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Abstract. The Tracy–Widom β distribution is the large dimensional limit of the top eigenvalue of β random matrix ensembles.
We use the stochastic Airy operator representation to show that as a → ∞ the tail of the Tracy–Widom distribution satisfies

P(TWβ > a) = a−(3/4)β+o(1) exp

(
−2

3
βa3/2

)
.

Résumé. La loi de Tracy–Widom β est la limite de la plus grande valeur propre des ensembles β de matrices aléatoires lorsque
leur taille tend vers l’infini. Nous utilisons la représentation par l’opérateur stochastique d’Airy pour montrer que lorsque a → ∞
la queue de la loi de Tracy–Widom vérifie :

P(TWβ > a) = a−(3/4)β+o(1) exp

(
−2

3
βa3/2

)
.
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1. Introduction

For β > 0 fixed, we examine the probability density of λ1 ≥ λ2 ≥ · · · ≥ λn ∈ R given by:

Pβ(λ1, λ2, . . . , λn) = 1

Zn,β

e−β
∑n

k=1 λ2
k/4

∏
j<k

|λj − λk|β, (1)

in which Zn,β is a normalizing constant. This family of distribution is called the β-ensemble. When β = 1,2 or 4,
this is the joint density of eigenvalues for respectively the Gaussian orthogonal, unitary, or symplectic ensembles of
random matrix theory. But the law (1) has a physical sense for all the β as it describes a one-dimensional Coulomb
gas at inverse temperature β (see e.g. Chapter 1, Section 1.4 of [7]). Dumitriu and Edelman [5] discovered that (1) is
the eigenvalue distribution for the tridiagonal matrix

Hβ
n = 1√

β

⎡
⎢⎢⎢⎢⎣

g1 χ(n−1)β

χ(n−1)β g2 χ(n−2)β

. . .
. . .

. . .

χ2β gn−1 χβ

χβ gn

⎤
⎥⎥⎥⎥⎦ ,
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Fig. 1. Flowlines for the ODE of X − 2√
β

B .

where the random variables g1, g2, . . . , gn are independent Gaussians with mean 0 and variance 2 and χβ,χ2β, . . . ,

χ(n−1)β are independents χ random variables indexed by the shape parameter.
When n ↑ ∞, the largest eigenvalue centered by 2

√
n and scaled by n1/6 converges in law to the Tracy–Widom(β)

distribution. This was first shown in [9] and [10] for the cases β = 1,2 or 4, where exact formulae are available.
Ramírez, Rider and Virág [8] extended this result for all the β . They show that the rescaled operator:

H̃ β
n := n1/6(2√

nI − Hβ
n

)
converges to the stochastic Airy operator (SAEβ ):

Hβ = − d2

dx2
+ x + 2√

β
B ′

x (2)

in the appropriate sense (here B ′ is a white noise). In particular, the low-lying eigenvalues of H̃
β
n converge in law to

those of Hβ . Thanks to the Ricatti transform, the eigenvalues of SAEβ can be reinterpreted in terms of the explosion
probabilities of a one-dimensional diffusion. In particular, Ramírez, Rider and Virág [8] show that

P(TWβ > a) = P+∞(X blows up in a finite time), (3)

where X is the diffusion{
dX(t) = (

t + a − X2(t)
)

dt + 2√
β

dB(t),

X(0) = ∞.
(4)

Note also that X− 2√
β
B satisfies an ODE, simulated on Fig. 1 with β = ∞ and 2. The starting time of the separatrix

is distributed as −TWβ .
Asymptotic expansions of beta-ensembles are of active interest in the literature, see for example [3,4,6] and [11].
In this article, we study the diffusion (4) in order to obtain the right tail of the Tracy–Widom law. Our main tool will

be the Cameron–Martin–Girsanov theorem: it permits us to change the drift coefficient of the diffusion and evaluate
the probability of explosion using the new process.

Using the variational characterization of the eigenvalues of SAEβ (2) and an analysis of the SDE (4) Ramírez,
Rider and Virág [8] show that as a → ∞ we have

P(TWβ < −a) = exp

(
− 1

24
βa3(1 + o(1)

))
and

(5)

P(TWβ > a) = exp

(
−2

3
βa3/2(1 + o(1)

))
.

While we were finishing this article, Borot, Eynard, Majumdar and Nadal [2], in a physics paper, using completely
different methods, calculated more precise asymptotics for the left tail of the Tracy–Widom distribution.

In this paper we evaluate the exponent of the polynomial factor in the asymptotics of the right tail.

Theorem 1. When a → +∞, we have

P(TWβ > a) = a−3β/4 exp

(
−2

3
βa3/2 + O

(√
lna

))
. (6)
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This generalizes, in a less precise form, a result that follows from Painlevé asymptotics for the case β = 2 (see the
slide 3 of the presentation [1]).

P(TW2 > a) = a−3/2

16π
exp

(
−4

3
a3/2 + O

(
a−3/2)).

The structure of the proof of Theorem 1 is contained in Section 2.

Preliminaries and notation

For every initial condition in [−∞,+∞], the SDE (4) admits a unique solution, and this solution is increasing in a

for each time t (see Fact 3.1 in [8]). From now on, we denote by (Ω, F ,P(t,x)) the probability space on which the
solution of this SDE X begins at time t with the value Xt = x almost surely, and E(t,x) its corresponding expectation
(x ∈ [−∞,+∞]). When the starting time is t = 0, we simply write Px and Ex .

The first passage time to a level x ∈ [−∞,∞] for the diffusion X will be denoted Tx := inf{s ≥ 0,Xs = x}.
Throughout this paper, we study many solutions of stochastic differential equations by comparing them to ex-

pressions involving Brownian motion. The letter B will denote a standard Brownian motion on the probability space
(Ω, F ,P ). We will use the following easy estimates. For the upper bounds, these inequalities hold for every x ≥ 0:{

P(B1 > x) ≤ e−(1/2)x2
,

P
(
supt∈[0,1] |Bt | > x

) ≤ 4e−(1/2)x2
.

