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Abstract. Given a two-dimensional fractional multiplicative process (Ft )t∈[0,1] determined by two Hurst exponents H1 and H2,
we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [0,1] by F if and only if
H1 = H2.

Résumé. Etant donné un processus multiplicatif fractionnaire bi-dimensionnel (Ft )t∈[0,1] déterminé par deux exposants de Hurst
H1 et H2, nous montrons l’existence d’un résultat uniforme pour la dimension de Hausdorff des images des sous-ensembles de
[0,1] par F si et seulement si H1 = H2.
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1. Introduction

It is well-known that planar Brownian motion doubles the Hausdorff dimension, in the sense that for any Borel set
E ⊂ R+,

P
{
dimH B(E) = 2 dimH E

} = 1, (1)

where B : R+ �→ R
2 is a planar Brownian motion and B(E) = {B(t): t ∈ E} is the image of E through B . This result

was first proved by McKean [18] in 1955, following the works of Lévy [17] and Taylor [21] regarding the Hausdorff
measure of B(R+), and was extended to α-stable processes by Blumenthal and Getoor [5]. The result cannot be
extended to more general Lévy processes, but one can obtain control such as

P
{
β ′ dimH E ≤ dimH X(E) ≤ β dimH E

} = 1 (2)

for certain parameters β and β ′ depending on the process X (see [6,19]). In [6] Blumenthal and Getoor also conjec-
tured that given any Borel set E, there exists a constant λ(X,E) such that

P
{
dimH X(E) = λ(X,E)

} = 1.

This conjecture is proved by Khoshnevisan and Xiao [16] in 2005, in terms of Lévy exponents.
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The relation (1) involves an exceptional null set NE ⊂ Ω for each fixed E, and it is natural to ask whether there is
a null set N such that NE ⊂ N holds for uncountably many E. In other words, we would hope for a result like

P
{
dimH B(E) = 2 dimH E for all E ∈ O

} = 1 (3)

for O as large as possible. In the literature results like (3) are termed as uniform dimension result, and this was first
proved by Kaufman [15] for planar Brownian motion when O is the set of all Borel sets in R+. This result was
extended to strictly stable Lévy processes by Hawkes and Pruitt [10]. For general Lévy processes the corresponding
uniform dimension result may not hold, but for Lévy subordinators one can obtain either a uniform result as (3) for
smaller family O (collection of Borel sets whose Hausdorff dimension and packing dimension coincide) or a looser
dimension result as (2) uniformly for all Borel sets (see [10]). For further information regarding the dimension results
of stochastic processes, we refer to the survey papers [22,25].

In this paper we prove a uniform dimension result for two-dimensional fractional multiplicative processes, a class
of random continuous functions recently constructed by Barral and Mandelbrot [3]. These processes and their gen-
eralisation, multiplicative cascade processes [2], are considered as natural extensions of the classical Mandelbrot
measures [14] to functions, or in probabilistic terms, subordinators to general processes. In [12] the author proved
a dimension result for two-dimensional multiplicative cascade processes, motivated by the recent works in [4,7,20]
that proved the Knizhnik–Polyakov–Zamolodchikov formula from quantum gravity for Gaussian multiplicative chaos
and Mandelbrot measures. The KPZ formula is a quadratic (thus nonlinear) relation between dimensions of a given
Borel set with respect to the Euclidean metric and the random metric obtained from multiplicative chaos. It is natural
to ask whether or not this type of dimension formula holds uniformly for all Borel sets. With the help of multifrac-
tal analysis of multiplicative cascades and their graph and range singularity spectra (see [1,11] for example), it can
be shown that for the dimension result in [12], as long as the formula is nonlinear, there will be some random sets
that break the formula. Thus the only candidate for which the uniform dimension result could possibly hold is the
multi-dimensional fractional multiplicative processes (in one-dimensional case there is the level set of the process that
breaks the formula), which leads to the present study.

