥0

E
[(

U
(
Xz

t

)∨ ∣∣Xz
t

∣∣2)p + ∣∣Y z
t

∣∣2p]
< +∞. (4.15)

Proof. We recall that throughout the paper, C denotes a positive constant whose value may change from line to line
and that in the proofs, we write (Xt , Yt ) instead of (Xz

t , Y
z
t ). Let V be defined by (3.4) and let t0 ≥ 0 such that (3.5)

holds. Fix any t ≥ t0. By Itô formula, we have:

ηtV
p(Xt , Yt , t) = ηt0V

p(Xt0 , Yt0, t0) +
∫ t

t0

(
ηs AV p(Xs,Ys, s) + η′

sV
p(Xs,Ys, s)

)
ds + (Mt − Mt0), (4.16)
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where (Mt)t≥0 is the local martingale defined by

Mt =
∫ t

0
pηsV

p−1(Xs,Ys, s)

〈
∇U(Xs) + mε

(
Xs − Ys

ρ(s)

)
, σ (Xs)dWs

〉
.

Setting σi(V ) =∑d
k=1(∇xV )kσ

k
i , one checks that

AV p = pV p−1

(
AV + p − 1

2

d∑
i=1

σi(V )

V

)
.

Owing to (4.11), it follows that there exists t1 > 0 and α1 > 0 such that

AV p

pV p−1
(x, y, t) ≤ −mε

r(t)

ρ(t)

〈
x,∇U(x)

〉− α1|y|2

+ 1

2

[
Tr
(
σ ∗(x)

(
D2U(x) + mεId

)
σ(x)

)+ (p − 1)

d∑
i=1

σi(V )

V
(x, y, t)

]
. (4.17)

First, using assumption (H′
a) and the fact that r(t)/ρ(t) → 1 as t → +∞, we obtain the existence of α̃1 > 0 and

β̃1 ∈ R such that,

−mε

r(t)

ρ(t)

〈
x,∇U(x)

〉− α1|y|2 ≤ β̃1 − α̃1
((

U(x) ∨ |x|2)a + |y|2). (4.18)

Second, we focus on (4.17).

Tr
(
σ ∗(x)

(
D2U(x) + mεId

)
σ(x)

)+ (p − 1)

d∑
i=1

σi(V )

V
(x, y, t)

≤ C Tr
(
σσ ∗)(x)

( |∇xV (x, y, t)|2
V (x, y, t)

+ ∥∥D2U(x)
∥∥+ 1

)
.

Let us control the above right term. On the one hand, it follows from (4.9) that for t large enough,

V (x, y, t) ≥ C
|y|2
r(t)

,

where C is a positive constant. As well, remark that V can be written as follows:

V (x, y, t) = U(x) + 1

2r(t)

∣∣∣∣y − mε

xr(t)

ρ(t)

∣∣∣∣2 + mε

2
|x|2
(

1 − mε

r(t)

ρ2(t)

)
.

Then, by Lemma 4.3 and the definition of mε , we deduce that 1−mεr(t)/ρ
2(t) ≥ C > 0 for t large enough. It follows

that V (x, y, t) ≥ C(U(x) + |x|2) for t large enough. As a consequence,

V (x, y, t) ≥ C max

{
U(x) + |x|2; |y|2

r(t)

}
for t large enough. (4.19)

On the other hand, one easily derives from (4.9) that

∣∣∇xV (x, y, t)
∣∣2 ≤ C

(∣∣∇U(x)
∣∣2 + |x|2 + |y|2

ρ2(t)

)
.
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Thus, using that lim inft→+∞ r(t)/ρ2(t) = 1/r∞ < +∞, it follows from the two previous inequalities that, for t large
enough,

Tr
(
σ ∗(x)

(
D2U(x) + mεId

)
σ(x)

)+ (p − 1)

d∑
i=1

σi(V )

V
(x, y, t)

≤ C Tr
(
σσ ∗)(x)

(
1 + |∇U(x)|2

U(x)
+ ∥∥D2U(x)

∥∥) |x|→+∞= o
((

U(x) ∨ |x|2)a),
by assumption (H′

a). Then, we derive from (4.18) that for t large enough, one can find α2 > 0 and β2 ∈ R such that

AV p(x, y, t) ≤ V p−1(x, y, t)
(
β2 − α2

((
U(x) ∨ |x|2)a + |y|2)). (4.20)

Now, by (4.9) and (4.19), there exist 0 < C1 ≤ C2 such that for t large enough,

C1

(
U(x) ∨ |x|2 ∨ |y|2

r(t)

)
≤ V (x, y, t) ≤ C2

(
U(x) ∨ |x|2 ∨ |y|2

r(t)

)
. (4.21)

It is thus immediate to check that for any δ > 0, one can find a suitable β3 such that

β1V
p−1(x, y, t) ≤ δV p−1(x, y, t)

((
U(x) ∨ |x|2)a + |y|2)+ β3.

Hence, setting δ = α2/2, we derive from equation (4.20) that:

AV p(x, y, t) ≤ β3 − α2

2

((
U(x) ∨ |x|2)a + |y|2)V p−1(x, y, t). (4.22)

Now, we deduce from (4.21) that

V p−1(x, y, t) ≥ C

([
U(x) ∨ |x|2]p−1 ∨ |y|2(p−1)

r(t)p−1

)
≥ C

2

([
U(x) ∨ |x|2]p−1 + |y|2(p−1)

r(t)p−1

)
.

Consequently, for a suitable choice of β̃ ∈ R+, α̃ > 0 and t0 ≥ 0, one can check that for every t ≥ t0, for every
x, y ∈ R

d ,

AV p(x, y, t) ≤ β̃ − α̃

((
U(x) ∨ |x|2)p+a−1 + |y|2p

r(t)p−1

)
, (4.23)

and that V p(x, y, t) is positive.
Owing to (4.23), we are going to prove (i) by exhibiting a nonnegative supermartingale. This argument can be

viewed as a continuous adaptation of Lemma 4 of [35]. Set ψa,p(x, y, t) = (U(x) ∨ |x|2)p+a−1 + |y|2p

r(t)p−1 and let
(Gt )t≥t0 be the nonnegative process defined by

Gt = ηtV
p(Xt , Yt , t) + α̃

∫ t

t0

ηsψa,p(Xs,Ys, s)ds + β̃

∫ +∞

t

ηs ds ∀t ≥ t0.

With the notations of (4.16), ∀t ≥ t0,

Gt = Gt0 +
∫ t

t0

ηs

[
AV p(Xs,Ys, s) + α̃ψa,p(Xs,Ys, s) − β̃

]
ds

(4.24)

+
∫ t

t0

η′
sV

p(Xs,Ys, s)ds + (Mt − Mt0).
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Since η′ ≤ 0, it follows from (4.23) that

ηs

[
AV p(Xs,Ys, s) + α̃ψa,p(Xs,Ys) − β̃

]+ η′
sV (Xs,Ys, s) ≤ 0 ∀s ≥ t0.

Finally, checking that AV p(x, y, t) ≤ CV p(x, y, t) for every t ≤ t0, for every x, y ∈ R
d , we get by similar arguments

as those developed in Proposition 2.1:

sup
t≤t0

E
[
V p(Xt ,Yt , t)

]
< +∞. (4.25)

In particular, E[V p(Xt0 , Yt0, t0)] < +∞ is finite and it follows that (Gt )t≥t0 is a nonnegative supermartingale. Thus,
(Gt ) is a.s. convergent and supt≥t0

E[Gt ] < +∞. As a consequence,

sup
t≥t0

ηtV
p(Xt , Yt , t) < +∞ a.s., sup

t≥t0

ηtE
[
V p(Xt ,Yt , t)

]
< +∞,

(4.26)∫ +∞

t0

ηsE
[
ψa,p(Xs,Ys)

]
ds < +∞.