(7)

For the lower bounds, there exists cbm > 0 such that for every ε ∈ (0,1):

P
(

sup
t∈[0,1]

|Bt | < ε
)

≥ exp

(
−cbm

1

ε2

)
. (8)

In the sequel, asymptotic notation always refers to a → ∞ unless stated otherwise. Inequalities are meant to hold for
all large enough a.

2. Proof of Theorem 1

This section gives the structure of proof of the main theorem. The proof of technical points will be treated in the
following sections in chronological order.

We rely on the characterization (3), and separate our study of the diffusion (4) into three distinguished parts de-
marcated by the critical parabola{

(t, x): t + a − x2 = 0
}

where the drift vanishes (see Fig. 2). The exponential leading term of the asymptotic (6) comes from the part inside the
parabola (Stretch II): the drift is positive and makes it difficult for the particle to go down. One part of the logarithmic
term comes from the time it takes to reach the upper part of the parabola (Stretch I): the t -term of the drift adds this
cost.

2.1. Upper bound, above the parabola

At first, let us approximate the critical parabola by the two horizontal lines
√

a and −√
a (as the blow-down times

will be typically very small). Moreover, the part below the parabola gives no contribution for the upper bound, and we
use

P∞(T−∞ < +∞) ≤ P∞(T−√
a < +∞).
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Fig. 2. The critical parabola {(t, x): t + a − x2 = 0}.

The first step is to control the time it takes to reach
√

a. Indeed, as the cost for crossing the interval [−√
a,

√
a]

increases with time, we need to find a good lower bound for this time. A comparison with the solution of an ODE
linked to our SDE enables us to have a quite precise information: its typical value is 3/8 lna/

√
a, which does not

depend on the factor β . It is very unlikely to happen in time faster than

τ− = (
3/8 − 1/

√
lna

)
lna/

√
a.

This is the content of Proposition 2. Therefore, using this proposition, the decreasing property in t and the Markov
property, we can write:

P∞(T√
a < τ−, T−√

a < ∞) ≤ exp

(
−4

3
βe2

√
lna

)
P√

a(T−√
a < ∞). (9)

The asymptotic formula (15) given by Lemma 6 will highlight the fact that even if the process is considered to start
immediately at

√
a in line (9), the award is small (of the order exp(O(lna))) compared to the cost it takes to go down

quickly. Consequently, with a much more significant probability, it will take a longer time than the one considered in
(9) to reach

√
a. Let us find an upper bound for this case:

P∞(T−√
a < ∞, T√

a ≥ τ−) ≤ Pτ−,
√

a(T−√
a < ∞).

Thanks to the Markov property, the process X under the probability measure Pτ−,
√

a is identically distributed with
X̃ defined with the same SDE (4) where the variable a is replaced by ã := a + τ− with the initial condition X̃(0) =√

a. Observe now
√

a <
√

ã, but it does not matter as we will be allowed to reduce the interval [−√
a,

√
a] a bit

without affecting the relevant terms in our asymptotics. More precisely, the interval we will study for the middle is
[−√

a + δ,
√

a − δ], where δ := 4
√

lna/a.
Let T̃x denote the first passage times of X̃. The inequality

√
ã − δ̃ ≤ √

a gives:

Pτ−,
√

a(T−√
a < ∞) = P√

a(T̃−√
a < ∞) ≤ P√

ã−δ̃
(T̃−√

ã+δ̃
< ∞). (10)

2.2. Preliminary upper bound inside the parabola

Recall δ := 4
√

lna/a we would like to find the asymptotic of:

P√
a−δ(T−√

a+δ < ∞) ≥ P√
a(T−√

a < ∞). (11)

The key is Girsanov formula.
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Fig. 3. The most probable path of the conditioned diffusion for a = 100.

Girsanov formula
To evaluate the cost inside the parabola, we use the Cameron–Martin–Girsanov formula which allows us to change
the drift coefficient of X and evaluate the relevant probability by analyzing the new process. The issue is to find a
suitable new drift. The best would be to have the one corresponding to the conditional distribution of the diffusion X

under the event it crosses the critical parabola in a finite time: this would lead to an exact formula. As we are not able
to do that, we use an approximation of the conditional diffusion; see Fig. 3. In this direction, we introduce a new SDE
in which the drift of X is reversed with a correction term given by a function ϕ:

dYt = (−a + Y 2
t − t + ϕ(Yt )

)
dt + 2√

β
dBt .

Let T ′
x denote the first passage time of the process Y to the level x.

With this diffusion and under some mild assumptions, the Cameron–Martin–Girsanov formula gives for every
non-negative measurable function f and every fixed time t > 0 and level l ∈ [0,1]:

E√
a−l

(
f (Xu,u ≤ T−√

a+l ∧ t)
) = E√

a−l

(
f
(
Yu,u ≤ T ′

−√
a+l

∧ t
)

exp
(
GT ′

−√
a+l

∧t (Y )
))

. (12)

More details about this and the application of the Girsanov formula can be found in Section 4.2. The exact expression
of GT ′

−√
a+l

(Y ) contains β/4 times

−8

3
a3/2 − 4

3
l3 + 4

√
al2 + 2lT ′

−√
a+l

− 2
√

aT ′
−√

a+l
+

(
8

β
− 2

)∫ T ′
−√

a+l

0
Yt dt (13)

plus terms involving the function ϕ.
Notice that we can already see the correct coefficient in front of the main term. We are now confronted with an

expectation over the paths of the diffusion Y . To find a good estimate of the exponential martingale, we need to control
the first passage time to the level −√

a + l and check that the diffusion do not go far above
√

a when this time is finite
(in order to control the last integral in (13)). We will at first focus on a preliminary bound, for which we do not need
any result about the first passage time. The price of this approach is that it uses a finer control of the paths which go
down.