Recall that as a special case of [12], we have the following dimension result for the two-dimensional fractional
multiplicative process F = (F1,F2) with parameters 1/2 < H1 ≤ H2 < 1 (see Section 2 for precise definition): for
every Borel set E ⊂ [0,1],

P

{
dimH F(E) = dimH E

H1
∧

(
1 + dimH E − H1

H2

)}
= 1. (4)

In particular when H1 = H2 = H ∈ (1/2,1), we have

P

{
dimH F(E) = 1

H
dimH E

}
= 1. (5)

The result (4) has exactly the same form as in [24] for Gaussian vector fields, which is shown in [23] to be uniform if
and only if the parameters of Gaussian vector fields coincide. In this paper we show that the same phenomenon occurs
for two-dimensional fractional multiplicative processes:

Theorem 1.1. If H1 = H2 = H ∈ (1/2,1), then (5) is uniform, that is

P

{
dimH F(E) = 1

H
dimH E for all sets E ⊂ [0,1]

}
= 1. (6)

If H1 < H2, then the result (4) cannot hold almost surely for all Borel sets.

The proof of (6) relies on a stopping time technique used in [9] for stable Markov processes, with certain non-trivial
modifications due to the fact that fractional multiplicative processes are neither stable nor Markovian. To show that
result (4) cannot be uniform when H1 	= H2, we use the same trick as in [23] to show that the level set of F1 breaks
the formula.
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2. Two-dimensional fractional multiplicative processes

2.1. 2-d fractional multiplicative processes

Fix two parameters 1/2 < H1 ≤ H2 < 1. Let ε = (ε1, ε2) be a random vector such that for j = 1,2,

εj =
{+1, with probability

(
1 + 2Hj −1

)
/2;

−1, with probability
(
1 − 2Hj −1

)
/2.

Denote by {0,1}∗ = ⋃
n≥1{0,1}n the set of finite dyadic words. Let

{
ε(w) = (

ε1(w), ε2(w)
)
: w ∈ {0,1}∗}

be a sequence of independent copies of ε encoded by {0,1}∗.
Let j ∈ {1,2}. For each w = w1 · · ·wn ∈ {0,1}∗ let

tw =
n∑

m=1

wm2−m

be the corresponding dyadic point in [0,1), and let

Iw = [
tw, tw + 2−n

)
be the corresponding dyadic interval. Then let

ε̄j (w) =
n∏

m=1

εj (w1 · · ·wm)

be the random weight on Iw .
For x ∈ [0,1) and n ≥ 1 let x|n = x1 · · ·xn ∈ {0,1}n be the unique word such that x ∈ Ix|n . For n ≥ 1 define the

piecewise linear function

Fj,n : t ∈ [0,1] �→ 2n(1−Hj )

∫ t

0
ε̄j (x|n)dx.

From Theorem 1.1 in [3] one has that almost surely {Fj,n}n≥1 converges uniformly to a limit Fj , and Fj is α-Hölder
continuous for any α ∈ (0,Hj ). Then the two dimensional fractional multiplicative process considered in this paper is
the mapping

F = (F1,F2) : t ∈ [0,1] �→ (
F1(t),F2(t)

) ∈ R
2.

We shall always assume that P{ε1 = ε2} < 1, to ensure that the process F does not degenerate to one-dimensional
case.

Remark 2.1. If we take the parameter Hj ∈ (−∞,1/2], then the corresponding sequence {Fj,n}n≥1 is not bounded
in L2-norm. Moreover it is shown in [3] that the normalised sequence

Xj,n =
{

Fj,n/(2n(1/2−Hj )
√

1 + (22−2Hj − 2)−1), if H < 1/2,
Fj,n/

√
n/2, if H = 1/2

converges, as n → ∞, in law to standard Brownian motion restricted on [0,1].
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2.2. Statistical self-similarity

For any w ∈ {0,1}∗ we can similarly define

F
[w]
j,n : t ∈ [0,1] �→ 2n(1−Hj )

∫ t

0

n∏
m=1

εj (w · x|m)dx.

Denote by |w| the length of w and

gw : t �→ 2|w|(t − tw)

the canonical mapping from Iw to [0,1). Then by definition for any s, t ∈ Iw and n ≥ |w| one has

Fj,n(t) − Fj,n(s) = 2−|w|Hj · ε̄j (w) · [F [w]
j,n−|w|

(
gw(t)

) − F
[w]
j,n−|w|

(
gw(s)

)]
. (7)

Let F
[w]
j be the limit of {F [w]

j,n }n≥1. It certainly has the same law as Fj , and it is independent of ε̄j (w). Moreover for
any s, t ∈ Iw one gets from (7) that

Fj (t) − Fj (s) = 2−|w|Hj · ε̄j (w) · [F [w]
j

(
gw(t)

) − F
[w]
j

(
gw(s)