Now, by the a.s. local boundedness of (Zt )t≥0, (4.25) and the fact that ψa,p ≤ CV p , we deduce that (4.26) holds with
t0 = 0. Thus, (4.12) follows. (4.13) and (4.14) follow when lim supt→+∞ r(t) < +∞. When lim supt→+∞ r(t) =
+∞, the controls for (Xt ) in (4.13) and (4.14) are also true but we still have to prove that for every p ≥ 1:

sup
t≥0

ηt |Yt |2p < +∞ a.s. and sup
t≥0

ηtE
[|Yt |2p

]
< +∞. (4.27)

By (H′
a)(ii) and the fact that minRd U > 0, we get |∇U(x)| ≤ U(x) ∨ |x|2. Thus, we deduce from (2.4) and Jensen’s

inequality that

|Yt |2p ≤ C

(
1 + 1

k(t)

∫ t

0
k′(s)

(
U(Xs) ∨ |Xs |2

)p ds

)
a.s. (4.28)

The statements of (4.27) follow easily.
(ii) When a = 1, it follows from (4.21), (4.22) and lim inft→+∞ r(t) = r∞ > 0 that there exists β ′ ∈ R, α′ > 0 and

t0 ≥ 0 such that for every (x, y, t) ∈ R
d × R

d × [t0,+∞[,
AV p(x, y, t) ≤ β ′ − α′V p(x, y, t).

Then, Itô formula yields,

E
[
eα′tV p(Xt , Yt , t)

] = eα′t0E
[
V p(Xt0 , Yt0, t0)

]+ ∫ t

t0

eα′s
E
[
α′V p(Xs,Ys, s) + AV p(Xs,Ys, s)

]
ds

≤ eα′t0E
[
V p(Xt0 , Yt0, t0)

]+ β ′
∫ t

t0

eα′s ds.

Using (4.25), we deduce that

sup
t≥0

E
[
V p(Xt ,Yt , t)

]≤ C

(
1 + β ′

α′

)
< +∞.

Thus, by (4.21), it follows that supt≥0 E[(U(Xt ) ∨ |Xt |2)p] < +∞ and then from (4.28) that, supt≥0 E[|Yt |2p] <

+∞. �

We are now able to establish tightness of mean and stochastic occupation measures as announced in the next
proposition.
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Proposition 4.1. Assume (R1) and fix any z = (x, y) ∈ R
d × R

d . Then,

(i) If (H0) and (H1) hold, (μz
t )t≥1 is tight and supt≥1

1
t

∫ t

0 E[|Y z
s |2]ds < +∞.

(ii) If there exists a ∈ (0,1] such that (H′
a) holds, for every q ≥ 1

sup
t≥1

1

t

∫ t

0

(
U
(
Xz

s

)∨ ∣∣Xz
s

∣∣2)q + {|Y z
s |2}q

r(s)q−1
ds < +∞ a.s.

In particular, (νz
t (ω, ·)t≥1 is a.s. tight.

Proof. The proof of (i) is almost standard and we provide it for sake of completeness, (ii) requires more technicalities.
(i) On the one hand, the tightness of (μz

t )t≥1 follows from (3.5) and from a straightforward adaptation of Lemma 9.7
of [27] (Chapter 9, p. 242) to this nonhomogeneous Markovian framework. On the other hand, by (4.11) (H1) and
the fact that ∇U , D2U and σ are locally bounded, we deduce that there exist t1 > 0, β1 ∈ R and α1 > 0 such that for
every (x, y) ∈ R

d × R
d , for every t ≥ t1, AV (x, y, t) ≤ β1 − α1|y|2. Then, applying Itô formula, we have

α1 lim sup
t→+∞

1

t

∫ t

t1

E
[|Ys |2

]
ds ≤ lim sup

t→+∞

(
E[V (Xt1 , Yt1 , t1)] − E[V (Xt ,Yt , t)]

t
+ β1

)
≤ β1

and the second statement of (i) follows.
(ii) Set p ≥ 1. Using Itô formula and (4.23), we have for every t ≥ t0 > 0:

1

t

∫ t

t0

((
U(Xs) ∨ |Xs |2

)p+a−1 + {|Ys |2}p
r(s)p−1

)
ds ≤ 1

α̃

V p(Xt0, Yt0 , t0) − V p(Xt ,Yt , t)

t
+ β + Nt − Nt0

t
,

where (Nt ) is defined for every t ≥ 0 by

Nt = p

∫ t

0
V p−1(Xs,Ys, s)

〈
∇U(Xs) + mε

(
Xs − Ys

ρ(s)

)
, σ (Xs)dWs

〉
.

Note that by Lemma 4.4, (Nt ) is a martingale. We have now to show that Nt/t → 0 as t → +∞. Set Mt =∫ t

t0
(1/s)dNs . We want to show that 〈M〉∞ < +∞. For every t ≥ t0, we have:

〈M〉t ≤ C

∫ t

t0

s−2V 2p−2(Xs,Ys, s)

(∣∣∇U(Xs)
∣∣2 + |Xs |2 + |Ys |2

ρ2(s)

)
Tr
(
σσ ∗)(Xs)ds.

Owing to the elementary inequality |u + v|p ≤ Cp(|u|p + |v|p) for u,v ∈ R, we have:

V 2p−2(x, y, t) ≤ C

(
1 + (U(x) ∨ |x|2)2p−2 + {|y|2}2p−2

r(t)2p−2

)
.

Using (H′
a), it follows that, since ρ(t) ∼ r(t),

〈M〉t ≤ C

∫ t

t0

s−2
(

1 + |Ys |2
r(s)2

)(
U(Xs) ∨ |Xs |2

)2p+a−1 ds

+ C

∫ t

t0

s−2
(

1 + {|Ys |2}2p−1

r(s)2p
+ {|Ys |2}2p−2

r(s)2p−2

)(
U(Xs) ∨ |Xs |2

)a ds. (4.29)

By the elementary inequality |uv| ≤ (u2 + v2)/2 for u,v ∈ R, and after some standard inequalities, one can find
suitable constants (C, C̃) satisfying a.s.,

〈M〉t ≤ C

∫ t

t0

s−2
[

1 + (U(Xs) ∨ |Xs |2
)4p+2a−2 + {|Ys |2}2

r(s)4
+ {|Ys |2}4p−2

r(s)4p
+ {|Ys |2}4p−4

r(s)4p−4

]
ds

≤ C̃

∫ t

t0

s−2
[

1 + (U(Xs) ∨ |Xs |2
)4p+2a−2 + {|Ys |2}2

r(s)
+ {|Ys |2}4p−2

r(s)4p−3
+ {|Ys |2}4p−4

r(s)4p−5

]
ds.
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The second inequality holds since lim inf r(t) > 0. By Lemma 4.4, it follows that 〈M〉∞ < +∞ a.s. Then, (Mt) is a
convergent martingale. Setting M∞ = limt→+∞ Mt , we derive from an integration by parts and from Cesaro’s lemma
that

Nt − Nt0

t
= 1

t

∫ t

t0

s dMs = (Mt − Mt0) − 1

t

∫ t

t0

(Ms − Mt0)ds

t→+∞−−−−→ (M∞ − Mt0) − (M∞ − Mt0) = 0.

As a consequence, Nt

t
→ 0 a.s. and it follows that (νz

t )t≥1(ω, ·) is a.s.-tight. �

The next proposition identifies the adherence of the tight occupation measures in the several cases addressed by
Theorem 3.2.

Proposition 4.2. Assume (R1).