Control of the paths
To have a good control of the paths, we examine at first a smaller interval than [√a − δ,−√

a + δ]. On this new
interval, the diffusion will go down without hitting

√
a with a sufficiently large probability. Indeed, we show that for

ε := 4√
β

√
lna/ 4

√
a we have

P√
a−ε(T−√

a+ε < ∞) = (
1 − o(1)

)
P√

a−ε(T−√
a+ε < ∞, T−√

a+ε < T√
a−ε/2). (14)
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This is accomplished by two applications of the strong Markov property. From now on, we denote T+ = T√
a−ε/2,

T− = T−√
a+ε and A = {T+ > T−}, and have:

P√
a−ε

(
T− < ∞, Ac

) ≤ P√
a−ε/2(T− < ∞) ≤ P√

a−ε/2(T
√

a−ε < ∞)P√
a−ε(T− < ∞).

Both inequalities use the fact that the hitting probability of any level below the starting place is decreasing in the
starting time of the diffusion X. Rearranging this formula we get

P√
a−ε(T− < ∞) ≤ P√

a−ε(T− < ∞, A)

P√
a−ε/2(T

√
a−ε = ∞)

.

Lemma 4 shows that as a → ∞ the denominator converges to 1.

Application of the Girsanov formula
We will now study the right-hand side of (14) P√

a−ε(T− < ∞, A) which is the probability of an event under which
the absolute value of the diffusion is bounded by

√
a.

In order to find an upper bound for the term (13) with l = ε, it would be useful to have a bound on the time T−. As
we do not have any information about that yet, one idea is to choose the function ϕ such that the coefficient appearing
in front of the

√
aT− term becomes negative. The function ϕ1 of Section 4.3 works and it gives an upper bound that

is sharp up to, but not including, the exponent of the polynomial factor. This is the content of Lemma 6. As a → ∞
we conclude

P√
a−ε(T− < ∞) ≤ exp

(
−2

3
βa3/2 + O(lna)

)
, ε = 4√

β

√
lna/ 4

√
a. (15)

In addition, Lemma 6 also shows that with ξ = c3 lna/
√

a we have

P√
a−δ(ξ ≤ T−√

a+δ < ∞) ≤ exp

(
−2

3
βa3/2 − β lna

)
, δ = 4

√
lna/a (16)

i.e. long times have polynomially smaller probability than what we expect for normal times.

2.3. Final upper bound inside the parabola

Decomposition according to the time the process spends near
√

a

Let us introduce the last passage time to the level
√

a − δ:

L := sup
{
t ≥ 0: Xt = √

a − δ
}
, δ = 4

√
lna/a

and use the temporary notation τ = c lna/
√

a. We can use the less precise result and, similarly to the part above the
parabola, make a change of variable â := a + τ . The strong Markov property and the monotonicity gives

P√
a−δ(T−√

a+δ < ∞,L > τ) ≤ P(τ,
√

a−δ)(T−√
a+δ < ∞). (17)

Since
√

a − δ ≥ √
â − ε̂ we get the upper bound

P
(0,

√
â−ε̂)

(T̃−√
â+ε̂

< ∞) ≤ exp
(−2/3βa3/2 − β lna

)
as long as c (depending on β) is large enough. The last inequality for some constant c > 0 follows from the preliminary
bound (15). This again is polynomially smaller than the probability we expect for the main event.

For finer information about the last passage time, one can divide the paths according to the value of this last passage
time to formalize the idea the process does not earn a lot when it stays near

√
a − δ.

P√
a−δ(T−√

a+δ < ∞,L < τ) ≤
�c lna�∑
k=0

P

(
L ∈

[
k√
a
,
k + 1√

a

)
, T−√

a+δ < +∞
)

.
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The event in the sum implies that X visits
√

a − δ in the time interval but not later. By the strong Markov property for
the first visit after time k/

√
a in that time interval and monotonicity, the sum can be bounded above by

�1 + c lna�P√
a−δ

(
L <

1√
a
,T−√

a+δ < ∞
)

.

To complete the picture, we find an upper bound of the process between the times 0 and 1/
√

a. This will be possible
thanks to a comparison with reflected Brownian motion. Indeed, the drift is non-positive above the critical parabola,
and so up to time 1/

√
a the process Xt started at

√
a + 1/

√
a is stochastically dominated by

√
a + 1/

√
a plus reflected

Brownian motion. This leads to the very rough estimate:

P√
a+1/

√
a

(
sup

t∈[0,1/
√

a]
Xt > c2

√
a
)

≤ P
(

sup
s∈[0,1/

√
a]

|Bs | > (c2 − 2)
√

a
)

≤ exp

(
−1

2
(c2 − 2)2a3/2

)
.

If c2 is large enough (precisely if c2 > 2/
√

3
√

β + 2), this event becomes negligible compared to the probability to
cross the whole parabola. Therefore, we can examine the studied probability under the event that Xt is bounded from
above by c2

√
a for t ≤ 1/

√
a.

We denote by C the event under which the above conditions are satisfied

C :=
{
L < 1/

√
a, sup

t∈[0,1/
√

a]
Xt < c2

√
a
}
.

We have just seen that

P√
a−δ(T−√

a+δ < ∞) ≤ (2c lna)P√
a−δ(T−√

a+δ < ∞, C) + O
(
exp

(−2/3βa3/2 − β lna
))

. (18)

Application of the Girsanov formula
We will apply the Girsanov formula with a function ϕ = ϕ2 such that it compensates exactly the integral

∫ T ′
−√

a+δ

0

(
8

β
− 2

)
Yt − 2

√
a dt.

The suitable function ϕ2 blows up at −√
a and

√
a. Therefore we only use it in the interval [−√

a + δ,
√

a − δ]
and set ϕ2 := 0 outside [−√

a,
√

a]. Partially because of those blowups, this function creates error terms involving the
first passage time to the level −√

a + δ, which, if finite, by (16) can be assumed to satisfy T−√
a+δ < ξ . Girsanov’s

formula applied to the event {T√
a+δ < ξ, C} with (18) leads to the fundamental upper bound of Proposition 8:

P√
a−δ(T−√

a+δ < ξ) ≤ exp

(
−2

3
βa3/2 − 3

8
β lna + O

(√
lna

))
. (19)

Conclusion for the upper bound
Using (19) with ã as in the inequality (10) of the part above the parabola, we deduce the upper bound part of (6).

