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Abstract. We consider the one-sided exit problem – also called one-sided barrier problem – for (α-fractionally) integrated random
walks and Lévy processes.

Our main result is that there exists a positive, non-increasing function α �→ θ(α) such that the probability that any α-fractionally
integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time T

behaves as T −θ(α)+o(1) for large T . We also investigate when the fixed level can be replaced by a different barrier satisfying
certain growth conditions (moving boundary).

This, in particular, extends Sinai’s result on the survival exponent θ(1) = 1/4 for the integrated simple random walk to general
random walks with some finite exponential moment.

Résumé. Nous considérons le problème unilatéral de sortie – ou problème unilatéral de barrière – pour des intégrales (α-
fractionnelles) de marches aléatoires et de processus de Lévy.

Notre résultat principal est l’existence d’une fonction positive, décroissante α �→ θ(α) telle que la probabilité qu’une intégrale
d’un processus de Lévy α-fractionnel quelconque (ou marche aléatoire) avec certains moments exponentiels finis reste en dessous
d’un niveau fixe jusqu’à un temps T se comporte comme T −θ(α)+o(1) pour T grand. Nous analysons aussi la possibilité de
remplacer le niveau fixe par une barrière différente qui satisfait certaines conditions de croissance (marge mouvante).

Cela, en particulier, étend le résultat de Sinai sur l’exposant de survie d’une marche aléatoire simple intégrée à des marches
aléatoires générales de moment exponentiel fini.
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1. Introduction

1.1. Statement of the problem

This article deals with the so-called one-sided exit problem – also called one-sided barrier problem. For a real-valued
stochastic process (At )t≥0, say with A0 = 0, one investigates whether there is a θ > 0 such that

P

(
sup

t∈[0,T ]
At ≤ 1

)
= T −θ+o(1) as T → ∞. (1)
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If such an exponent θ exists it is called the survival exponent or persistence exponent. The function F ≡ 1 acts as a
barrier, which the process must not pass. We also discuss different barriers F below.

Another formulation of (1) can be obtained if the process is self-similar, i.e. (Act ) and (cH At ) have the same
finite-dimensional distributions for some H > 0. Then the problem is equivalent to finding the lower tail probability
of the supremum of the process up to time one:

P

(
sup

t∈[0,1]
At ≤ ε

)
= εθ/H+o(1) as ε → 0. (2)

Apart from this, we also look at the discrete version of (1):

P

(
sup

n=1,...,N

An ≤ 1
)

= N−θ+o(1) as N → ∞, (3)

where (An)n∈N0 is a discrete time stochastic process.
Obviously, problems (1), (2) and (3) are classical questions; they are relevant in a number of quite different ap-

plications. The most important of these is in statistical physics when studying the fractal nature of the solution of
Burgers’ equation, see e.g. [4,30] concerning results on this relation. Apart from this, the exponent plays a role in
connection with pursuit problems (see [18] and references therein), in the study of most visited sites of a process (see
e.g. [1]), in the investigation of zeros of random polynomials (see [8] and references therein and Section 4 below), and
in connection with so-called sticky particles (see [35]). We refer to [18,19] for a recent overview of the applications.
The question can also be encountered in the physics literature, see [21] for a summary. The discrete version (3) is
studied in connection with random polymers, see [6].

It is therefore surprising that very little seems to be known about this type of problems. In fact, for (1) the exponent
is known in the following cases: Brownian motion (θ = 1/2, trivially obtained via the reflection principle), integrated
Brownian motion (θ = 1/4, [11,13,15,22,31], see also [12,16]), and fractional Brownian motion (θ = 1 − H , [18,
23–25]). For Lévy processes there is a general framework for obtaining the survival exponent and even more precise
information in many cases (see e.g. [2,3,5]).

It is even more surprising that for the discrete version (3) yet less seems to be known. The only case where the
exponent is well understood are general random walks: the question of positivity for random walks is well studied,
see e.g. [7] (e.g. θ = 1/2 if the increments are centered, see for example [10]).

Further, the exponent is known for the integrated simple random walk (θ = 1/4, [31]). Bounds for general in-
tegrated random walks are given in [6], polynomial bounds for integrated Gaussian random walks can be obtained
from [18]. In several further special cases, Vysotsky [36] obtained θ = 1/4. It was conjectured ([6,35]) that for any
integrated random walk with finite variance the exponent is θ = 1/4. This is not the case for integrated heavy tailed
random walks and Lévy processes, cf. Simon [29]. Even though we also study integrated Lévy processes and random
walks in this paper, the results and techniques are completely disjoint.

The focus of the present article is on integrated Lévy processes and integrated random walks: i.e. A = I(X) with
I some integration operator and X a Lévy martingale or centered random walk. The main motivation for this work
was that the exponent was known for integrated Brownian motion, but not for general integrated random walks. We
will show that indeed the exponent is θ = 1/4 under mild assumptions. We stress that the processes that we consider
are non-Markovian.