(i) Assume (H0) and (H1) and denote by μ∞ an accumulation point of the (tight) family (μz
t )t≥1. Then,

(i1) If r∞ = +∞, the first marginal of μ∞ is an invariant distribution for SDE (3.1).
(i2) If r(t) → r∞ ∈ R

∗+, μ∞(dx,dy) is an invariant distribution of the homogeneous Markov process solution to
(2.3) with r(t) = r∞ for every t ≥ 0.

(ii) Let a ∈ (0,1] such that (H′
a) holds, and denote by ν∞(ω) an accumulation point of the (a.s. tight) family

(νz
t (ω))t≥1.

(ii1) If r∞ = +∞, ν∞(ω,dx,dy) = δ∇U(x)(dy)π(dx) where π is a.s. an invariant distribution for SDE (3.1).
(ii2) If r(t) → r∞ ∈ R

∗+, ν∞(ω,dx,dy) is an invariant distribution of the homogeneous Markov process solution
to (2.3) with r(t) = r∞ for every t ≥ 0.

Remark 4.2. Oppositely to (ii1), we only identify the first marginal of the accumulation point in (i1). This point may
appear a little surprising since μt(f ) = E[νt (f )] but is due to the weaker stability assumption (H1) in the first part
of the proposition. Note that we could obtain the whole identification in (i1) under (H′

a).

Proof of Proposition 4.2. The proof of (i1) and (i2) being an adaptation of that of (ii1) and (ii2) in a simpler case,
we choose to mainly detail the second ones and to give some elements of the first ones at the end of the proof.

(ii1) We assume that r∞ = +∞. Let ν∞(ω) be a weak limit of (νz
t (ω))t≥0. By the factorization theorem for

probability measures, ν∞(ω) = ν1
ω(x,dy)ν2

ω(dx) where a.s., ν1
ω is a transition probability and ν2

ω is a probability dis-
tribution. We first prove that ν2

ω is a.s. an invariant distribution for SDE (3.1). Recall the notation L for the generator of
(St )t≥0 solution to the classical SDE (3.1). Owing to the Echeverria–Weiss theorem (see e.g. Theorem 9.17, Chapter 9,
p. 248 of [27]), ν2

ω is an invariant distribution for (St )t≥0 if a.s.,
∫

Lf (x)ν∞(ω,dx,dy) = 0 for every f ∈ C 3
K(Rd).

A countability argument shows that it is enough to show that for every f ∈ C 3
K(Rd),

∫
Lf (x)ν∞(ω,dx,dy) = 0 a.s.,

i.e. that for every f ∈ C 3
K(Rd),

1

t

∫ t

0
Lf (Xs)ds

t→+∞−−−−→ 0 a.s.

The idea of the proof is thus to compare the generator A of (2.3) to L, the one corresponding to SDE (3.1). For
f ∈ C 3

K(Rd), set g1(x, y, t) = f (x) − 〈y,∇f (x)〉
r(t)

. By Itô formula,

−1

t

∫ t

0
Ag1(Xs,Ys, s)ds = g1(x, y,0) − g1(Xt , Yt , t)

t
+ Ñt

t

with Ñt = ∫ t

0 〈∇xg1(Xs,Ys, s), σ (Xs)dWs〉. On the one hand, by (4.13) applied with ηt = 1/t2 and p = 1,
supt≥1 |Yt |2/t2 < +∞ a.s. Then, since f is compactly supported,

|g1(Xt , Yt , t)|
t

≤ C

(
1

t
+ |Yt |

r(t)t

)
t→+∞−−−−→ 0 a.s., (4.30)



588 S. Gadat and F. Panloup

and it follows that

g1(Xt , Yt , t) − g1(x, y,0)

t

t→+∞−−−−→ 0 a.s.

On the other hand, using that inft≥0 r(t) > 0, we have

∣∣∇xg1(x, y, t)
∣∣2 =

∣∣∣∣∇f (x) − D2f (x)y

r(t)

∣∣∣∣2 ≤ C
(
1 + |y|2).

Then, it follows from (4.12) that the martingale (M̃t )t≥1 defined by M̃t = ∫ t

1 (1/s)dÑs and a similar method to that of
(4.29) that

1

t

∫ t

0

〈∇xg1(Xs,Ys, s), σ (Xs)dWs

〉 n→+∞−−−−−→ 0 a.s.

Finally, νz
t (Ag1)

t→+∞−−−−→ 0 a.s. Now, A can be decomposed as Ag1(x, y, t) = Lf (x) + H(x, y, t) where

H(x, y, t) = 1

r(t)

(
−y∗D2f (x)y + 1

2
Tr
(
σ ∗(x)Cy(x)σ (x)

))− g1(x, y, t)
r ′(t)
r2(t)

,

and (Cy(x))i,j =∑d
l=1 yl ∂

3
xi ,xj ,xl

f (x). Then, ν2
ω is a.s. an invariant distribution for SDE (3.1) if

1

t

∫ t

0
H(Xs,Ys, s)ds

t→+∞−−−−→ 0 a.s.

and this point follows from the control below

∣∣H(x, y, t)
∣∣≤ ( 1

r(t)

(|y|2 + |y|)+ |r ′(t)|
r2(t)

(
1 + |y|)),

the fact that r ′(t)/r2(t) → 0, 1/r(t) → 0 (under the assumptions of (ii1)), and Proposition 4.1(ii) that yields:
supt≥1

1
t

∫ t

0 |Ys |2 ds < +∞ a.s.
Finally, let us check that ν2

ω(dx)-a.s. one has ν1
ω(x,dy) = δ∇U(x)(dy) a.s. It is enough to prove that for every

Lipschitz bounded continuous function f : Rd × R
d 
→ R,

1

t

∫ t

0
f (Xs,Ys)ds − f

(
Xs,∇U(Xs)

)
ds

t→+∞−−−−→ 0 a.s.,

and this property will be true if

1

t

∫ t

0

∣∣∇U(Xs) − Ys

∣∣ds
t→+∞−−−−→ 0 a.s. (4.31)

Applying Itô formula to ϕ(t,ω) = |∇U(Xt) − Yt |2, we get

1

t

∫ t

0
r(s)

∣∣∇U(Xs) − Ys

∣∣2 ds = |∇U(x) − y|2 − ϕ(t,ω)

2t
+ 1

2t

∫ t

0
F
(
Xs,Ys

)
ds

+ 1

t

∫ t

0

〈
D2U(Xs)

(∇U(Xs) − Ys

)
, σ (Xs)dWs

〉
,

where F is a function that depends on ∇U , D2U , D3U and σ that satisfies∣∣F(x, y)
∣∣≤ C

(
1 + (U(x) ∨ |x|2)p1 + |y|2) with p1 ≥ 1. (4.32)
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Now, it follows from Proposition 4.1 and (4.32) that supt≥1
1
t

∫ t

0 |F(Xs,Ys)|ds < +∞ a.s. and similar arguments
as those developed in (4.29) combined with (4.12) yield

1

t

∫ t

0

〈
D2U(Xs)

(∇U(Xs) − Ys

)
, σ (Xs)dWs

〉 t→+∞−−−−→ 0 a.s.

As a consequence,

sup
t≥1

1

t

∫ t

0
r(s)

∣∣∇U(Xs) − Ys

∣∣2 ds < +∞ a.s.

and (4.31) follows from Jensen’s inequality and the fact that r(t) → +∞.
(ii2): r(t) → r∞ < +∞. Let ν∞(ω) be a weak limit of (νz

t (ω))t≥1. Let f : Rd × R
d → R. Following a similar

strategy, it is enough to show that

1

t

∫ t

0
Ar∞f (Xs,Ys)ds

t→+∞−−−−→ 0 a.s.,

where Ar∞ denotes the infinitesimal generator of the homogeneous Markov process (Zt )t≥0 when r is constant
(r(t) = r∞ for every t ≥ 0). In this case, we set g2(x, y, t) = f (x, y) and derive from similar arguments to those
developed in (ii1) that,

1

t

∫ t

0
Ag2(Xs,Ys, s)ds

t→+∞−−−−→ 0 a.s.