2.4. Outline of the lower bound

The lower bound, as often in the literature, is easier. It suffices to consider the most probable paths. For the part above
the parabola, we can write the inequality

P∞(T−∞ < ∞) ≥ P∞
(

T√
a ≤ 3

8

lna√
a

)
P((3/8)lna/

√
a,

√
a)(T−∞ < ∞)
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and use Proposition 2 to bound the first factor. The second factor can be bounded below by the following:

P((3/8)lna/
√

a,
√

a)

(
T√

ã−δ̃
<

1√
a

)
× P√

ã−δ̃
(T−√

ã+δ̃
< ξ̃ ) × P

(ξ̃ ,−√
ã+δ̃)

(T−∞ < ∞), (20)

where ã := 3/8 lna/
√

a + 1/
√

a.
A domination by a Brownian motion with drift permits to deal with the first term of (20) which is of the order

exp(−O(
√

lna)). The middle term can be controlled with the same event C̃ introduced for the upper bound with a

replaced by ã. We apply Girsanov formula directly with the SDE used for the precise result of the upper bound to
obtain Proposition 8:

P√
ã−δ̃

(T−√
ã+δ̃

< ξ̃ , C̃) ≥ exp

(
−2

3
βã3/2 − 3

8
β ln ã + o(ln ã)

)
P√

ã−δ̃

(
T ′

−√
ã+δ̃

< ξ̃ , C̃′)
(recall the “prime” notation deals with the “new” diffusion Y ).

A comparison with the solution of a simple differential equation will show that the solution of the new SDE indeed
has a “large” probability to go down to −√

ã + δ̃ before the time ξ̃ . This is the content of Lemma 9.
We conclude the proof of the lower bound by checking that the last term of (20) is also negligible: the proof is

similar to the study above the parabola and can be found in Proposition 10.

3. Above the parabola

We show at first that we need a certain amount of time to reach the level
√

a, typically a time τ := 3/8 lna/
√

a.
The following proposition proves indeed that the probability the process hits

√
a significantly before τ is small, but

becomes quite large if this hitting happens around the time τ .

Proposition 2. The following upper bound holds for all sufficiently large a:

P∞
(

T√
a ≤

(
3

8
− 1

lna

)
lna√

a

)
≤ exp

(
−4

3
βe2

√
lna

)
. (21)

There exists c0 > 0 depending only on β such that we also have the lower bound:

P∞
(

T√
a ≤ 3

8

lna√
a

)
≥ c0

1√
lna

. (22)

Proof. First part. Fix σ ∈ (0,1/8) and let

τ ′ :=
(

3

8
− σ

)
lna√

a
.

It helps to remove the time dependence from the drift coefficient of (4). In this direction, consider the SDE:{
dYt = (

a − Y 2
t

)
dt + 2√

β
dBt ,

Y0 = +∞.
(23)

The process X stochastically dominates Y . Therefore, if T Y√
a

is the first passage time to
√

a for the diffusion Y , we
have:

P∞
(
T√

a ≤ τ ′) ≤ P
(
T Y√

a
≤ τ ′).

Now, we study the difference Zt := Yt − 2√
β
Bt where B is the Brownian motion driving Y in (23). It satisfies the

(random) ODE:

dZt =
[
a − Z2

t

(
1 + 2√

β

Bt

Zt

)2]
dt. (24)
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Define M := sup{|Bt |, t ∈ [0, τ ′]} and notice that thanks to the Brownian tail (7),

P(M ≥ 1) ≤ 4 exp

(
− 1

2(3/8 − σ)

√
a

lna

)
.

By definition, for all t ∈ [0, τ ′ ∧ T Y√
a
], the process Zt is above

√
a − 2/

√
βM and consequently above the (random)

solution of the differential equation:{
F ′(t) = a − Cf 2(t),

F (0) = +∞,

where C has the following expression:

C :=
(

1 + 4√
β

M√
a − (2/

√
β)M

)2

.

This differential equation admits almost surely the unique solution

∀t ≥ 0, F (t) =
√

a

C
coth

(√
aCt

)
.

Hence,

P
(
T Y√

a
≤ τ ′) ≤ P

(
inf

t∈[0,τ ′]

(
F(t) + 2√

β
Bt

)
≤ √

a

)

≤ P

(
F
(
τ ′) − √

a ≤ − 2√
β

inf
t∈[0,τ ′]

Bt

)
. (25)

Let us compute F(τ ′):

F
(
τ ′) =

√
a

C

1 + e−2τ ′√aC

1 − e−2τ ′√aC
=

√
a

C

(
1 + 2e−2τ ′√aC + O

(
e−4τ ′√aC

))
.

Under the event {M ≤ 1},
√

C = 1 + 2√
β

M√
a

+ O

(
1

a

)
.

This implies:√
a

C
= √

a − 2√
β

M + O

(
1√
a

)
(26)

and

exp
(−2τ ′√aC

) = exp

(
−2(3/8 − σ) lna

(
1 + O

(
1√
a

)))

= 1

a3/4−2σ
+ O

(
lna

a5/4−2σ

)
. (27)

Taylor expansions (26) and (27) give:

F
(
τ ′) =

(√
a − 2√

β
M + O

(
1√
a

))(
1 + 2

a3/4−2σ
+ O

(
lna

a5/4−2σ

))

= √
a − 2√

β
M + 2

a1/4−2σ
+ O

(
1√
a

)
. (28)
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Inequality (25) becomes:

P∞
(
T√

a ≤ τ ′) ≤ P

(
F
(
τ ′) − √

a ≤ 2√
β

M,M ≤ 1

)
+ P(M > 1)

≤ P

(√
β

1

a1/4−2σ
+ O

(
1√
a

)
≤ M,M ≤ 1

)
+ P(M > 1)

≤ 4 exp

(
−4

3
β

a4σ

lna
+ o

(
a4σ

lna

))
.