)]
. (8)

2.3. Boundary values and oscillations

Let Zj = Fj (1) and Zj (w) = F
[w]
j (1) for w ∈ {0,1}∗. Clearly they have the same law. Also from (8) one has

Fj

(
tw + 2−|w|) − Fj (tw) = 2−|w|Hj · ε̄j (w) · Zj (w),

where ε̄j (w) and Zj (w) are independent. Let

ϕ(u, v) = E
(
ei(uZ1+vZ2)

)
and ϕj (u) = E

(
eiuZj

)
be the characteristic functions of (Z1,Z2) and Zj respectively. The following lemma (see Lemma 2 in [12]) is essential
to our proof:

Lemma 2.1. One has ϕ ∈ L1(R2) if P{ε1 = ε2} < 1 and ϕj ∈ L1(R). Consequently, (Z1,Z2) has a bounded joint
density function f with

‖f ‖∞ ≤ ‖ϕ‖1 =
∫ ∫

R2

∣∣ϕ(u, v)
∣∣dudv < ∞,

provided P{ε1 = ε2} < 1, and Zj has a bounded density function f1 with

‖fj‖∞ ≤ ‖ϕj‖1 =
∫

R

∣∣ϕj (u)
∣∣du < ∞.

Let Xj = sups,t∈[0,1 |Fj (t) − Fj (s)| and Xj(w) = sups,t∈[0,1 |F [w]
j (t) − F

[w]
j (s)| for w ∈ {0,1}∗. They have the

same law, and from (8) one has

sup
s,t∈Iw

∣∣Fj (t) − Fj (s)
∣∣ = 2−|w|Hj · Xj(w).

Moreover, from Lemma 3.1 in [2] one has that for all q ∈ R,

E
(
X

q
j

)
< ∞. (9)
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3. Proof of Theorem 1.1

3.1. Proof of (6)

The idea of the proof is to show that for all n large enough, the number of w ∈ {0,1}�n/H� that the image F(Iw)

intersects with a given dyadic square of side length 2−n is bounded above uniformly for all dyadic squares. This
will imply the uniform dimension result (6). In order to do so we need to control the probability of F(tw) ∈ S, given
that F(tw1), . . . ,F (twk

) ∈ S for wj 	= w, then pass this information to F(Iw) ∩ S 	= ∅ by using the control of the
oscillation of F on Iw .

Preliminaries
Let H1 = H2 = H ∈ (1/2,1) and fix an integer p > 1/(2H − 1) so that (1 + 1/p)/H < 2.

For n ≥ 1 denote by Tn the set of dyadic numbers of generation n, that is

Tn =
{

tw =
n∑

j=1

wj 2−j : w = w1 · · ·wn ∈ {0,1}n
}

∪ {1}.

Let Sn be the collection of all dyadic squares in R
2 with side length 2−n.

Fix n ≥ 1 and S ∈ Sn. Let m = �n(1 − 1/p)/H�. Define

N(S) := #
{
w ∈ {0,1}m: F(tw) ∈ S

}
and

Ñ(S) := #
{
w ∈ {0,1}m: F(Iw) ∩ S 	= ∅

}
.

In the following we shall estimate a uniform control of N(S) for all S ∈ Sn, and use it to get a uniform control of
Ñ(S), then show that this uniform control gives the uniform dimension result.

Uniform control of N(S)

First notice that

Tm = {
j · 2−m: j = 0, . . . ,2m

}
.

For k = 1, . . . ,2m one can easily get

P
(
N(S) ≥ k

) ≤ E
(
Hk(S)

)
, (10)

where

Hk(S) :=
∑

s1<s2<···<sk∈Tm

k∏
l=1

1{F(sl)∈S}.

We shall control E(Hk(S)) by iterating.
Denote by |S| the diameter of S. One has

Hk+1(S)

=
∑

s1<s2<···<sk∈Tm,sk 	=1

(
k∏

l=1

1{F(sl)∈S}

)
·

∑
sk<t∈Tm

1{F(t)∈S}

≤
∑

s1<s2<···<sk∈Tm,sk 	=1

(
k∏

l=1

1{F(sl)∈S}

)
·

∑
sk<t∈Tm

1{|F(t)−F(sk)|≤|S|}. (11)
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Fix s1 < · · · < sk < t ∈ Tm, let N be the smallest integer such that there exists a dyadic word w = w1 · · ·wN such that
Iw ⊂ (sk, t). This gives

2−N ≤ t − sk ≤ 4 · 2−N.