Then, we can show that

1

t

∫ t

0
Ar∞f (Xs,Ys)ds − Ag2(Xs,Ys, s)ds

t→+∞−−−−→ 0 a.s.

using that

Ag2(x, y, t) − Ar∞f (x, y) = (r(t) − r∞
)〈∇U(x) − y,∇yf (x, y)

〉
combined with the fact that suppf is compact and r(t)

t→+∞−−−−→ r∞. This ends the proof of (ii2).
(i1) and (i2): in this case, it is enough to prove that for every C 2-function f with compact support,

1

t

∫ t

0
E
[

Lf (Xs)
]

ds
t→+∞−−−−→ 0 if r(t) → +∞ and (4.33)

1

t

∫ t

0
E
[

Ar∞f (Xs,Ys)
]

ds
t→+∞−−−−→ 0 if r(t) → r∞ ∈ R

∗+. (4.34)

Following carefully the proof of (ii2), one checks that (4.34) is true using in particular that g2 is compactly supported.
In the same way, one observes that under (H0) and (H1) (only), a direct adaptation of the proof of the first part of (i1)
is available to obtain (4.33) if

sup
t≥1

1

t

∫ t

0
E
[|Ys |2

]
ds < +∞ and

E[|Yt |]
r(t)t

t→+∞−−−−→ 0
(
when r(t) → +∞).

The first point has already been proven in Proposition 4.1. Let us focus on the second one. Since for t large enough
lim sup|x,y)|→+∞ AV (x, y, t) = −∞, it follows that there exist C and t0 > 0 such that for every t ≥ t0 for every

x, y ∈ R
d , AV (x, y, t) ≤ C. Then, an adaptation of the proof of Lemma 4.4 (see (4.24)) shows that (G̃t )t≥t0 defined

by G̃t = ηtV (Xt , Yt , t) + C
∫ +∞
t

ηs ds is a nonnegative supermartingale when t 
→ ηt is a nonincreasing positive
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function such that
∫ +∞

0 ηs ds < +∞. Since V (x, y, t) ≥ |y|2/(r(t)), this implies supt≥t0
{ηtE[|Yt |2]r(t)−1} < +∞.

Applying this property with ηt = t−2 yields(
E[|Yt |]
r(t)t

)2

≤ 1

r(t)

(
E[|Yt |2]
t2r(t)

)
≤ C

r(t)

(
1 + sup

t≥t0

1

t2

(
E[|Yt |2]

r(t)

))
t→+∞−−−−→ 0. �

4.4. Some properties of the invariant distribution

In this short paragraph, we provide some identification clues for the adherence points of (νz
t (ω, ·))t≥0 and (μz

t )t≥0
when r(t) = r∞ ∈ R

∗+. This results are summarized in Proposition 3.2 in the first part of the paper.

Proof of Proposition 3.2.
(ii) We study first the identification problem when d = 1, σ a positive constant, r(t) = r∞ > 0 and U(x) = x2/2.

Note first that the assumptions of Theorem 3.3 are fulfilled with a = 1. Then, in particular, (Xt , Yt )t≥0 converges
weakly to the unique invariant distribution ν. Since (Xt , Yt )t≥0 is a Gaussian process, ν is a Gaussian random variable
whose parameters are the limits of the expectation and variance/covariance of the process. Let us compute these limits.
We set for any t ≥ 0: φ1(t) = E[Xt ] and φ2(t) = E[Yt ]. One easily checks that φ1 and φ2 satisfy a simple coupled
differential equation{

φ′
1(t) − φ2(t),

φ′
2(t)r∞

[
φ1(t) − φ2(t)

]
.

When r∞ ∈]0,4[, the eigenvalues of the matrix of the system are complex with negative real part and when r∞ ≥ 4,
the eigenvalues are real and negative. In the two cases, it follows that

E[Xt ] t→+∞−−−−→ 0 and E[Yt ] t→+∞−−−−→ 0.

Set now f (t) = E[|Xt |2], g(t) = E[|Yt |2] and h(t) = E[XtYt ]. Simple computations yield the following first order
differential system:⎧⎨

⎩
f ′(t)σ 2 − 2h(t),

g′(t)2r∞
[
h(t) − g(t)

]
,

h′(t) − g(t) + r∞
[
f (t) − h(t)

]
.

The homogeneous system associated to the preceding one can be written Z′(t) = Mr∞Z(t) where Z(t) =
(f (t), g(t), h(t))T and

Mr∞ =
( 0 0 −2

0 −2r∞ 2r∞
r∞ −1 −r∞

)
.

Computations on the characteristic polynom of this matrix show that for every r∞ > 0, Mr∞ has a negative real
eigenvalue that we denote by α and two complex eigenvalues β1 and β2 whose real part is negative when r∞ < 4.
When r∞ ≥ 4, Mr∞ has a 3 real negative eigenvalues. Denoting by Δr∞ = diag(α,β1, β2), by (vα, vβ1 , vβ2) a basis of
eigen vectors and by Pr∞ the matrix of the coordinates of this set of vectors in the canonical basis, we have:

Z′(t) = Pr∞Δr∞P −1
r∞ Z(t) +

(
σ 2

0
0

)
.

Consider now Z̃(t) = Z(t) + M−1
r∞

(
σ 2

0
0

)
, we check immediately that

Z̃′(t) = Pr∞Δr∞P −1
r∞ Z̃(t),
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and Z̃ is given by

P −1
r∞ Z̃(t) = eΔr∞ tP −1

r∞ Z̃(0).

Hence, using that the real part of the eigenvalues is negative, it follows that Z̃(t) →
(

0
0
0

)
as t → +∞. Thus,

Z(t)
t→+∞−−−−→ −M−1

r∞

(
σ 2

0
0

)
= −

⎛
⎜⎝

− r∞+1
2r∞ − 1

2r∞2
1

r∞
− 1

2 − 1
2r∞ 0

− 1
2 0 0

⎞
⎟⎠
(

σ 2

0
0

)
.

Thus, we obtain that E[(Xt )
2] t→+∞−−−−→ r∞+1

r∞
σ 2

2 , E[(Yt )
2] t→+∞−−−−→ σ 2

2 , E[XtYt ] t→+∞−−−−→ σ 2

2 . This ends the proof of (ii).
(i) We consider now a more general case when r(t) = r∞ and U satisfies the hypo-ellipticity condition dim(MU) ≤

d − 1. Then, from Theorem 2.1 and 3.1 there exists a unique invariant distribution of the coupled Markovian process
(Xt , Yt )t≥0 whose density is denoted pr∞ with respect to the Lebesgue measure. We know that pr∞ is characterized
by the balance property:

∀f ∈ C 2
K(R × R):

∫
R×R

Af (x, y)pr∞(x, y)dx dy = 0.

Since we can choose f and all its derivatives of order 1 and 2 vanishing on ∂K , very simple integration by parts
ensures that pr∞ satisfies the following partial differential equation:〈

y,∇xpr∞(x, y)
〉+ 1

2 Tr
(
D2

x

(
pr∞(x,y)σ (x, y)σ ∗(x, y)

))+ r∞
[〈
y − ∇U(x),∇ypr∞(x, y)

〉+ pr∞
]= 0.