If we take σ = 1√
lna

, we have:

P∞
(

T√
a ≤

(
3

8
− 1√

lna

)
lna√

a

)
≤ 4 exp

(
−4

3
βe4

√
lna−ln lna

)
,

and so inequality (21) holds.
Second part. The proof is similar. Let us check the main lines. At first, we have:

P∞(T√
a ≤ τ) ≥ P∞

(
T√

a+15/ 4√a ≤ τ − 1√
a

)
× P√

a+15/ 4√a

(
T√

a ≤ 1√
a

)
.

Now the process (Xt , t ∈ [0, T√
a]) starting at a value above

√
a has a non-positive drift and is therefore stochastically

dominated by Brownian motion. Thus the second factor can be bounded below by

P

(
B1/

√
a ≥ 15

4
√

a

)
= P(B1 ≥ 15).

For the first factor, instead of the SDE (23) we choose:{
dYt = (

a + τ − Y 2
t

)
dt + 2√

β
dBt ,

Y0 = +∞ (29)

and study the difference

Zt := Yt − 2√
β

Bt .

Set M ′ := sup{Bt , t ∈ [0, τ − 1/
√

a]}. For every t ∈ [0, (τ − 1/
√

a) ∧ T Y√
a
], the process Zt is below

F(t) :=
√

a + τ

C
coth

(√
(a + τ)Ct

)
,

where

C := 1 − 4√
β

M ′
√

a − (2/
√

β)M ′ .

The Taylor expansion of F(τ − 1/
√

a) under {M ′ ≤ 1} gives:

F

(
τ − 1√

a

)
= √

a + 2e2

a1/4
+ 2√

β
M ′ + O

(
1√
a

)
.

Therefore

P∞
(

T√
a+15/ 4√a ≤ τ − 1√

a

)
≥ P

(
F

(
τ − 1√

a

)
− 2√

β
B

(
τ − 1√

a

)
≤ √

a + 15
4
√

a

)
.



Tracy–Widom right tail 925

Since M ′ − B(τ − 1/
√

a) has the same law as the reflected Brownian motion at time τ − 1/
√

a and 15 − 2e2 > 0, we
get the lower bound

P

(
2√
β

∣∣∣∣B
(

τ − 1√
a

)∣∣∣∣ ≤ 15 − 2e2

4
√

a

)
≥ c0

1√
lna

. (30)

Here c0 in represents an adequate constant depending only on β . �

4. Inside the parabola

The exponential cost comes from this stretch. This section will be devoted to the proof of the following proposition:

Proposition 3. Recall δ := 4
√

lna/ 4
√

a, we have:

P√
a−δ(T−√

a+δ < ∞) = exp

(
−2

3
βa3/2 − 3

8
β lna + O

(√
lna

))
.

4.1. Control of the path behavior

Here we show a lemma about the return to −√
a + ε.

Lemma 4. For ε := 4√
β

√
lna/ 4

√
a as a → ∞ we have P√

a−ε/2(T
√

a−ε = ∞) → 1.

Proof. Certainly, the probability that X begun at
√

a − ε/2 never reaches
√

a − ε is bounded below by the same
probability where X is replaced by its reflected (downward) at

√
a − ε/2 version. Further, when restricted to the space

interval [√a − ε,
√

a − ε/2], the X-diffusion has drift everywhere bounded below by t + 1/2
√

aε. Thus, we may
consider instead the same probability for the appropriate reflected Brownian motion with quadratic drift.

To formalize this, it is convenient to shift orientation. Let now

X̄ := 2√
β

B(t) − 1

2
t2 − qt, q := 1

2

√
aε.

Let X∗ denote reflected (upward) at the origin. Namely,

X∗(t) = X̄(t) − inf
s≤t

X̄(s). (31)

If we can show that P(X∗ never reaches ε/2) tends to 1 when a → ∞, then it will also be the case for the X-
probability in question.

We need to introduce the first hitting time of level y for the new process X̄: τy := inf{t ≥ 0: X̄(t) = y}. For each
n ∈ N, define the event:

Dn = {
X̄(t) hits −(n − 1)ε/4 for some t between τ−nε/4 and τ−(n+1)ε/4

}
.

From the representation (31), one can see that {supt≥0 X∗(t) > ε/2} implies that some Dn must occur. Indeed, for this
X̄ must go above its past minimum by at least ε/2, so in this case it would have to retreat at least one level before
establishing reaching a new minimum level among multiples of ε/4. Define the event

E =
{
X̄(t) ≥ −1

2
t2 − 2qt − 1

}
.

The event E c is equivalent to the Brownian motion 2√
β
B(t) hitting a line of slope −q starting at −1. Since |B(t)| is

sublinear, this will not happen for large enough q . So

P
(

E c
) → 0 when a → +∞. (32)
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On E , when the following term under the square root is positive, we have

τ−x ≥ √
2
√

2q2 + x − 1 − 2q.

Assume that q ≥ 1. A calculation shows that if q ≤ √
x/2 then the above inequality implies τ−x ≥ √

x/2. So on E for
all x ≥ 0 we have

τ−x + q ≥ q ∨ √
x/2,

and so for all t ≥ 0

X̄(τ−x + t) − X̄(τ−x) ≤ 2√
β

B(τ−x + t) − (
q ∨ √

x/2
)
t. (33)

Setting x = εn/4 we see that for all n ≥ 0

P(Dn ∩ E |Fτ−nε/4) ≤ P
(
the process on the right of (33) hits ε/4 before −ε/4

)
.