The outline of this paper is as follows. Our main results are collected in Section 1.2. An important method in
the proofs is the change of the barrier F ; some tools in this connection are presented in Section 1.3 and may be of
independent interest. The proof of the first main result, Theorem 1.1, is given in Section 2.2. Section 2.1 is concerned
with an auxiliary result which may be of independent interest: it contains an a priori estimate for I being the identity.
In Section 3, we prove and discuss the results concerning the change of the barrier. Using these arguments, the second
main result, Theorem 1.4, in Section 3.2 follows easily. Finally, in Section 4 we give an application of our results to
the question of random polynomials having no real zeros.
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1.2. Main results

The goal of this article is to investigate the asymptotics of

P

(
sup

t∈J∩[0,T ]
At ≤ 1

)
as T → ∞ (4)

for J = N0 or J = [0,∞). We show the following:

• For a fixed integration operator I , the asymptotics of this probability for A = I(X) is universal over the class of
Lévy processes and random walks X. The reason for this is that all of these processes can be coupled with a suitable
Brownian motion. The resulting order of (4) can then be inferred from Brownian motion or any other process in
this class, such as the simple random walk.

• The survial exponent exists for fractionally integrated and it is non-increasing in the order of integration. As a
byproduct we show that the survival exponent of fractionally integrated Brownian motion (also called Riemann–
Liouville process) is not the same as for the corresponding fractional Brownian motion (FBM).

• The problem is robust with respect to certain changes of the barrier F , which is equivalent to adding a drift to the
process. In fact, adding a drift to a Gaussian process that is in its reproducing kernel Hilbert space, does not change
the survival exponent of the (integrated) process.

• We exploit the connection of the one-sided exit problem to random polynomials established in [8] in order to
improve the knowledge of the crucial constant appearing there.

Let us be more precise. We let X denote the class of all (non-deterministic, right-continuous) martingales (Xt )t≥0
with independent and stationary increments, X0 = 0, satisfying

E
[
eβ|X1|] < ∞ for some β > 0.

If the martingale is only defined on N0, we set Xt := X
t� for all t ≥ 0 (which does not have stationary increments,
but this will not be used outside N0).

Let us further specify the type of functionals I that we consider. We let I be a functional of the following convo-
lution type:

I(X)t =
∫ t

0
K(t − s)Xs ds, t ≥ 0,

where K : [0,∞) → [0,∞) is a measurable function satisfying

K(s) ≤ k
[
sα−1 + sβ−1], s > 0, (5)

for positive constants k, α, and β with α ≥ β . Additionally, we need to impose a regularity assumption on the tail
behavior of K . Here, we assume that for some k+ > 0

K(s) ≥ k−sα−1 for large s. (6)

Alternatively, our proof works if K is ultimately decreasing. We remark that these technical assumptions can be further
relaxed.

The main example is the integration operator:

I1(X)t :=
∫ t

0
Xs ds, t ≥ 0,

where K(s) ≡ 1, but our definition also includes fractional integration operators

Iα(X)t :=
∫ t

0

1

�(α)
(t − s)α−1Xs ds, t ≥ 0, (7)
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where α > 0 and � denotes Euler’s Gamma function. In particular, if α is an integer, Iα(X) is the α-times integrated
process. For completeness we set I0 to be the identity; and we recall that Iα ◦ Iβ = Iα+β for α,β ≥ 0.

Here and below we use f � g (or g � f ) if lim supf/g < ∞ and f ≈ g if f � g and g � f . Further, f � g (or
g � f ) means lim supf/g ≤ 1, and f ∼ g means that f � g and g � f .

Our first main theorem reads as follows.

Theorem 1.1. Let (Xt )t≥0 be any process from the class X and W be a Brownian motion. Then, for either J = N0 or
J = [0,∞),

P

(
sup

t∈J∩[0,T ]
I(W)t ≤ 1

)
(logT )−2(1+α)

� P

(
sup

t∈J∩[0,T ]
I(X)t ≤ 1

)
� P

(
sup

t∈J∩[0,T ]
I(W)t ≤ 1

)
(logT )2(1+α),

where α is as in (5).

This means the asymptotics of all processes in the class X are equivalent up to logarithmic factors. This is the
mentioned universality result. In particular, the survival exponent (if it exists) is universal over the class X . The proof
of Theorem 1.1 is given in Section 2.2.

A particularly important case is when I is the usual integration operator. Then the rate of the survival probability
is known for X being Brownian motion or X being the simple random walk. This entails the following corollary for
general random walks, generalizing Sinai [31].

Corollary 1.2. Let X1,X2, . . . be a random walk started in 0 with E[eβ|X1|] < ∞ for some β > 0 and E[X1] = 0. Set
An = ∑n

i=1 Xi . Then, as N → ∞,

N−1/4(logN)−4 � P

(
sup

n=1,...,N

An ≤ 1
)

� N−1/4(logN)4.

Similarly, we obtain the result for integrated Lévy processes.

Corollary 1.3. Let (Xt )t≥0 be a real-valued Lévy process with E[eβ|X1|] < ∞ for some β > 0 and E[X1] = 0. Set
At := ∫ t

0 Xs ds. Then, as T → ∞,

T −1/4(logT )−4 � P

(
sup

t∈[0,T ]
At ≤ 1

)
� T −1/4(logT )4.

Theorem 1.1 implies that the survival exponent θ is the same for any process from the class X if it exists. Now we
prove that the survival exponent does indeed exist for the particularly important case of the α-fractional integration
operator (7) and that it is decreasing in α.