From (8) we may write

∣∣F(t) − F(sk)
∣∣ =

( ∑
j=1,2

∣∣Aj(w)Zj (w) + Bj (w)
∣∣2

)1/2

, (12)

where Aj(w) = 2−NH ε̄j (w) and Bj (w) = Fj (t) − Fj (tw + 2−N) + Fj (tw) − Fj (sk). Denote by

F (w) = σ
(
ε(u): u ∈ {0,1}∗ \ {

w · u: u ∈ {0,1}∗}). (13)

It is easy to check that the random variables A1(w), A2(w), B1(w), B2(w) and
∏k

l=1 1{F(sl)∈S} are measurable with
respect to F (w). Also notice that

1{|F(t)−F(sk)|≤|S|} ≤ ∣∣F(t) − F(sk)
∣∣−(1+1/p)/H · |S|(1+1/p)/H .

Recall in Lemma 2.1 the joint density function f of (Z1,Z2), which is bounded by ‖ϕ‖1 < ∞. One gets

E
(∣∣F(t) − F(sk)

∣∣−(1+1/p)/H |F (w)
)

=
∫ ∫

R2

f (x, y)dx dy

(|A1(w)x + B1(w)|2 + |A2(w)y + B2(w)|2)(1+1/p)/2H

≤ 2N(1+1/p)

∫ ∫
R2

f ((u − B1(w)2NH )/ε̄1(w), (u − B1(w)2NH )/ε̄1(w))

(u2 + v2)(1+1/p)/2H
dudv

≤ 2N(1+1/p) ·
(

1 + ‖ϕ‖1 ·
∫ ∫

u2+v2<1

dudv

(u2 + v2)(1+1/p)/2H

)

:= 2N(1+1/p) · C(1+1/p)/H .

The finiteness of C(1+1/p)/H comes from the fact that we already choose p large enough such that (1 + 1/p)/H < 2.
This gives

E

(
k∏

l=1

1{F(sl)∈S} · 1{|F(t)−F(sk)|≤|S|}|F (w)

)

≤ |S|(1+1/p)/H ·
k∏

l=1

1{F(sl)∈S} · E
(∣∣F(t) − F(sk)

∣∣−(1+1/p)/H |F (w)
)

≤ C(1+1/p)/H |S|(1+1/p)/H ·
k∏

l=1

1{F(sl)∈S} · 2N(1+1/p)

≤ 41+1/pC(1+1/p)/H |S|(1+1/p)/H ·
k∏

l=1

1{F(sl)∈S} · |t − sk|−(1+1/p). (14)

For any sk ∈ Tm we have

∑
sk<t∈Tm

|t − sk|−(1+1/p) ≤ 2m(1+1/p)
∞∑
l=1

l−(1+1/p) ≤ 2n(1−1/p)(1+1/p)/H
∞∑
l=1

l−(1+1/p). (15)
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Thus by combining (11), (14) and (15) we get

E
(
Hk+1(S)

) ≤ C · 2−n(1/p−1/p2)/H · E
(
H ′

k(S)
)
, (16)

where C = 41+1/pC(1+1/p)/H 2(1+1/p)/2H
∑∞

l=1 l−(1+1/p) < ∞ and

H ′
k(S) =

∑
s1<s2<···<sk∈Tm,sk 	=1

k∏
l=1

1{F(sl)∈S}.

Obviously H ′
k(S) ≤ Hk(S), thus from (16) we get

E
(
Hk+1(S)

) ≤ C · 2−n(1/p−1/p2)/H · E
(
H ′

k(S)
)

≤ C · 2−n(1/p−1/p2)/H · E
(
Hk(S)

)
≤ Ck · 2−nk(1/p−1/p2)/H · E

(
H1(S)

)
.

Together with (10) this gives

P

(
sup
S∈Sn

N(S) ≥ k + 1
)

≤ Ck · 2−nk(1/p−1/p2)/H ·
∑
S∈Sn

E

(
2m∑
j=0

1{F(tj )∈S}

)

= Ck · 2−nk(1/p−1/p2)/H · E

(
2m∑
j=0

∑
S∈Sn

1{F(tj )∈S}

)

= Ck · 2−nk(1/p−1/p2)/H · (2m + 1
)

≤ 2Ck · 2−nk(1/p−1/p2)/H · 2n(1−1/p)/H

= 2Ck · 2−n(1−1/p)(k/p−1)/H .