This ends the proof of the proposition. �

5. Convergence rate when r∞ = +∞
Proof of Theorem 3.4. We establish in this proof that under the conditions of Theorem 3.4, there exist some positive
constants C1 and C2 such that for every positive s, t ,

W2(PXt+s , π) ≤ C1 exp(−ρs) + C2

k(t)

∫ t

0
k(v)dv,

which is obviously equivalent to the conclusion of Theorem 3.4. First, note that under the assumptions of the theorem,
π has a moment of any order owing to (3.5) combined with (3.7). Then, let (Wt) denote a d-dimensional Brownian
Motion and let (Xt , Yt ) denote the unique (strong) solution to (2.3) adapted to the filtration generated by W . For every
t > 0, we also denote by (S

t,x
s ) the unique (strong) solution to the following SDE

dSs = −∇U(Ss)ds + σ(Ss)dWt+s , S0 = x, (5.1)

where (Wt) is the same Brownian Motion as previously. Let (S
t,π
s ) denote a stationary solution to (5.1) whose initial

value is independent of Xt (this is possible owing to a potential filtration enlargement). We have:

W2(PXt+s , π) ≤ E
[∣∣Xt+s − St,π

s

∣∣2]1/2 ≤ E
[∣∣Xt+s − St,Xt

s

∣∣2]1/2 + E
[∣∣St,Xt

s − St,π
s

∣∣2]1/2
, (5.2)

thanks to the Minkowski inequality. First, we deduce from Itô formula that

exp(2ρs)
∣∣St,x

s − S
t,y
s

∣∣2 = |x − y|2 +
∫ s

0
exp(2ρu)

(
2ρ
∣∣St,x

u − S
t,y
u

∣∣2 + 2ϕ
(
St,x

u , S
t,y
u

))
du + Mt

s,

where (Mt
s )s≥0 is a martingale and ϕ denotes the left-hand side of assumption (AC) (see (3.10)) defined by

ϕ(x1, x2) = 〈x1 − x2,∇U(x2) − ∇U(x1)
〉+ 1

2 Tr
((

σ̃ σ̃ ∗)(x1, x2)
)
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with σ̃ (x1, x2) = σ(x2) − σ(x1). Then, owing to (AC), it follows that

E
[∣∣St,x

s − S
t,y
s

∣∣2]≤ exp(−2ρs)|x − y|2.
Thus, using that Xt and S

t,π
0 are independent, we deduce that

E
[∣∣St,Xt

s − St,π
s

∣∣2]1/2 ≤ exp(−ρs)

(∫ ∫
|x − y|2π(dy)PXt (dx)

)1/2

≤ C1 exp(−ρs), (5.3)

where C1 = (supt≥0

∫ ∫ |x − y|2π(dy)PXt (dx))1/2 is finite since π has a moment of order 2 and supt≥0 E[|Xt |2] <

+∞ by (4.15).
Second, we focus on the first term of the right-hand side of (5.2). Set δ = 2ρ − ε where ε ∈ (0,2ρ). As previously,

setting Hs = Xt+s − S
t,Xt
s , we deduce from Itô formula that

exp(δs)E
[|Hs |2

] =
∫ s

0
δ exp(δu)E

[|Hu|2
]

du

+ 2
∫ s

0
exp(δu)

(
E
[〈
Hu,∇U

(
St,Xt

u

)− Yt+u

〉]+ 1

2
E
[
Tr
(
σ̃ σ̃ ∗(Xt+u, S

t,Xt
u

))])
du. (5.4)

Using that〈
Hu,∇U

(
St,Xt

u

)− Yt+u

〉= 〈Xt+u − St,Xt
u ,∇U

(
St,Xt

u

)− ∇U(Xt+u)
〉+ 〈Hu,∇U(Xt+u) − Yt+u

〉
,

we deduce that

(5.4) = 2
∫ s

0
exp(δu)

(
δ

2
E
[|Hu|2

]+ E
[
ϕ
(
Xt+u, S

t,Xt
u

)]+ E
[〈
Hu,∇U(Xt+u) − Yt+u

〉])
du.

Using the fact that for every ε > 0, |〈Hu,∇U(Xt+u) − Yu〉| ≤ ε
2 |Hu|2 + |∇U(Xt+u) − Yt+u|2/(2ε), one can find

sufficiently small δ and ε to ensure that δ − 2ρ + ε < 0 and then it follows from assumption (AC) that

E
[|Hs |2

]≤ exp(−δs)

ε

∫ s

0
exp(δu)E

[∣∣Yt+u − ∇U(Xt+u)
∣∣2]du. (5.5)

Now, by (2.4)

∣∣Yt+u − ∇U(Xt+u)
∣∣2 ≤ 2

( |y|2k(0)2

(k(t + u))2
+
(

1

k(t + u)

∫ t+u

0
k′(v)

∣∣∇U(Xv) − ∇U(Xt+u)
∣∣dv

)2)
.

Then, we deduce from Jensen’s inequality that

E
[∣∣Yt+u − ∇U(Xt+u)

∣∣2]≤ 2|y|2k(0)2

(k(t + u))2
|y| + 1

k(t + u)

∫ t+u

0
k′(v)E

[∣∣∇U(Xt+u) − ∇U(Xv)
∣∣2]dv.

Applying Itô formula, we have

∣∣∇U(Xt+u) − ∇U(Xv)
∣∣2 = −2

∫ t+u

v

〈∇U(Xr) − ∇U(Xv),D
2U(Xr)Yr

〉
dr

+ 1

2

d∑
i=1

∫ t+u

v

Tr
(
σ ∗D3Ui,·σ ∗)(Xr)dr + Mt+u − Mv,

where Mt = 2
∫ t

0 〈∇U(Xr)−∇U(Xv),D
2U(Xr)σ (Xr)dWr〉 and D3Ui,· is the d ×d matrix defined by (D3Ui,·)j,k =

∂i,j,kU . By Assumption (H′
1)(ii) and the elementary inequality |〈a, b〉| ≤ (|a|2 + |b|2)/2, we obtain the existence of a
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positive number p̄ such that:∣∣∣∣∣〈∇U(Xr) − ∇U(Xv),D
2U(Xr)Yr

〉+ 1

2

d∑
i=1

Tr
(
σ ∗D3Ui,·σ ∗)(Xr)

∣∣∣∣∣
≤ C

(
1 + (U(Xv) ∨ |Xv|2

)p̄ + (U(Xr) ∨ |Xr |2
)p̄ + |Yr |2

)
.

Furthermore, by (2.4), (H′
1)(ii) and Jensen’s inequality,

E
[|Yr |2

]≤ sup
0≤l≤r

E
[∣∣∇U(Xl)

∣∣2]≤ C
(

1 + sup
0≤l≤r

E
[(

U(Xl) ∨ |Xl |
)2])

.

Thus, by Lemma 4.4 (see (4.15)), we deduce that there exists a positive C such that for every t, u, v ∈ R+ with
t + u ≥ v,

E
[∣∣∇U(Xt+u) − ∇U(Xv)

∣∣2]≤ C(t + u − v).

As a consequence,

E
[∣∣Yt+u − ∇U(Xt+u)

∣∣2]≤ C

k(t + u)

(∫ t+u

0
k′(v)(t + u − v)dv

)
≤ C

k(t + u)

(∫ t+u

0
k(v)dv

)
,

by an integration by parts. Using that t 
→ ∫ t

0 k(v)dv/k(t) is nonincreasing and plugging the previous inequality into
(5.5), we obtain that for every positive s and t :

E
[|Hs |2

]≤ C

∫ t

0 k(v)dv

k(t)
exp(−δs)

∫ s

0
exp(δu)du ≤ C2

∫ t

0 k(v)dv

k(t)
,

where C2 does not depend on t and s. Theorem 3.4 follows. �

Proof of Corollary 3.1. For any t ≥ t0, set

ϕt (u) = C1e−ρ(t−u) + C2

k(u)

∫ u

0
k(v)dv.