Theorem 1.4. There is a non-increasing function θ : [0,∞) → (0,1/2], θ :α �→ θ(α), such that for any process X

from the class X and any α ≥ 0

P

(
sup

t∈[0,T ]
Iα(X)t ≤ 1

)
= T −θ(α)+o(1) as T → ∞.

We recall that θ(0) = 1/2 and θ(1) = 1/4. Further, θ(α) > 1/8 for all α ≥ 0.

The proof of Theorem 1.4 is given in Section 3.2. Theorem 1.4 does not yield new values for θ , so it remains a
challenge to calculate θ(α), e.g. for integers α.
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Let us relate the present results to those for fractional Brownian motion with Hurst parameter H ∈ (1/2,1). The-
orem 1.4 is concerned with the α-fractionally integrated Brownian motion (also called Riemann–Liouville process)
with α := H − 1/2 > 0 defined by

Rα
t := Iα(W)t = 1

�(α)

∫ t

0
(t − s)α−1Ws ds, t ≥ 0, (8)

where W is a Brownian motion. Let Xα be a fractional Brownian motion with Hurst parameter H = α + 1/2. It is
well-known that there is a close relation between Xα and Rα .

For α-fractionally integrated Brownian motion, the survial exponent is investigated in Theorem 1.4. Further, we
recall that the survival exponent for FBM with Hurst parameter H is known to be θFBM = 1 − H , see [23]. In view of
Theorem 1.4 (the function θ is decreasing and θ(1) = 1/4), it is clear that the survival exponents of the two processes
Xα and Rα cannot coincide at least for H > 3/4. This fact may come as a surprise since often properties of Xα are
the same as those of Rα .

Corollary 1.5. For α ∈ (1/4,1/2), the survival exponent of α-fractionally integrated Brownian motion Rα = Iα(W)

is not equal to the survival exponent of FBM with the corresponding Hurst parameter H := α + 1/2 ∈ (3/4,1).

1.3. The one-sided exit problem with moving boundary for Gaussian processes

In this section, we study the influence of the barrier on the survival exponent for a Gaussian process. As a ‘barrier’ we
consider a function F : [0,∞) → (−∞,∞] and ask when

P
(∀t ≤ T : Xt ≤ F(t)

)
as T → ∞ (9)

has the same asymptotics as

P(∀t ≤ T : Xt ≤ 1) as T → ∞.

Of course, (9) is equivalent to adding a drift to the process:

P

(
sup

0≤t≤T

(
Xt − F(t) + 1

) ≤ 1
)

as T → ∞.

We show that one can safely add a drift of a certain strength without changing the survival exponent. The technique
can be formulated rather generally in terms of the reproducing kernel Hilbert space of the Gaussian process.

Proposition 1.6. Let X be some centered Gaussian process attaining values in the Banach space E with reproducing
kernel Hilbert space H. Denote by ‖ · ‖ the norm in H. Then, for each f ∈ H and each measurable S such that
P(X ∈ S) ∈ (0,1), we have

e−
√

2‖f ‖2 log(1/P(X∈S))−‖f ‖2/2 ≤ P(X + f ∈ S)

P(X ∈ S)
≤ e

√
2‖f ‖2 log(1/P(X∈S))−‖f ‖2/2.

This statement allows to estimate P(X + f ∈ S) by the respective probability without drift. Of course, we are
interested in the set

S := ST :=
{
(xt )0≤t≤T : sup

t∈[0,T ]
I(x)t ≤ 1

}
,

where I is a functional as specified above. If the order of P(X ∈ ST ), when T → ∞, is polynomial with exponent θ

then, by Proposition 1.6, the same holds for P(X + f ∈ ST ), for f ∈ H. Let us illustrate the use of Proposition 1.6 in
this context.
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Corollary 1.7. Let W be a Brownian motion, I be a functional as specified above, f ′ : [0,∞) → R be a measurable
function with

∫ ∞
0 f ′(s)2 ds < ∞, and set f (t) := ∫ t

0 f ′(s)ds. Let θ > 0. Then

P

(
sup

t∈[0,T ]
I(W)t ≤ 1

)
= T −θ+o(1) if and only if P

(
sup

t∈[0,T ]
I(W + f )t ≤ 1

)
= T −θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

Example 1.8. It is interesting to note that, for Brownian motion, one can add any continuous function f with f (0) < 1
and |f (t)| � tγ , t → ∞, with γ < 1/2, since for some c > 0

P

(
sup

t∈[0,T ]
(
Wt + ctγ

) ≤ 1
)

≤ P

(
sup

t∈[0,T ]
(
Wt + f (t)

) ≤ 1
)

≤ P

(
sup

t∈[0,T ]
(
Wt − ctγ

) ≤ 1
)

and Corollary 1.7 yields that for any c ∈ R and 0 ≤ γ < 1
2 with c < 1 for γ = 0:

P

(
sup

t∈[0,T ]
(
Wt + ctγ

) ≤ 1
)

= T −1/2+o(1). (10)

Similarly, for any c ∈ R and 0 ≤ γ < 1
2 (c < 1 for γ = 0):

P

(
sup

t∈[0,T ]

(∫ t

0
Ws ds + ct1+γ

)
≤ 1

)
= T −1/4+o(1). (11)

We remark that (11) improves Sinai’s result [31] who showed this statement for γ = 0.