We may choose k = p + 1. Then by the Borel–Cantelli lemma one gets for P-almost every ω ∈ Ω that there exists
a integer np(ω) such that for any n ≥ np(ω),

sup
S∈Sn

N(S) ≤ p + 2. (17)

Uniform control of Ñ(S)

Now we want to pass the information of F(tw) ∈ S to that of F(Iw) ∩ S 	= ∅. We start with the oscillation

X(w) = sup
s,t∈[0,1]

( ∑
j=1,2

∣∣F [w]
j (s) − F

[w]
j (t)

∣∣2
)1/2

, w ∈ {0,1}∗.

Clearly X(w) has the same law as X = sups,t∈[0,1] |F(s) − F(t)|. Then for any n ≥ 1,

P

(
sup

w∈{0,1}n
X(w) ≥ 2n/p

)
≤

∑
w∈{0,1}n

P
(
X(w) ≥ 2n/p

)

≤ 2n · 2−n(1+1/p) · E
(
Xp+1).

From (9) it is easy to deduce that E(Xp+1) < ∞. Then by the Borel–Cantelli lemma one gets for P-almost every
ω ∈ Ω that there exists a integer n′

p(ω) such that for any n ≥ n′
p(ω) and w ∈ {0,1}n,

X(w) ≤ 2n/p. (18)



A uniform dimension result for fractional multiplicative processes 519

To combine (17) and (18), let

Ω ′ =
⋂

p>1/(2H−1)

{
ω ∈ Ω: np(ω) ∨ n′

p(ω) < ∞}
.

So P(Ω ′) = 1.
Fix ω ∈ Ω ′, p > 1/(2H − 1) and n ≥ np(ω) ∨ n′

p(ω) large enough such that

⌊
n(1 − 1/p)/H

⌋
> n(1 − 2/p)/H.

We are going to control the number

Ñ(S) := {
w ∈ {0,1}�n(1−1/p)/H�: F(Iw) ∩ S 	= ∅

}
.

First for any w ∈ {0,1}�n(1−1/p)/H� one has

sup
s,t∈Iw

∣∣F(s) − F(t)
∣∣ = 2−|w|H · X(w) ≤ 2−�n(1−1/p)/H�(H−1/p).

For S ∈ Sn let

U(S) = {
z ∈ R

2: dist(z, S) ≤ 2−�n(1−1/p)/H�(H−1/p)
}
.

Then for any w ∈ {0,1}�n(1−1/p)/H� we have

F(Iw) ∩ S 	= ∅ ⇒ F(Iw) ⊂ U(S) ⇒ F(tw) ∈ U(S). (19)

On the other hand, there are at most

area
{
z ∈ R

2: dist(z, S) ≤ 2−�n(1−1/p)/H�(H−1/p) + √
2 · 2−n

}
/2−2n

≤ π · (2−�n(1−1/p)/H�(H−1/p) + 2
√

2 · 2−n
)2 · 22n

≤ π · (1 + 2
√

2
)2 · (2−�n(1−1/p)/H�)2(H−1/p)−(2n/�n(1−1/p)/H�)

≤ π · (1 + 2
√

2
)2 · (2−�n(1−1/p)/H�)2(H−1/p)−2H/(1−2/p)

= π · (1 + 2
√

2
)2 · (2−�n(1−1/p)/H�)−2(2H/(1−2/p)+1)/p

many S ∈ Sn that intersect U(S), and for each S ∈ Sn there are at most p + 2 words w ∈ {0,1}�n(1−1/p)/H� such that
F(tw) ∈ S. Together with (19), this implies that for n large enough,

sup
S∈Sn

Ñ(S) ≤ C′ · (2−�n(1−1/p)/H�)−2(2H/(1−2/p)+1)/p
, (20)

where C′ = (p + 2) · π · (1 + 2
√

2)2.

Lower bound of dimH F(E)

For any set E ⊂ [0,1], let CN be any dyadic square covering of F(E) such that∑
S∈CN

|S|dimH F(E)+1/p ≤ 2−N.