ϕt achieves its unique minimum on u∗(t) which satisfies

ρC1e−ρ(t−u) + C2 = C2
k′(u)

k2(u)

∫ u

0
k(v)dv.

Taking the logarithm, we obtain

t = u − 1

ρ
log

[
C2

ρC1

(
r(u)

k(u)

∫ u

0
k(v)dv + k(0)

k(u)
− 1

)]
.

Using the notation H defined in Corollary 3.1, we thus obtain u∗(t) = H−1(t), and

W2(PXt ,π) ≤ ϕt

(
H−1(t)

)= C1e−ρ(t−H−1(t))

(
1 + ρ

r(H−1(t))

)
+ C2

r(H−1(t))
. �

6. Proof of general unstability (r∞ = 0 and subquadratic potential)

Proof of Theorem 3.5. Let J : Rd × R
d × R+ → R be defined by

J (x, y, t) = v(t)

(
r(t)U(x) + |y|2

2

)
,
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where v is a C 1-function on R+ which will be fixed later. We have:

AJ (x, y, t) = 1

2
r(t)v(t)Tr

[
σ ∗(x)D2U(x)σ (x)

]+ |y|2
(

−v(t)r(t) + v′(t)
2

)
+ (r(t)v(t)

)′
U(x).

From now, we take v as a solution of the o.d.e. given by −v(t)r(t) + v′(t)
2 = 0. Thus, v can be chosen as v(t) =

exp(2R(t)) where R(t) = ∫ t

0 r(s)ds. Using that Tr(σ ∗D2Uσ)(x) ≥ λ0 > 0, we deduce that

AJ (x, y, t) ≥ λ0

4
v′(t) + (r(t)v(t)

)′
U(x).

As a consequence, it follows from Itô formula applied between t0 and t that

E
[
J (Xt ,Yt , t)

]≥ E
[
J (Xt0 , Yt0 , t0)

]+ λ0

4

[
v(t) − v(t0)

]+ ∫ t

t0

(
r(s)v(s)

)′
E
[
U(Xs)

]
ds.

Dividing by v(t), we deduce

r(t)E
[
U(Xt)

]+ E[|Yt |2]
2

≥ C

v(t)
+ λ0

4

(
1 − v(t0)

v(t)

)
+ 1

v(t)

∫ t

t0

(
r(s)v(s)

)′
E
[
U(Xs)

]
ds.

Let t0 ∈ R+ such that r ′(t) + 2r2(t) ≥ 0,∀t ≥ t0, then (r(t)v(t))′ ≥ 0 for t ≥ t0 and it follows that

∀t ≥ t0
1

v(t)

∫ t

t0

(
r(s)v(s)

)′
E
[
U(Xs)

]
ds ≥ 0.

Using that v(t) → +∞ (since v(t) = (k(t)/k(0))2), we deduce that

lim inf
t→+∞

(
r(t)E

[
U(Xt)

]+ E[|Yt |2]
2

)
≥ λ0

4
> 0. (6.1)

From now, let us argue by contradiction and assume that

lim sup
t→+∞

r(t)E
[|Xt |2

]= 0. (6.2)

From our hypothesis, there exists a suitable C such that |∇U |2 ≤ C(1+U) and it follows that U is an under-quadratic
potential: U(x) ≤ C(1 +|x|2). The hypothesis given by equation (6.2) trivially implies that r(t)E[U(Xt )] → 0. Thus,

lim inf
t→+∞ E

[|Yt |2
]≥ λ0

4
> 0. (6.3)

We now focus on K : Rd × R
d × R+ defined by K(x,y, t) = exp(R(t))〈x, y〉. First,

AK(x,y, t) = eR(t)
(−|y|2 + r(t)

〈
x,∇U(x)

〉)
.

Owing to Itô formula, we obtain

eR(t)
E
[〈Xt,Yt 〉

]= eR(0)〈x0, y0〉 +
∫ t

0
eR(s)

(−E
[|Ys |2

]+ r(s)E
[〈
Xs,∇U(Xs)

〉])
ds.

Since |〈x,∇U(x)〉| ≤ C(1 + |x|2), it follows from (6.2) and (6.3) that there exists α̃ > 0 and t1 > 0 such that for
s ≥ t1,

E
[|Ys |2

]− r(s)E
[〈
Xs,∇U(Xs)

〉]≥ α̃.
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Then, since r(t) → 0 and exp(R(t)) → +∞, we deduce that:

lim sup
t→+∞

E
[〈Xt,Yt 〉

]≤ −α̃ lim inf
t→+∞

1

eR(t)

∫ t

0
eR(s) ds.

Recall that t0 is such that r ′(t) + 2r2(t) ≥ 0 for every t ≥ 0. Then, an integration by parts yields

1

eR(t)

∫ t

t0

eR(s) ds = 1

r(t)
− eR(t0)−R(t)

r(t0)
+ 1

eR(t)

∫ t

t0

r ′(s)eR(s)

r(s)2
ds ≥ 1

r(t)
− eR(t0)−R(t)

r(t0)
− 2

eR(t)

∫ t

t0

eR(s) ds.

Thus,

1

eR(t)

∫ t

t0

eR(s) ds ≥ 1

3

(
1

r(t)
− eR(t0)−R(t)

r(t0)

)
t→+∞−−−−→ +∞.

As a consequence, lim supt→+∞ E[〈Xt,Yt 〉] = −∞. Then, by Itô formula applied to |Xt |2, we obtain that:

E
[|Xt |2

]= |x|2 − 2
∫ t

t0

E
[〈Xs,Ys〉

]
ds +

∫ t

t0

E
[
Tr
(
σσ ∗)(Xs)

]
ds.

The fact that r ′(t) + 2r2(t) ≥ 0 for t large enough implies that r(t) ≥ 1/(2t). Thus,

lim sup
t→+∞

r(t)E
[|Xt |2

]≥ C lim sup
t→+∞

1

t
E
[|Xt |2

]≥ C lim inf
t→+∞

(−E
[〈Xt,Yt 〉

])= +∞.

This is a contradiction with (6.2). �

7. Proof of unstability (r∞ = 0 and quadratic potential)

Proof of Theorem 3.6. We set for any t ≥ 0: φ1(t) = E[Xt ] and φ2(t) = E[Yt ]. One easily checks that φ1 and φ2
satisfy a simple coupled differential equation{

φ′
1(t) − φ2(t),

φ′
2(t)

α
1+t

[
φ1(t) − φ2(t)

]
.

Thus, φ1 satisfies the second order differential equation φ′′
1 (t)+a(t)φ′

1(t)+φ1(t) = 0. This last equation is a particular
case of second order differential equation with asymptotically small dissipation studied in [15] where we set a(t) =

α
1+t

. Since
∫∞

0 a(s)ds = +∞, we can apply Corollary 3.2 of [14] to obtain that

E[Xt ] t→+∞−−−−→ 0 and E[Yt ] t→+∞−−−−→ 0.

This shows (i). Now, we study the second point (ii) and we will show a sequence of technical lemmas. We use the
notation f,g and h defined in Section 3.2.2.

Lemma 7.1. Assume that k(t) = (1 + t)α with α ≥ 1/2. Then,

∀t > 0 r(t)f (t) + g(t) ≥ 1

2
and lim sup

t→+∞
r(t)f (t) + g(t) ≤ α.