Remark 1.9. Concerning (10), we remark that [34] even shows that for any 0 ≤ γ < 1
2

P

(
sup

t∈[0,T ]
(
Wt + ctγ

) ≤ 1
)

≈ T −1/2.

However, the proof of this result is very particular for Brownian motion and it does not seem to extend on our setting.
We will need the more general result in Corollary 1.7. Further, we note that similar ideas can be found in [27].

The proof of Proposition 1.6 and further examples are given in Section 3.1.

2. Proof of the universality result

2.1. A priori estimate via Skorokhod embedding

In the proof of Theorem 1.1, we need an a priori estimate for the supremum of X when, simultaneously, letting
the barrier and the time horizon tend to zero and infinity, respectively. Here we provide a way of obtaining such an
estimate. We do not require finite exponential moments in this context.

Proposition 2.1. Let X be either a Lévy martingale or a random walk with centered increments with V(X1) = σ 2 > 0.
Let (bt )t≥0 be such that t−δ � bt ≤ o(t1/2), as t → ∞, for some δ ≥ 0. Suppose that E|X1|2p < ∞ for some p > 2δ+1
and p ≥ 2. Then we have

P

(
sup

s∈[0,t]
Xs ≤ bt

)
�

√
2b2

t

πσ 2t
as t → ∞.

Remark 2.2. Note that the estimate is sharp in the sense that one gets ∼ instead of � if X is a Brownian motion.
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Proof of Proposition 2.1. First suppose that X = (Xt )t≥0 is a Lévy martingale. Fix p such that p > 2δ + 1 and
E|X1|2p < ∞, where δ is as in the statement of the proposition.

Embedding. We apply a Monroe [26] embedding. On an appropriate filtered probability space (possibly one needs
to enlarge the underlying probability space), one can define a (right-continuous) family of finite minimal stopping
times (τ (t))t≥0 and a Brownian motion (Wt ) such that almost surely

Xt = Wτ(t)

for all times t ≥ 0. By [26], the minimality of the stoping times τ(t) is equivalent to the fact that (Ws∧τ(t))s≥0 is uni-
formly integrable for all t ≥ 0. Consequently, E[τ(t)] = E[W 2

τ(t)] = E[X2
t ] = σ 2t < ∞. Moreover, by the Burkholder–

Davis–Gundy (BDG) inequality (see the version in [28], Proposition 2.1), one has

E
[
τ(1)p

] ≤ c1E
[|Wτ(1)|2p

] = c1E
[|X1|2p

]
< ∞, (12)

where c1 = c1(p) is a constant that depends only on p.
Since (Xt ) has stationary and independent increments, the embedding can be established such that (τ (t))t≥0 itself

has stationary and independent increments, see [26]. Hence, (τ (t) − σ 2t) is a martingale and we conclude with the
BDG inequality that

E
[∣∣τ(t) − σ 2t

∣∣p] ≤ E

[
sup

0≤s≤�t�

∣∣τ(s) − σ 2s
∣∣p]

≤ c2E
[[

τ(·) − σ 2·]p/2
�t�

]
,

where c2 = c2(p) is an appropriate constant and [·] denotes the classical bracket process. Next, we apply the triangle
inequality (p/2 ≥ 1) together with the stationarity of the increments of (τ (t) − σ 2t) to conclude that

E
[[

τ(·) − σ 2·]p/2
�t�

]2/p = E

[( �t�∑
n=1

[
τ(·) − σ 2·]

n
− [

τ(·) − σ 2·]
n−1

)p/2]2/p

≤
�t�∑
n=1

E
[([

τ(·) − σ 2·]
n
− [

τ(·) − σ 2·]
n−1

)p/2]2/p

≤ �t�E[[
τ(·) − σ 2·]p/2

1

]2/p
.

Hence,

E
[∣∣τ(t) − σ 2t

∣∣p] ≤ c2�t�p/2
E

[[
τ(·) − σ 2·]p/2

1

]
.

It remains to verify the finiteness of the latter expectation. First observe that by the BDG inequality

E
[[

τ(·) − σ 2·]p/2
1

] ≤ c3E

[
sup

s∈[0,1]
∣∣τ(s) − σ 2s

∣∣p]
≤ 2pc3

(
E

[
τ(1)p

] + σ 2p
)
,

where c3 = c3(p) is an appropriate constant. By (12), E[τ(1)p] is finite, and there exists a constant c4 depending on
p and the 2pth moment of X1 such that for all t > 0

E
[∣∣τ(t) − σ 2t

∣∣p] ≤ c4�t�p/2. (13)

Estimate of the probability. Fix ε > 0 and observe that

P

(
sup

s∈[0,t]
Xs ≤ bt

)
≥ P

(
sup

s∈[0,(1+ε)tσ 2]
Ws ≤ bt

)
− P

(
τ(t) ≥ (1 + ε)σ 2t

)
. (14)

Note that the first term on the right hand side of the latter equation can be computed explicitly:

P

(
sup

s∈[0,(1+ε)tσ 2]
Ws ≤ bt

)
=

√
2

π

∫ bt /
√

(1+ε)tσ 2

0
e−y2/2 dy ∼

√
2

π

bt√
(1 + ε)tσ 2

.
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In the last step, we used that b2
t /t → 0. Conversely, the second term in (14) can be controlled via the Chebyshev

inequality and (13):

P
(
τ(t) − σ 2t ≥ εσ 2t

) ≤ E[|τ(t) − σ 2t |p]
(εσ 2t)p

≤ c4
�t�p/2

(εσ 2t)p
≈ t−p/2.