Denote by n(S) = �−(log2 |S|) · (1 − 1/p)/H�. For N large enough one has that⋃
S∈CN

{
Iw: w ∈ {0,1}n(S),F (Iw) ∩ S 	= ∅

}
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forms a covering of E. Moreover, due to (20), for

s = (
dimH F(E) + 1/p

) · H

1 − 1/p
+ 2

(
2H

1 − 2/p
+ 1

)/
p

one has∑
S∈CN

∑
w∈{0,1}n(S),F (Iw)∩S 	=∅

|Iw|s ≤ C′ ∑
S∈CN

|S|dimH F(E)+1/p ≤ C′ · 2−N,

which implies

dimH E ≤ (
dimH F(E) + 1/p

) · H

1 − 1/p
+ 2

(
2H

1 − 2/p
+ 1

)/
p.

Since this holds for all p > 1/(2H − 1), we get dimH E ≤ H dimH F(E).

Upper bound of dimH F(E)

Now consider any dyadic interval covering IN of E such that∑
I∈IN

|I |dimH E+1/p ≤ 2−N.

For N large enough one gets from (18) that

sup
s,t∈Iw

∣∣F(s) − F(t)
∣∣ = |Iw|H · X(w) ≤ |Iw|H−1/p

for any Iw ∈ IN , thus for each I one can use a square of side length 2|I |H−1/p to cover F(I). We have∑
I∈IN

(
2|I |H−1/p

)(dimH E+1/p)/(H−1/p) = C′′ ∑
I∈IN

|I |dimH E+1/p ≤ C′′2−N,

where C′′ = 2(dimH E+1/p)/(H−1/p). This gives

dimH F(E) ≤ dimH E + 1/p

H − 1/p
.

Since this holds for all p > 1/(2H − 1), we get dimH E ≥ H dimH F(E).

3.2. Proof of the fact that a uniform result cannot hold when H1 < H2

We shall use the following result.

Proposition 3.1. For j = 1,2 almost surely there exists a Borel set R ⊂ Fj ([0,1]) with positive Lebesgue measure
such that for each y ∈ R,

dimH Lj (y) = 1 − Hj ,

where Lj (y) = {x ∈ [0,1]: Fj (x) = y} is the level set of Fj at level y.

From Proposition 3.1 one has that almost surely

dimH L1(y) = 1 − H1 > 0
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for some y ∈ F1([0,1]). On the other hand, since F2 is α-Hölder continuous for all α ∈ (0,H2), and F(L1(y)) =
{y} × F2(L1(y)), so

dimH F
(
L1(y)

) = dimH F2
(
L1(y)

) ≤ dimH L1(y)

H2
<

dimH L1(y)

H1
.

This shows that the relation in (4) cannot hold almost surely for all Borel sets.

Proof of Proposition 3.1. It is enough to prove the result for F1. We will use the same method as used for constructing
the local time of fractional Brownian motion to compute the Hausdorff dimension of its level sets, see [13] for example.

Let ν be the occupation measure of F1 with respect to the Lebesgue measure on [0,1], that is the Borel measure
defined as

ν(B) =
∫ 1

0
1{F1(t)∈B} dt for any Borel set B ⊂ R.

First we show that almost surely ν is absolutely continuous with respect to the Lebesgue measure. We consider the
Fourier transform of ν:

ν̂(u) =
∫ 1

0
eiuF1(t) dt.

We will show that

E

(∫
R

∣∣ν̂(u)
∣∣2

du

)
< ∞.

This will imply that almost surely ν̂ is in L2(R). Therefore almost surely ν is absolutely continuous with respect to
the Lebesgue measure on R and its density function belongs to L2(R).

By using Fubini’s theorem one has

E

(∫
R

∣∣ν̂(u)
∣∣2 du

)
= E

(∫ ∫
s,t∈[0,1]

∫
R

eiu·(F1(t)−F1(s)) duds dt

)
.

Fix 0 ≤ s < t ≤ 1. Let N ≥ 1 be the smallest integer such that there exists a dyadic word w = w1 · · ·wN such that
Iw ⊂ (s, t), thus

2−N ≤ |t − s| ≤ 4 · 2−N.

From (8) we may write

F1(t) − F1(s) = A1(w) · Z1(w) + B1(w), (21)

where A1(w) = 2−NH1 ε̄1(w) and B1(w) = F1(t)−F1(tw +2−N)+F1(tw)−F1(s). Recall that Z1(w) is independent
of A1(w) and B1(w).