The distribution of that process is just Brownian motion with drift. By a stopping time argument for the exponential
martingale exp(γ B̂t − tγ 2/2) with γ = (q ∨ √

nε/4)
√

β the above probability equals 1/(1 + eγ ε
√

β/8) ≤ e−γ ε/
√

β/8.
We get

P(Dn ∩ E ) ≤ exp
(−(

q ∨ √
nε/4

)
βε/8

)
.

Recall that

P
(

sup
t≥0

X∗(t) > ε/2
)

≤ P
(

E c
) +

∑
n≥0

P(E ∩ Dn).

The sum of terms where nε ≤ (4q)2 is bounded above by (1 + (4q)2ε−1)e−εqβ/8. The sum of the rest is not more than∑
n≥(4q)2/ε

exp
(−ε3/2β

√
n/32

) ≤ c1
q

ε2
exp(−εqβ/8),

where c1 depends on β only. Replacing ε and q by their expressions in terms of a, and using (32) we obtain:

P
(

sup
t≥0

X∗(t) > ε/2
)

≤ P
(

E c
) + a3/4+o(1)e−(β/16)(16/β) lna = o(1). �

4.2. Application of the Girsanov formula

For every ϕ ∈ C2(R,R) such that supx∈R |ϕ(x)| ≤ √
a (the function ϕ is in fact small compared to the other terms,

and it will be chosen after), we would like to consider the following SDE (defined on the same probability spaces as
(4)):

dYt = (−a + Y 2
t − t + ϕ(Yt )

)
dt + 2√

β
dBt . (34)

Remark 5. The drift of this SDE is the reversal of the drift in the initial SDE (4). The solution of the new SDE starting
around

√
a is a good candidate for the process X conditioned to blow up to −∞ when a goes to +∞. Its expression

comes from minimizing (approximately) the potential:∫ s

0

(
g′(u) − (

u + a − g2(u)
)2)du

over the set of functions g such that g(0) = √
a and g(s) = −√

a.
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If we look at events under which the diffusion is bounded, it is easy to modify the drift of the new diffusion outside
the studied domain and prove that the Novikov condition is satisfied as long as the examined events are in the space
Ft for a fixed t > 0. Let us fix a time t > 0, a level l ∈ (0,1) and denote by T± := T±(

√
a−l) the first passage times to

±(
√

a − l) for the diffusion X (respectively T ′± := T ′
±(

√
a−δ)

for Y ). We take an event E ∈ Ft ∩ FT ′− under which the
paths of the diffusion are bounded by a deterministic value, which can depend on a and β . Since E is Ft -measurable,
Girsanov’s theorem gives

P√
a−l (E) = E√

a−l

(
1E exp

(
Gt(Y )

))
.

The Radon–Nikodym density exp(G·∧t∧T ′−(Y )) is a bounded martingale, and E is FT ′− -measurable, so by the optional
stopping theorem the above quantity equals

E√
a−l

(
E√

a−l

(
1E exp

(
Gt(Y )

) | FT ′−
)) = E√

a−l

(
1E exp

(
GT ′−∧t (Y )

))
. (35)

In the following, we consider E of the form E = {T− < ∞} ∩ E1. The assumption on E requires E1 being an event
under which the diffusion is bounded from above. Taking the limit t → +∞ leads to the fundamental formula:

P√
a−l (T− < ∞,E1) = E√

a−l

(
1T ′−<∞,E′

1
exp

(
GT ′−(Y )

))
. (36)

Thanks to Itô’s formula we can write the exponential martingale 4
β
GT ′−(Y ) as

2
∫ T ′−

0

(
t + a − Y 2

t

)
dYt (37)

+ φ(Y0) − φ(YT ′−)

+
∫ T ′−

0

2

β
ϕ′(Yt ) + 1

2
ϕ(Yt )

2 + ϕ(Yt )
(
Y 2

t − a − t
)

dt, (38)

where ϕ′ denotes the derivative of ϕ and φ the indefinite integral. Again by Itô’s formula, we can compute the first
term (37) above.

(37) = 2a(YT ′− − Y0) − 2

3

(
Y 3

T ′−
− Y 3

0

) +
(

8

β
− 2

)∫ T ′−

0
Yt dt + 2T ′−YT ′− .

Replacing YT ′− by its value, we obtain the expression (valid under E):

(37) = −8

3
a3/2 − 4

3
l3 + 4

√
al2 + 2lT ′− − 2

√
aT ′− +

(
8

β
− 2

)∫ T ′−

0
Yt dt. (39)

4.3. The preliminary upper bound

Let c1 be a constant such that c1 > (|8/β − 2| − 2) ∨ 0. Recall that

δ := 4
√

lna/a, ε = 4√
β

√
lna

/
4
√

a

and take the function ϕ1 defined by

ϕ1 :x �→
{

c1
√

a

a−x2 if x ∈ (−√
a + δ,

√
a − δ

)
,

0 if x /∈ (−√
a,

√
a
) (40)

and extend this function on the entire real line such that ϕ1 remains a smooth function supported on [−√
a,

√
a] (this

is possible for all large enough “a”). Of course, there are many functions satisfying the above conditions but we just
need to fix one. Let φ1 be an antiderivative of ϕ1.
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A first step is to prove a less precise upper bound which does not give us the constant in front of the logarithm term
of (6). In this subsection, the notations Y , T ′−, A′ will always refer to the definitions using this particular ϕ1. We have
the events

A = {Tε−√
a < T√

a−ε/2}, C =
{
Tδ−√

a < Tc2
√

a,L ≤ 1√
a

}
.

Lemma 6. (a) The following inequality holds:

P√
a−ε(Tε−√

a < ∞, A) ≤ exp

(
−2

3
βa3/2 + O(lna)

)
. (41)

(b) For some c3 ≥ 1 we also have

P√
a−δ

(
c3 lna/

√
a ≤ Tδ−√

a < ∞, C
) ≤ exp

(
−2

3
βa3/2 − β lna

)
. (42)

Part (a) with Lemma 4 immediately give the following.