By the choice of p, the second term on the right hand side of (14) is of lower order than the first term. We obtain the
lower bound in the proposition by letting ε tend to zero.

If X is a centered random walk, the same argument goes through with the bracket denoting the sum of the squared
increments. �

The last result yields the following corollary for the integrated process I(X). It assures that the decrease of the
survival probability is always at most polynomial.

Corollary 2.3. Let X be either a Lévy martingale or a random walk with centered increments, I as in the introduction,
and α as in (5). Assume that E|X1|2p < ∞ for some p > 2α + 1 and p ≥ 2. Then

P

(
sup

t∈[0,T ]
I(X)t ≤ 1

)
� T −(α+1/2).

Proof. Let α be as in (5) and note that there is a constant c ∈ (0,∞) with
∫ t

0 K(s)ds ≤ ctα for all t ≥ 1. We conclude
that for T ≥ 1

sup
t∈[0,T ]

I(X)t ≤ cT α sup
t∈[0,T ]

Xt ;

so that the assertion of the corollary readily follows from Proposition 2.1. �

The estimate from the previous corollary is in general far from optimal. We shall use it as an a priori estimate.
Finally, we recall the following result for Brownian motion with drift. It can be obtained from the distribution of

the first hitting time of Brownian motion with a line, which is explicitly known, see e.g. [33], p. 217.

Lemma 2.4. Let σ > 0 and W be a Brownian motion. Then

P

(
σWt ≤ 1 − t√

T
,∀t ≤ T

)
� T −1/2.

2.2. Proof of Theorem 1.1

Here we give the proof of Theorem 1.1.

Proof of Theorem 1.1. For an arbitrary fixed process X from the class X and a Wiener process W , we shall show
that

P

(
sup

t∈J∩[0,T ]
I(X)t ≤ 1

)
≥ c(logT )−2(α+1)

P

(
sup

t∈J∩[0,T ]
I(W)t ≤ 1

)
(15)

for T large enough and some constant c > 0. The opposite bound follows by the same method when exchanging the
roles of W and X.

Step 1: In the first step, we derive one of the key techniques used in the proof (an appropriate coupling of X

and σW with σ > 0 and σ 2 = V(X1)) from the Komlós–Major–Tusnády (KMT) coupling. Since X1 has some finite
exponential moments one can apply the KMT theorem [14]: there exist positive constants β1, β2 such that for every
T ∈ N0 there exists a coupling of X and σW with

E

[
exp

(
β1 sup

t∈{0,...,T }
|Xt − σWt |

)]
≤ exp

(
β2 log(T ∨ e)

)
. (16)
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As we indicate next, we can take the supremum in the last equation equally well over the interval [0, T ] with T ∈
(0,∞), possibly with different constants β1, β2. Indeed, let β3 > 0. If X is a Lévy martingale then exp(

β3
2 |Xt |) is a

non-negative submartingale, and we get with Doob’s inequality that

E

[
exp

(
β3 sup

t∈[0,1]
|Xt |

)]
= E

[(
sup

t∈[0,1]
eβ3/2|Xt |

)2] ≤ 4E
[
eβ3|X1|].

Consequently,

E

[
sup

t∈{1,...,T }
exp

(
β3 sup

s∈[t−1,t]
|Xs − Xt−1|

)]
≤ T E

[
exp

(
β3 sup

t∈[0,1]
|Xt |

)]
≤ 4T E

[
eβ3|X1|];

and the right hand side is finite as long as β3 is sufficiently small. One gets an analogous estimate when replacing the
Lévy process by the Wiener process. Now, an application of the triangle inequality and Hölder inequality, together
with straightforward calculations yield the mentioned stronger version of (16).

Let α be as in (5). We fix ρ > α + 1/2. By the exponential Chebyshev inequality, we get for T ≥ e and arbitrary
a > 0

P

(
sup

t∈[0,T ]
|Xt − σWt | ≥ a

)
≤ e−β1aT β2 ,

which implies for aT := β2+ρ
β1

logT that

P

(
sup

t∈[0,T ]
|Xt − σWt | ≥ aT

)
≤ T −ρ. (17)

Step 2: In order to prove (15), we consider a particular scenario for which supt∈[0,T ] I(X)t ≤ 1 is satisfied. We
couple X and σW on the time interval [0, T0] (where T0 is chosen presently) as described above. Moreover, we apply
the same coupling for the two processes (Xt − XT0)t∈[T0,T ] and (σWt − σWT0)t∈[T0,T ]. Certainly, both couplings can
be established on a common probability space in such a way that the random variables involved in the first coupling
are independent from the ones involved in the second coupling.