Proof. We consider the application F(t) = r(t)f (t) + g(t). F satisfies

F ′(t) = r ′(t)f (t) + r(t) − 2r(t)h(t) + 2r(t)
[
h(t) − g(t)

]
= r ′(t)f (t) + r(t) − 2r(t)g(t), (7.1)

F ′(t) = r ′(t)
r(t)

F (t) + r(t) + g(t)

[
−2r(t) − r ′(t)

r(t)

]
.
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Since α ≥ 1/2, that r ′ + 2r2 ≥ 0 for every t ≥ 0 and F satisfies the inequality

F ′(t) ≤ r ′(t)
r(t)

F (t) + r(t) ∀t ≥ 0.

Thus, for any t ≥ 0:

(F/r)′(t) = (F ′/r
)
(t) − r ′(t)F (t)/r2(t) ≤ 1,

and it follows that

F(t) = r(t)f (t) + g(t) ≤ C(1 + t)r(t)
t→+∞−−−−→ α.

We focus now on the lower bound. We observe that

∀t ≥ 0 F ′(t) = −2r(t)F (t) + f (t)
(
r ′(t) + 2r2(t)

)+ r(t).

Thus, for every t ≥ 0, F ′(t) + 2r(t)F (t) ≥ r(t) since r ′ + 2r2 ≥ 0. Hence,

∀t ≥ 0,
(
F(t)e2

∫ t
0 r(s)ds

)′ ≥ r(t)e2
∫ t

0 r(s)ds .

Using a simple integration and the fact that F is positive, we obtain

F(t) ≥ F(0)e−2
∫ t

0 r(s)ds +
∫ t

0
r(s)e−2

∫ t
s r(u)du ds ≥ 1

2
∀t ≥ 0.

This ends the proof of Lemma 7.1. �

The preceding lemma shows in particular that (r(t)f (t))t≥0 and (g(t))t≥0 are bounded functions. We now want to
obtain the same property for h. This is the purpose of Lemma 7.2.

Lemma 7.2. Assume that k(t) = (1 + t)α with α ≥ 1/2. Then, h is a bounded function on R+.

Proof. First, one observes that

(
(1 + t)αh(t)

)′ = (1 + t)α−1
(

αh(t) + (1 + t)

(
−g(t) + α

1 + t

(
f (t) − h(t)

))
= (1 + t)α

[
r(t)f (t) − g(t)

]= (1 + t)α−1(αf (t) − (1 + t)g(t)
)
,

and thus, that h(t) = (1 + t)−α(h(0)+ ∫ t

0 sα−1ψ(s)ds) with ψ(t) = αf (t)− (1 + t)g(t). This representation of h and
the controls of f and g obtained previously suggest to study ψ . One checks that

ψ ′(t) = α + (2α − 1)g(t) − 4αh(t) ∀t ≥ 0,

and that ψ satisfies the second order differential equation

(1 + t)ψ ′′ + (2α − 1/2)ψ ′ + 4αψ = α(2α − 1/2) − (α − 1
2

)
g.

We build now a Lyapunov function for the second order differential equation written above and consider C given as

C(t) = ψ2(t) + 1 + t

4α
ψ ′2(t).

A simple derivation shows that

C′(t) = −
(

1 − 1

2α

)
ψ ′2(t) + ψ ′(t)B(t),
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where B is the function defined as

B(t) =
(

α − 1

4

)
+
(

1

4α
− 1

2

)
g(t).

From Lemma 7.1, we know that B is bounded and the elementary inequality |uv| ≤ εu2/2 + v2/(2ε) (with u,v ∈ R

and ε > 0), applied with u = ψ ′(t), v = B(t) and ε = 1 − 1/(2α) > 0 since α > 1/2, yields

C′(t) ≤ 1

2 − 1/α
B2(t) ≤ C < +∞.

It follows that for every t ≥ 0, C(t) ≤ C(1 + t). Then, the construction of C implies that ψ ′ is a bounded function.
Since h satisfies 4αh = α + (2α − 1)g − ψ ′, we easily conclude that h is also bounded. �

We have shown that rf , g and h are bounded functions (Lemmas 7.1 and 7.2). It is then natural to use f̃ = rf and
to study the asymptotic behaviour of z̃ defined by z̃(t) = (f̃ , g,h)T for every t ≥ 0. Using (S), we observe that z̃ is a
solution to

z̃′(t) = M̃t z̃(t) + r(t)δ,

with δ = (1,0,0)T and,

M̃t =
( r ′

r
0 −2r

0 −2r(t) 2r(t)

1 −1 −r(t)

)
.

Let us denote by z̃(t) the t -shifted trajectory of z̃, i.e. defined for every s ≥ 0 by z̃(t)(s) = z̃(t + s). We have the next
lemma.

Lemma 7.3. The family (z̃(t)(·))t≥0 is relatively compact for the topology of uniform convergence on compact sets
and every limit function z̃(∞) is a stationary solution to y′ = M̃∞y with M̃∞ = limt→+∞ M̃t . As a consequence,

lim
t→∞ r(t)f (t) − g(t) = 0.

Proof. We are going to apply the Ascoli theorem to (z̃(t))t≥0. By Lemmas 7.1 and 7.2, z̃ is a bounded vector of R
3

on R+. Thus,

sup
t≥0

∥∥z̃(t)(0)
∥∥< +∞.

Furthermore, (z̃(t))t≥0 is equicontinuous. Actually,

∀(t, T ) ∈ R
2+,∀(u, v) ∈ [0;T ]2 z̃(t)(u) − z̃(t)(v) =

∫ t+u

t+v

[
M̃s z̃(s) + r(s)δ

]
ds

and it follows from the boundedness of (M̃t )t≥0, (z̃t )t≥0 and (r(t))t≥0 that, there exists C > 0 such that

∀(u, v) ∈ [0;T ]2
∥∥z̃(t)(u) − z̃(t)(v)

∥∥≤ C|u − v|.

Then, by the Ascoli theorem, (z̃(t))t≥0 is relatively compact. Since ((z̃(t))′(·))t≥0 = M̃·z̃(t)(·)+ r(t)(·)δ, it is immediate
to check that ((z̃(t))′(·))t≥0 is also a relatively compact. Denoting by z̃(∞) = (f̃ (∞), g(∞), h(∞))T , a limit point of
(z̃(t))t≥0, we deduce that (z̃(∞))′(·) = M̃∞z̃(∞)(·) (where we also used that limt→+∞ r(t) = 0). It follows that(

f̃ (∞)
)′ = 0,

(
g(∞)

)′ = 0,
(
h(∞)

)′ = f (∞) − g(∞).
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Moreover, there exists (C1,C2,C3) ∈ R
2+ × R such that f̃ (∞) = C1 and g(∞) = C2 and h(∞)(u) = (C1 − C2)u + C3.

Now, by Lemma 7.2, h(∞) is clearly bounded, and we conclude that C1 = C2. It follows that z̃(∞) is stationary and
that 0 = f̃ (∞)(0) − g(∞)(0) = limt→+∞(r(t)f (t) − g(t)). �

We now end the proof of the theorem. Recall that F(t) = r(t)f (t) + g(t). Since r(t)f (t) − g(t)
t→+∞−−−−→ 0, we

choose to express F ′ as follows:

F ′(t) = 1

2

(
r ′

r
(t) − 2r(t)

)(
r(t)f (t) + g(t)

)+ 1

2

(
r ′

r
(t) + 2r(t)

)(
r(t)f (t) − g(t)

)+ r(t)

= − 2α + 1

2(1 + t)
F (t) + 2α − 1

2(1 + t)

(
r(t)f (t) − g(t)

)+ a

1 + t
.

It follows that G defined by G(t) = (1 + t)(2α+1)/2F(t) satisfies

G′(t) = 2α − 1

2
(1 + t)(2α−1)/2(r(t)f (t) − g(t)

)+ α(1 + t)(2α−1)/2.