Corollary 7. The following upper bound holds:

P√
a−ε(T− < ∞) ≤ exp

(
−2

3
βa3/2 + O(lna)

)
.

Proof. Part (a). First let T− = T√
a−ε . Consider the process Y defined with the function ϕ1. The equality (35) gives:

P√
a−ε(T− < ∞, A) = E√

a−ε

(
1{T ′−<∞A′} exp

(
GT ′−(Y )

))
with GT ′−(Y ) given by (37)–(38).

To find an upper bound of the last term (38) in G, we remark that the chosen function ϕ1 on [−√
a + ε,

√
a − ε/2]

attains its maximum at time
√

a − ε/2. Under the event A′, it gives:

(38) ≤
(

2c2
1 + 8/βc1

ε2
− c1

√
a

)
T ′−. (43)

Moreover:

φ1(Y0) − φ1(YT ′−) = c1 ln

(
2

√
a

ε
+ 1

)
. (44)

Thanks to (39), (43) and (44), we deduce:

4

β
GT ′−(Y ) + 8

3
a3/2 ≤ 4

√
aε2 + 2εT ′− +

(∣∣∣∣ 8

β
− 2

∣∣∣∣ − 2 − c1

)√
aT ′−

+
(

8

β
c1 + 2c2

1

)
1

ε2
T ′− + c1 ln

(
2

√
a

ε
+ 1

)
.

We now take c1 such that |8/β −2|−2−c1 < 0 and the coefficient in front of
√

aT ′− becomes negative and dominates
the terms involving T ′−. The last one creates the logarithmic error, and (41) follows from

GT ′−(Y ) ≤ −2

3
βa3/2 +

(
3

16
c1β + 16

)
lna + o(lna).
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Part (b). Now let T− = T√
a−δ . Just as in part (a), we need to bound the Girsanov terms. To find an upper bound of

the last term (38), namely

∫ T ′−

0

2

β
ϕ′(Yt ) + 1

2
ϕ(Yt )

2 + ϕ(Yt )
(
Y 2

t − a − t
)

dt

note that ϕ2 and ϕ′ are both uniformly o(
√

a). On the other hand, we have ϕ(Yt )(a − Y 2) is non-negative. Moreover,
it is greater than c1

√
a + o(

√
a) as long as L′ ≤ t ≤ T ′

− . So on C′ we have the lower bound

(38) ≤ o
(√

a
)
T ′− − c1

√
a
(
T ′− − L′). (45)

The other inequalities are similar to part (a) with δ replaced by ε, except the last term in (39) gives an extra term due
to the fact that Y is only bounded by c2

√
a up to time L′.

Thanks to (39), (45) and (44), we deduce:

4

β
GT ′−(Y ) + 8

3
a3/2 ≤ 4

√
aδ2 + 2δT ′− +

(∣∣∣∣ 8

β
− 2

∣∣∣∣ − 2 − c1

)√
aT ′−

+ (c1 + c2)
√

aL′ + o
(√

a
)
T ′− + c1 ln

(
2

√
a

δ
+ 1

)
.

From part (a), we have c := |8/β − 2| − 2 − c1 < 0. We chose c3 ≥ 1 large enough so that the terms involving T ′− ≥
c3 lna/a together with the lna term coming from the antiderivative are less than −β lna, i.e. β

4 c3c + 3
16c1β < −β .

This completes the proof of (42) since

GT ′−(Y ) ≤ −2

3
βa3/2 − β lna + o(lna). �

4.4. Precise asymptotics for the exponent

Recall δ := 4
√

lna/a, L the last passage time to
√

a − δ, and the event introduced for technical reasons:

C :=
{
L < 1/

√
a, sup

t∈[0,1/
√

a]
Xt < c2

√
a
}

defined in the outline of the proof. We will study in this section P√
a−δ(T−√

a+δ < ∞, C).
In order to obtain the coefficient in front of the logarithm term, we need to be more precise in our analysis and we

will look more carefully at T−, the first passage time to −√
a + δ of X.

Our tool is again the Cameron–Martin–Girsanov formula with a drift containing a different function ϕ. Let us
define ϕ2 in the following way:

ϕ2 :x �→
{

(8/β−2)x−2
√

a

a−x2 if x ∈ (−√
a + δ/2,

√
a − δ

)
,

0 if x /∈ (−√
a,

√
a
) (46)

and extend it such that it remains a smooth function on R satisfying: sup |ϕ| ≤ 4
√

a and sup |ϕ′| ≤ √
a (this is possible

for a large enough “a”). Similarly to the previous subsection, the notations Y , T ′−, C′ etc. refers to definitions with this
chosen function.

Proposition 8. We have

P√
a−δ

(
T− < c3 lna/

√
a, C

)
= exp

(
−2

3
βa3/2 − 3

8
β lna + O

(√
lna

))
P√

a−δ

(
T ′− < c3 lna/

√
a, C′).



930 L. Dumaz and B. Virág

Proof. Let us compute the new Radon–Nikodym derivative according to the position of Y using the relations (37)–
(38) and (13).

At first, the term φ(Y0) − φ(YT ′−) is equal to −3/2 lna. Moreover,

∀y ∈ [−√
a + δ,

√
a − δ

]
, −2

√
a +

(
8

β
− 2

)
y + (

y2 − a
)
ϕ(y) = 0.

Consequently, there exists a constant c′ > 0, depending only on β , such that for every y ∈ [−√
a + δ,

√
a − δ],∣∣∣∣−2

√
a +

(
8

β
− 2

)
y + (

y2 − a
)
ϕ(y) + 2

β
ϕ′(y) + 1

2
ϕ(y)2

∣∣∣∣ ≤ c′a
(a − y2)2

≤ 2c′

δ2
.

There is another constant c′′ > 0 such that∣∣∣∣
∫ T ′−

0
uϕ(Yu)du

∣∣∣∣ ≤ c′′

δ
T ′2− .