We fix δ1, δ2 > 0 with δ2
∫ δ1

0 K(s)ds ≥ 1 and consider the barriers

ḡT (t) := 1 − t√
T0

+ aT and gT (t) := 1 − t√
T0

,

where T0 = T0(T ) = �(2aT + δ2σ + 1)2�. Then ḡT (T0) ≤ −aT − δ2σ .
As we will show next, for any sufficiently large T , the event {supt∈J∩[0,T ] I(X)t ≤ 1} occurs at least if all of the

following events occur:

E1 = {
X ≤ ḡT on [0, T0]

}
, E2 =

{
sup

t∈[0,T0]
Xt ≤ c1T

−α
0

}
,

E3 =
{

sup
t∈J∩[0,T −T0]

I(W·+T0 − WT0) ≤ 1
}

and E4 =
{

sup
t∈[T0,T ]

∣∣Xt − XT0 − σ(Wt − WT0)
∣∣ ≤ aT

}
,

where c1 > 0 is a finite constant with
∫ t

0 K(s)ds ≤ c−1
1 tα for all t ≥ 1. Indeed, E1 and E2 imply that

∫ T0−δ1

0
K(t − s)Xs ds ≤ 0 for t ≥ T0 and X ≤ −δ2σ on [T0 − δ1, T0], (18)

as long as T (or equivalently T0) is sufficiently large. The second statement in (18) is immediately clear from E1;
to see that the first statement in (18) holds on E1 ∩ E2 note that there are 0 < d1 < 1 such that Xt ≤ c(−aT ) for all
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t ∈ [d1T0, T0]. Fix any d1 < d2 < 1. Then

∫ T0−δ1

0
K(t − s)Xs ds ≤

∫ d1T0

0
K(t − s)ds +

∫ d2T0

d1T0

K(t − s)c(−aT )ds + 0

≤ c1

T α
0

∫ d1T0

0
k(t − s)α−1 ds + c(−aT )

∫ d2T0

d1T0

k−(t − s)α−1 ds,

where we used (5) and (6). Now, due to the additional aT in the second term, it can be seen easily that the last
expression is negative for sufficiently large T (and thus T0 and aT ). This shows (18).

On the other hand, given that also E4 occurs, one has for t ∈ [T0, T ],

Xt ≤ XT0 + σ(Wt − WT0) + aT ≤ −δ2σ + σ(Wt − WT0),

so that∫ t

T0

K(t − s)Xs ds ≤ σ

∫ t

T0

K(t − s)[Ws − WT0 − δ2]ds.

Assuming additionally E3, we conclude with (18) that, for all t ∈ J ∩ [T0, T ],

I(X)t =
∫ T0−δ1

0
K(t − s)Xs ds +

∫ T0

T0−δ1

K(t − s)Xs ds +
∫ t

T0

K(t − s)Xs ds

≤ 0 +
∫ T0

T0−δ1

K(t − s)(−δ2σ)ds + σ

∫ t

T0

K(t − s)[Ws − WT0 − δ2]ds

= −σδ2

∫ t

T0−δ1

K(t − s)ds + σ

∫ t−T0

0
K(t − T0 − s)[Ws+T0 − WT0 ]ds

≤ −σδ2

∫ δ1

0
K(s)ds + σ · 1

≤ −σ + σ ≤ 1

as long as T is sufficiently large. Note that I(X)t ≤ 1 also holds on J ∩ [0, T0] due to E2, see Corollary 2.3.
Step 3: It remains to estimate the probability of E1 ∩ · · · ∩ E4. First we estimate P(E1 ∩ E2).
Note that, for any choice of n and 0 ≤ t1 < · · · < tn, the random variables (Xti )

n
i=1 are associated (cf. [9]), as they

are sums of independent random variables. Thus, the events 1E1 and 1E2 can both be written as limits of decreasing
functions of associated random variables and are thus also associated. Hence, we have P(E1 ∩ E2) ≥ P(E1) · P(E2).
By Corollary 2.3, we have P(E2) � T

−α−1/2
0 . Moreover, the event E1 occurs whenever the events

E′
1 = {∀t ∈ [0, T0]: σWt ≤ gT (t)

}
and E′′

1 =
{

sup
t∈[0,T0]

|Xt − σWt | ≤ aT

}

occur; and we thus have

P(E1) ≥ P
(
E′

1 ∩ E′′
1

) ≥ P
(
E′

1

) − P
(
E′′

1
c)

.

By Lemma 2.4 and by inequality (17), one has P(E′
1) � T

−1/2
0 and P(E′′

1
c
) � T

−ρ
0 , respectively, so that P(E1) �

T
−1/2
0 . Altogether we thus obtain

P(E1 ∩ E2) � T
−(α+1)
0 ≈ (logT )−2(α+1). (19)
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Moreover, E3 ∩ E4 is independent of E1 ∩ E2 and

P(E3 ∩ E4) ≥ P(E3) − P
(
Ec

4

)
� P

(
sup

t∈J∩[0,T ]
I(W)t ≤ 1

)
,

since P(Ec
4) ≤ T −ρ is of lower order than P(E3) � T −(α+1/2), see Corollary 2.3. Combining this with (19) finishes

the proof. �

3. Drift and barriers

3.1. The influence of a drift on Gaussian processes

In this section, we study the influence of a drift on the survival exponent. The first aim is to prove Proposition 1.6.

Proof of Proposition 1.6. In the notation of [20], the Cameron–Martin formula says that

P(X + f ∈ S) = E
[
1{X∈S}e〈z,X〉−‖f ‖2/2], (20)

where z = z(f ) is an element of the L2-completion of the dual of E.
Upper bound. Let p > 1 and 1/p + 1/q = 1. We use the Hölder inequality in (20) to get

P(X + f ∈ S) ≤ (
E

[
1p

{X∈S}
])1/p(

E
[
eq〈z,X〉])1/qe−‖f ‖2/2.