Recall (13) and ϕ1(u) = E(eiuZ1) the characteristic function of Z1. One has

E

(∫
R

eiu·(F1(t)−F1(s)) du

∣∣∣F (w)

)
=

∫
R

eiuB1(w) · ϕ1
(
A1(w) · u)

du.

Thus ∣∣∣∣E
(∫

R

eiu·(F1(t)−F1(s)) du

)∣∣∣∣ ≤ E

(∫
R

∣∣ϕ1
(
A1(w) · u)∣∣du

)

= E
(∣∣A1(w)

∣∣−1) ·
∫

R

∣∣ϕ1(u)
∣∣du (22)
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= 2NH1 · ‖ϕ1‖1

≤ 4H1 · |s − t |−H1 · ‖ϕ1‖1.

From Lemma 2.1 we get ‖ϕ1‖1 < ∞, thus

E

(∫
R

∣∣ν̂(u)
∣∣2 du

)
≤ 4H1 · ‖ϕ1‖1 ·

∫ ∫
s,t∈[0,1]

|s − t |−H1 ds dt < ∞.

We have proved that almost surely ν is absolutely continuous with respect to the Lebesgue measure. This implies
that almost surely for ν-almost every y ∈ F1([0,1]) the following limit

lim
r→0

1

r

∫ 1

0
1{|F1(t)−y|≤r} dt

exists and belongs to (0,∞), thus yielding a positive finite Borel measure νy carried by L1(y) = {t ∈ [0,1] :
F1(t) = y}, defined as

∫ 1

0
g(t)dνy(t) = lim

r→0+

1

r

∫ 1

0
1{|F1(t)−y|≤r}g(t)dt, ∀g ∈ C

([0,1]).
Moreover, for any Borel measurable function G : [0,1] × R �→ R+ one has

∫
y∈F1([0,1])

∫
[0,1]

G(t, y)dνy(t)dy =
∫ 1

0
G

(
t,F1(t)

)
dt.

Let γ > 0. By Fatou’s lemma and Fubini’s theorem we have

∫
y∈F1([0,1])

∫ 1

0

∫ 1

0
|s − t |−γ dνy(s)dνy(t)dy

=
∫

y∈F1([0,1])

∫ 1

0

[
lim
r→0

1

r

∫ 1

0
1{|F1(s)−y|≤r}|s − t |−γ ds

]
dνy(t)dy

≤ lim inf
r→0

1

r

∫ 1

0

∫
y∈F1([0,1])

∫ 1

0
1{|F1(s)−y|≤r}|s − t |−γ dνy(t)dy ds

= lim inf
r→0

1

r

∫ 1

0

∫ 1

0
1{|F1(s)−F1(t)|≤r}|s − t |−γ dt ds. (23)

Fix 0 ≤ s < t ≤ 1. Recall (21) and the fact that Z1(w) has a bounded density function f1 with ‖f1‖∞ ≤ ‖ϕ1‖1, so

E
(
1{|F1(s)−F1(t)|≤r}|F (w)

) =
∫

R

1{|x+B1(w)/A1(w)|≤r/|A1(w)|}f1(x)dx

=
∫

R

1{|z|≤r/|A1(w)|}f1

(
z − B1(w)

A1(w)

)
dz

≤ ‖ϕ1‖1 · 2r

|A1(w)|
= 2‖ϕ1‖1 · r · 2NH1 . (24)

Again using Fatou’s lemma and Fubini’s theorem we get from (23) and (24) that

E

(∫
y∈F1([0,1])

∫ 1

0

∫ 1

0
|s − t |−γ dνy(s)dνy(t)dy

)
≤ C

∫ 1

0

∫ 1

0
|s − t |−(γ+H1) ds dt,



A uniform dimension result for fractional multiplicative processes 523

where C = 2‖ϕ1‖14H1 . Due to the mass distribution principle we get that for any γ < 1 − H1, almost surely for
ν-almost every y ∈ F1([0,1]),

dimH L1(y) ≥ γ.

This gives us the desired lower bound.
For the upper bound, we use the fact that almost surely the Hausdorff dimension of the graph of F1, defined

as {(t,F1(t)): t ∈ [0,1]}, is equal to 2 − H1 (Theorem 1.1 in [3]). Then from Corollary 7.12 in [8] we know that
there cannot exist a subset R ⊂ F1([0,1]) with positive Lebesgue measure such that for every y ∈ R, dimH L1(y) >

1 − H1. �
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