For every y ≥ √
a − δ,∣∣∣∣ 2

β
ϕ′(y) + 1

2
ϕ(y)2 + ϕ(y)

(
y2 − a − t

)∣∣∣∣ ≤
(

2

β
+ 1

)√
a.

Putting all together and using the upper bound on the last passage time to
√

a − δ contained in C , we obtain:∣∣∣∣ 4

β
GT ′−(Y ) + 8

3
a3/2 + 3

2
lna

∣∣∣∣ ≤ 4
√

aδ2 + 2c′

δ2
T ′− + c′′

δ
T ′2− + 2δT ′− + 4

3
δ3 +

(
2

β
+ 1

)
.

If {T ′− ≤ c3 lna/
√

a} holds,

2c′

δ2
T ′− + c′′

δ
T ′2− + 2δT ′− + 4

3
δ3 ≤ 2c′√lna + O(1).

Under {T ′− < c3 lna/
√

a} ∩ C′, we conclude

GT ′−(Y ) = −2

3
βa3/2 − 3

8
β lna + O

(√
lna

)
. �

To complete the study inside the parabola for the lower bound, we prove:

Lemma 9. There exists c4 > 0 depending only on β such that with ξ = c3 lna/
√

a

P√
a−δ

(
T ′− < ξ, C′) ≥ exp

(−c4
√

lna
)
.

Proof. For the lower bound we can replace the event C′ by the event that T ′+ = T ′√
a−δ/2

is infinite, i.e. the corre-
sponding level is never hit. We will show that this events happens as long as

M := sup
{|Bt |, t ∈ [0, ξ ]} ≤ δ

√
β/5,

which by the Brownian motion estimate (8) has the right probability.
Let ξ = c3 lna/

√
a. Again, we compare our equation to an ODE. The quantity Z = X − B on [0, ξ ] satisfies

Z′ = −(Z − B)2 + t − a ≤ Z2 + a + 4√
β

MZ + ξ,
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so let H be the solution of the (random) ODE:{
H ′(t) = H 2(t) − C,

H(0) = √
a − δ,

(47)

where the random constant satisfies

C = a − 4√
β

√
aM + O(1).

By the same argument of comparison as in Section 3, when M ≤ cδ the diffusion Y is under t �→ H(t) + 2/
√

βBt up
to the minimum of ξ and the exit time from [−√

a − 1,
√

a]. Therefore we will have T ′− < ξ,T ′− < T ′+ as long as

H(ξ) + 2√
β

Bξ ≤ −√
a + δ and sup

s∈[0,ξ ]

(
H(s) + 2√

β
Bs

)
<

√
a − δ/2.

Since H(s) is decreasing in s, the second event is implied by our assumption on M .
The solution H takes the form:

H(t) = −√
C tanh

(√
Ct − arctanh(b)

) =
√

C(tanh(
√

Ct) − b)

b tanh(
√

Ct) − 1
, b =

√
a − δ√

C
.

When c3 ≥ 1 we have tanh(
√

Ct) = 1 + O(a−2). So we get the asymptotics

H(ξ) = −√
a + 2M/

√
β + o(δ),

and we indeed have

H(ξ) + 2√
β

Bξ ≤ −√
a + 4M√

β
≤ 4

5
δ + o(δ). �

5. Under the parabola, lower bound

We will prove:

Proposition 10. There exists c5 > 0 depending only on β such that,

P−√
a+δ(T−∞ < ∞) ≥ exp

(−c5
√

lna
)
.

Proof. Using the strong Markov property and the increasing property, we can lower bound the left-hand side by

P−√
a+δ

(
T−√

a−δ <
1√
a

∧ T−√
a+2δ

)
× P(1/

√
a,−√

a−ε)

(
T−√

a−√
lna/ 4√a

<
lna

2
√

a
∧ T−√

a

)

× P
(lna/

√
a,−√

a−√
lna/ 4√a)

(T−∞ < ∞).

• The first probability gives the main cost. Under this event, the process X is stochastically dominated by the drifted
Brownian motion:

t �→ −√
a + δ + 2

√
aδt + 2√

β
Bt .

Thus,

P−√
a+ε

(
T−√

a−ε <
1√
a

∧ T−√
a+2ε

)
≥ P

(
B1 < −3

2

√
β 4
√

aε, sup
s∈[0,1]

Bs ≤ 1

2

√
β 4
√

aε

)
.
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By the reflection principle, this equals

P

(
5

2

√
β 4
√

aε ≥ B1 ≥ 3

2

√
β 4
√

aε

)
≥ √

β
4
√

lna exp

(
−25

4
β
√

lna

)
.

• For the second part, under the studied event, the diffusion (Xt , t ≥ 1/
√

a) is stochastically dominated by

1

4
√

a
+ t + 2√

β
Bt − √

a − ε.

Thus the studied probability is bounded from below by a constant depending only on β .
• For the last part, we need to compare the diffusion with the solution of a simple differential equation. Similarly to

the previous comparisons, under the event {X(lna/
√

a) = −√
a − √

lna/ 4
√

a,T−∞ < T−√
a ∧ (3/8 lna/

√
a)}, the

diffusion X is stochastically dominated by G(t) + 2/
√

βBt where G is the solution of the differential equation:⎧⎨
⎩

G′(t) = a + 11
8

lna√
a

− (
1 − 4√

β

M√
a

)
G2(t),

G(0) = −√
a −

√
lna
4√a

and

M = sup
s∈[0,(3/8)lna/

√
a]

|Bs |.

Whenever we have{
M ≤ 2

2
√

β

√
lna
4
√

a

}
,

the function G blows up to −∞ at a time smaller than 3/8 lna/
√

a and the diffusion (Xt , t ∈ [0,3/8 lna/
√

a])
stays under −√

a. Therefore:

P
(lna/

√
a,−√

a−√
lna/ 4√a)

(T−∞ < ∞) ≥ P

(
M ≤ 2

2
√

β

√
lna
4
√

a

)

which is greater than a constant depending only on β . It leads to the result. �
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