Recall that 〈z,X〉 is a centered Gaussian random variable with variance ‖f ‖2. Therefore, we get

P(X + f ∈ S) ≤ P(X ∈ S)1/peq‖f ‖2/2−‖f ‖2/2. (21)

Optimizing in p shows that the best choice is

1/p := 1 −
√

‖f ‖2

2 log(1/P(X ∈ S))
< 1.

Plugging this into (21) shows the upper bound in the proposition.
Lower bound. Here we let p > 1 and use the reverse Hölder inequality in (20) to get

P(X + f ∈ S) ≥ (
E

[
11/p

{X∈S}
])p(

E
[
e−1/(p−1)〈z,X〉])−(p−1)e−‖f ‖2/2.

As above, we calculate the second expectation and optimize in p to find that the best choice is

p := 1 +
√

‖f ‖2

2 log(1/P(X ∈ S))
> 1.

Using this shows the lower bound. �

As a further example for a Gaussian process, let us consider the α-fractionally integrated Brownian motion defined
in (8). Here, one can add drift functions up to |f (t)| � tγ , γ < H = α + 1/2.

Corollary 3.1. Let Rα = Iα(W) be an α-fractionally integrated Brownian motion, and let f ′ : [0,∞) → R be a
function with

∫ ∞
0 f ′(s)2 ds < ∞. Let θ > 0 and define

g(t) := 1

�(α + 1)

∫ t

0
(t − s)αf ′(s)ds, t ≥ 0.
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Then

P

(
sup

t∈[0,T ]
Rα

t ≤ 1
)

= T −θ+o(1) if and only if P

(
sup

t∈[0,T ]
(
Rα

t + g(t)
) ≤ 1

)
= T −θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

We demonstrate the method of changing the barrier with the following important example.

Example 3.2. Let us consider the barrier

F(t) :=
{∞, 0 ≤ t < 1,

0, 1 ≤ t ≤ T

for the process Rα = Iα(W) defined in (8).

Corollary 3.3. Let Rα be the α-fractionally integrated Brownian motion. Then, for a θ > 0,

P

(
sup

t∈[1,T ]
Rα

t ≤ 0
)

= T −θ+o(1)

if and only if

P

(
sup

t∈[0,T ]
Rα

t ≤ 1
)

= T −θ+o(1).

Also, upper (lower) bounds imply upper (lower) bounds.

This corollary will be an important part of the proof of Theorem 1.4.

Proof of Corollary 3.3. We can e.g. use the function f ′ := 1[0,1]�(α + 1)(α + 1), for which
∫ ∞

0 f ′(s)2 ds < ∞.
Then g(t) = �(α + 1)(α + 1)Iα+1(1[0,1])t = tα+1 − (t − 1)α+1 ≥ 1 for all t ≥ 1 and all α > 0, i.e.

F(t) ≥ 1 − g(t) for all t ∈ [0, T ];
and thus

P
(∀t ∈ [0, T ]: Rα

t + g(t) ≤ 1
) ≤ P

(∀t ∈ [0, T ]: Rα
t ≤ F(t)

) = P

(
sup

t∈[1,T ]
Rα

t ≤ 0
)
.

Corollary 3.1 therefore implies one bound in the assertion.
The opposite estimate can be obtained via Slepian’s lemma (cf. Theorem 3, Section 14 in [20]): Since Rα is a

centered Gaussian process with positive covariances, one obtains with the argument in Section 2.4 of [32] that

P

(
sup

t∈[0,T ]
Rα

t ≤ 1
)

≥ P

(
sup

t∈[0,1]
Rα

t ≤ 1
)
P

(
sup

t∈[1,T ]
Rα

t ≤ 1
)

≥ P

(
sup

t∈[0,1]
Rα

t ≤ 1
)
P

(
sup

t∈[1,T ]
Rα

t ≤ 0
)
.

�

3.2. Proof of Theorem 1.4

Here we give the proof of Theorem 1.4. Due to Theorem 1.1 it is sufficient to consider the question of the survival
exponent in the case when X is a Brownian motion. Therefore, we consider Rα = Iα(X), where X is a Brownian
motion.
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Proof of the existence: We use an approach from [18] involving the Lamperti transform. However, we employ the
new drift argument developed in Corollary 3.3 which could also be used in [18] to bypass the argumentation on pages
235–238. Note that the Lamperti transform of Rα ,

Yt := e−t (α+1/2)Rα
et , t ≥ 0,

is a continuous, zero mean, stationary Gaussian process with positive correlations E[YtY0] ≥ 0. Therefore, Slepian’s
lemma and the standard subadditivity argument (see Proposition 3.1 in [18]) show that the following limit exists and
equals the supremum:

lim
T →∞

1

T
logP

(
sup

t∈[0,T ]
Yt ≤ 0

)
= sup

T >0

1

T
logP

(
sup

t∈[0,T ]
Yt ≤ 0

)
.

We shall prove that this limit is actually a representation for θ(α). To see this, observe that

P

(
sup

t∈[0,logT ]
Yt ≤ 0

)
= P

(
sup

t∈[0,logT ]
e−t (α+1/2)Rα

et ≤ 0
)

= P

(
sup

t∈[0,logT ]
Rα

et ≤ 0
)

= P

(
sup

t∈[1,T ]
Rα

t ≤ 0
)
.