Then, by an integration, we obtain

F(t) = (1 + t)−(2α+1)/2F(0) + α(1 + t)−(2α+1)/2 × 2

2α + 1

(
t (2α+1)/2 − 1

)
+ 2α − 1

2
t−(2α+1)/2

∫ t

0
s(2α−1)/2(r(s)f (s) − g(s)

)
ds.

We observe that up to a constant, the last term can be written (b(t))−1
∫ t

0 b′(s)(r(s)f (s) − g(s))ds with b(t) =
t (2α+1)/2 t→+∞−−−−→ +∞. Then, thanks to a Cesaro-type argument, it follows that

2α − 1

2
t−(2α+1)/2

∫ t

0
s(2α−1)/2(r(s)f (s) − g(s)

)
ds

t→+∞−−−−→ 0.

As a consequence, F(t) −→t→+∞ 2α
2α+1 , and Lemma 7.3 leads to

E
[
X2

t

]∼ t

2α + 1
, and lim

t→+∞EY 2
t = α

2α + 1
.

Finally, since h is bounded, 1√
t
E[XtYt ] t→+∞−−−−→ 0. Thus, assertion (iii) of the theorem follows using that in the Gaus-

sian case, the convergence in distribution follows from that of the covariance matrix. This ends the proof of the
theorem. �

Appendix

We detail the proof of Lemma 4.2(ii) or more precisely, we explain how the proof of [23] can be used in our context.
With the notations introduced in (4.6), (2.3) can be written as dZt = F(Zt )dt + Bσ(Xt)dWt . Since assumption (A)

is satisfied on a ball B(z∗, ρ) (ρ > 0), we can easily build (Z̃t ) solution to dZ̃t = F̃ (Z̃t )dt + Bσ̃ (X̃t )dWt (with the
same Brownian Motion) such that F̃ (x) = F(x) and σ̃ (x) = σ(x) on B(z∗, ρ).

For the process (Z̃t )t≥0, Theorem 1.1 of [23] holds and one may observe that the lower bound obtained in this
theorem is a consequence of equation numbered (4.21 – DM) and of the control of its remainder denoted by RT −ε .
Here, the remainder is denoted by RZ̃

T −ε in order to specify the process involved. Then, we first emphasize two points:

(a) RZ̃
T −ε is a functional of (Wt)t∈[0,T −ε], (φ̃t )t∈[0,T −ε], (vt )t∈[0,T −ε] and (χ̃t )t∈[0,T −ε] where:
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− (φ̃t )t∈[0,T ] is a particular solution to the control problem ˙̃
φ = F̃ (φ̃) + Bσ̃ (φ̃1)ϕ with φ̃(0) = z1, φ̃(T ) = z2

(with (ϕt )t∈[0,T ] being such that
∫ T

0 |ϕs |2 ds < +∞).

− (vt )t∈[0,T −ε] is a progressively measurable stochastic process such that E[∫ T −ε

0 |vt |2 dt].
− (χ̃t )t∈[0,T ] is a solution to dχ̃t = (F̃ (χ̃t ) + Bvt )dt + Bσ̃ (χ̃1

t )dWt with χ̃0 = z1.

(b) If (φ̃t ) and (vt ) are such that Proposition 4.2 and 4.3 of [23] hold, then there exists a measurable set C̄ such that
P(C̄) ≥ 1/2 and such that for every measurable C ∈ C̄ ,

E
[
RZ̃

T −ε1C
]≤ CT

(
1 + ∣∣θT (z1) − z2

∣∣2),
where (θt (z1))t≥0 always denotes the solution to θ̇ = F(θ) starting from z1.

Second, we show that we can find a sufficiently small ball B(z∗, δ) such that, for every z1, z2 ∈ B(z∗, δ), (φ̃t )t∈[0,T ],
built with a control (φt )t∈[0,T ] that satisfies the conclusions of Proposition 4.2 of [23], is always included in B(z∗, ρ)

for any time t ∈ [0;T ]. In this view, set ψ(x, y) = U(x) + |y|2
2λ

. We have

ψ
(
φ̃(t)

)− ψ(z1) ≤ C

∫ t

0

〈∇ψ
(
φ̃(s)

)
,Bσ̃

(
φ̃1(s)

)
ϕs

〉
ds.

Let τρ := inf{t ≥ 0, |φ̃(t) − z∗| = ρ} ∧ T . From Proposition 4.2 of [23] and denoting by

Mρ = sup
x∈B(x∗,ρ)

∣∣∇ψ(x)
∣∣∥∥σ(x)

∥∥,
we deduce that,

ψ
(
φ̃(t ∧ τρ)

)− ψ(z1) ≤ CT Mρ

∣∣θt∧τρ (z1) − z2
∣∣2. (A.1)

Now, by our nonexplosive result given in (4.8), we have that for every ε > 0, there exists δ > 0 such that for every
z1, z2 ∈ B(z∗, δ), supt≥0 |θt (z1) − z2|2 ≤ ε. By (A.1), and the strict convexity of U on B(z∗, ρ), it follows that for a
suitable choice of ε and δ

sup
|z1−z∗|≤δ

ψ(z1) + CT Mρε < inf|x−x∗|=ρ
U(x).

Hence, for ε > 0 and δ small enough,

sup
z1,z2∈B(z∗,δ)

sup
t∈[0,T ]

ψ
(
φ̃(t ∧ τρ)

)
< inf|x−x∗|=ρ

U(x).

It implies that τρ = T and we deduce that for every z1, z2 ∈ B(z∗, δ), (φ̃t )t∈[0,T ] is always included in B(z∗, ρ) for
any t ∈ [0;T ].

We can now focus on (Zt )t≥0 itself. From the latter argument, one deduces that (φ̃(t))t∈[0,T ] is a solution to
żt = F(zt ) + Bσ(xt )ϕt with φ̃(0) = z1 and φ̃(T ) = z2. We then denote it by (φt )t∈[0,T ]. Following carefully the
construction of (4.21 – DM), one then checks that this equation also holds for (Zt ).

If (vt ) is built as in Proposition 4.3 of [23], then RZ
T −ε = RZ̃

T −ε on the set D = {ω ∈ Ω,∀t ∈ [0, T − ε], χt (ω) =
χ̃t (ω)} (where (χt )t∈[0,T ] denotes the solution to dχt = (F (χt )+Bvt )dt +Bσ(χ1

t )dWt with χ0 = z1). From (b), one
deduces that the lower bound of Theorem 1.1 of [23] remains true for (Zt ) itself if P(D) > 1/2 (so that P(D ∩ C) > 0).

In fact,

D = {ω ∈ Ω,∀t ∈ [0, T − ε], χ̃t ∈ B
(
z∗, ρ

)}
and it remains to prove that

P

(
sup

t∈[0,T −ε]
∣∣χt − z∗∣∣≥ ρ

)
< 1/2.
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We can find δ small enough such that for every z1, z2 ∈ B(z∗, δ), (φ̃t )t∈[0,T −ε] ∈ B(z∗, ρ/2), we only have to check
that P(supt∈[0,T −ε] |χ̃t − φ̃t | ≥ ρ

2 ) < 1/2.

Writing χ̃t − φ̃t = Θ̃t − Γt + Γt with Θ̃t = χ̃t − φ̃t and (Γt )t≥0 being a Gaussian process defined by (3.15 – DM),
we have

P

(
sup

t∈[0,T −ε]
|χ̃t − φ̃t | ≥ ρ

2

)
< P

(
sup

t∈[0,T −ε]
|Θ̃t − Γt | ≥ ρ

4

)
+ Cρ sup

t∈[0,T ]
E
[|Γt |2

]
.

Then, we deduce from Proposition 4.3 and Lemma 3.9 of [23] that for T small enough, P(D) > 1/2. This concludes
the proof.
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