Thus the existence follows from Corollary 3.3.
Proof of the monotonicity: Let γ ≥ 0 and 0 < α < 1. We will show that θ(γ ) ≥ θ(γ + α).
If R

γ
s ≤ 1[0,1](s), for all s ∈ [0, T ], then

R
α+γ
t = Iα

(
Rγ

)
t
≤

{ 1
�(α)

∫ t

0 α(t − s)α−1 ds = tα

α�(α)
≤ 1

α�(α)
, t ≤ 1,

1
�(α)

∫ 1
0 α(t − s)α−1 ds = tα−(t−1)α

α�(α)
≤ 1

α�(α)
, t ≥ 1,

since α < 1. Therefore, using also the self-similarity (set λ := (α�(α))1/(α+γ+1/2)),

P
(∀s ≤ T : R

γ
s ≤ 1[0,1](s)

)
≤ P

(
∀s ≤ T : R

α+γ
s ≤ 1

α�(α)

)
= P

(∀s ≤ λT : R
α+γ
s ≤ 1

) = T −θ(α+γ )+o(1).

The left-hand side is treated with Corollary 3.1 (using f ′ = (γ + 1)�(γ + 1)1[0,1]) showing that it behaves as
T −θ(γ )+o(1). This shows the monotonicity of the survival exponent.

Finally, due to the monotonicity and the relation to random polynomials (cf. Section 4 below), one gets θ(α) ≥
b/4 > 1/8, by Theorem 3.2 in [17].

4. Application to the question of random polynomials having no real zeros

Let us finally give an application of our results to the study of zeros of random polynomials. The connection to the
one-sided exit problem was established in [8]: for i.i.d. normal random variables ξ1, ξ2, . . . one has

P

(
2n∑
i=0

ξix
i ≤ 0 ∀x ∈ R

)
= n−b+o(1), n → ∞,

where

b := −4 lim
T →∞

1

T
logP

(
sup

t∈[0,T ]
Y∞

t ≤ 0
)
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and Y∞ is the stationary Gaussian process with correlation function

corr∞(τ ) := E
[
Y∞

0 Y∞
τ

] = 2e−τ/2

1 + e−τ
.

It was shown that 0.5 < b < 1.29 (see [8,17]). Here we show the following connection to our problem and an im-
provement for the numerical value of b.

Corollary 4.1. For the decreasing function θ defined in Theorem 1.4 we have

θ(α) ≥ b/4 for all α ≥ 0.

In particular, b ≤ 4 · θ(1) = 1.

This fact gives a further motivation to find values for θ(α), α /∈ {0,1}.

Proof of Corollary 4.1. Note that it is sufficient to show the corollary for integer α, since θ is decreasing. Consider
the Lamperti transforms of the processes Rn := In(W), where W is a Brownian motion, normalized by the square
root of its variance:

Yn
t := n!√2n + 1e−(n+1/2)tRn

et .

This is a stationary, zero mean Gaussian process. One can calculate its correlation function (τ ≥ 0):

corrn(τ ) := E
[
Yn

0 Yn
τ

] = n!2(2n + 1)e−(n+1/2)τ
E

[
Rn

1Rn
eτ

]
= (2n + 1)e−(n+1/2)τ

∫ 1

0

(
eτ − u

)n
(1 − u)n du,

where the last equal sign is obtained from the following stochastic integral representation of Rn, which is immediate
from (8):

Rα
t =

∫ t

0

1

�(α + 1)
(t − u)α dWu, t ≥ 0.

It is elementary to see that

(2n + 1)e−(n+1/2)τ

∫ 1

0

(
eτ − u

)n
(1 − u)n du ≤ 2e−τ/2

1 + e−τ
, τ ≥ 0, n ≥ 1,

with equality at τ = 0. Indeed, note that

e−nτ

∫ 1

0

(
eτ − u

)n
(1 − u)n du =

∫ 1

0

[√
(1 − e−τ u)(1 − u)

]2n du ≤
∫ 1

0

(
1 − e−τ u + 1 − u

2

)2n

du.

Integrating the latter expression gives

1

2n + 1

2

e−τ + 1

(
1 −

(
1 − e−τ + 1

2

))2n+1

≤ 1

2n + 1

2

e−τ + 1
.

This implies that, for all n ≥ 1,

corrn(0) = corr∞(0) and corrn(τ ) ≤ corr∞(τ ), τ ≥ 0.
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Therefore, by Slepian’s lemma,

b = −4 lim
T →∞

1

T
log P

(
sup

t∈[0,T ]
Y∞

t ≤ 0
)

≤ −4 lim
T →∞

1

T
log P

(
sup

t∈[0,T ]
Yn

t ≤ 0
)

= −4 lim
T →∞

1

T
log P

(
sup

t∈[0,T ]
Rn

et ≤ 0
)

= −4 lim
T →∞

1

T
log P

(
sup

t∈[1,eT ]
Rn

t ≤ 0
)

= −4 lim
T →∞

1

logT
logP

(
sup

t∈[1,T ]
Rn

t ≤ 0
)

= 4 · θ(n),

where the last step follows from Corollary 3.3. �
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