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Abstract. An inequality of Brascamp and Lieb provides a bound on the covariance of two functions with respect to log-concave
measures. The bound estimates the covariance by the product of the L2 norms of the gradients of the functions, where the magnitude
of the gradient is computed using an inner product given by the inverse Hessian matrix of the potential of the log-concave measure.
Menz and Otto [Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential.
(2011) Preprint] proved a variant of this with the two L2 norms replaced by L1 and L∞ norms, but only for R

1. We prove a
generalization of both by extending these inequalities to Lp and Lq norms and on R

n, for any n ≥ 1. We also prove an inequality
for integrals of divided differences of functions in terms of integrals of their gradients.

Résumé. Une inégalité de Brascamp et Lieb donne une estimation sur la covariance entre deux fonctions par rapport à une mesure
log-concave, qui est bornée par le produit des normes L2 des gradients des fonctions, où l’amplitude du gradient est calculée
en utilisant un produit scalaire égal à l’inverse de la matrice Hessienne du potentiel de la mesure log-concave. Menz et Otto
[Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. (2011) Preprint]
ont prouvé une variante de ce résultat où les normes L2 sont remplacées par des normes L1 et L∞, mais seulement dans R

1. Nous
prouvons une généralisation de ces deux résultats, avec une extension de ces inégalités à des normes Lp et Lq dans R

n, pour tout
n ≥ 1. Nous prouvons aussi une inégalité pour des intégrales de différences divisées de fonctions à l’aide des intégrales de leurs
gradients.

MSC: 26D10
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1. Introduction

Let f be a C2 strictly convex function on R
n such that e−f is integrable. By strictly convex, we mean that the Hessian

matrix, Hessf , of f is everywhere positive.
Adding a constant to f , we may suppose that∫

Rn

e−f (x) dnx = 1.
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Let dμ denote the probability measure

dμ := e−f (x) dnx (1.1)

and let ‖ · ‖p denote the corresponding Lp(μ)-norm.
For any two real-valued functions g,h ∈ L2(μ), the covariance of g and h is the quantity

cov(g,h) :=
∫

Rn

ghdμ −
(∫

Rn

g dμ

)(∫
Rn

hdμ

)
(1.2)

and the variance of h is var(h) = cov(h,h).
The Brascamp–Lieb (BL) inequality [4] for the variance of h is

var(h) ≤
∫

Rn

(∇h,Hess−1
f ∇h

)
dμ, (1.3)

where (x, y) denotes the inner product in R
n. (We shall also use x · y to denote this same inner product in simpler

expressions where it is more convenient.)
Since (cov(g,h))2 ≤ var(g)var(h), an immediate consequence of (1.3) is

(
cov(g,h)

)2 ≤
∫

Rn

(∇g,Hess−1
f ∇g

)
dμ

∫
Rn

(∇h,Hess−1
f ∇h

)
dμ. (1.4)

The one-dimensional variant of (1.4), due to Otto and Menz [12], is

∣∣ cov(g,h)
∣∣ ≤ ‖∇g‖1

∥∥Hess−1
f ∇h

∥∥∞ = sup
x

{ |h′(x)|
f ′′(x)

}∫
R

∣∣g′(x)
∣∣dμ(x) (1.5)

for functions g and h on R
1. They call this an asymmetric Brascamp–Lieb inequality. Note that it is asymmetric in

two respects: One respect is to take an L1 norm of ∇g and an L∞ norm of ∇h, instead of L2 and L2. The second
respect is that the L∞ norm is weighted with the inverse Hessian – which here is simply a number – while the L1

norm is not weighted.
Our first result is the following theorem, which generalizes both (1.4) and (1.5).

Theorem 1.1 (Asymetric BL inequality). Let dμ(x) be as in (1.1) and let λmin(x) denote the least eigenvalue of
Hessf (x). For any locally Lipschitz functions g and h on R

n that are square integrable with respect to dμ, and for
2 ≤ p ≤ ∞, 1/p + 1/q = 1,

∣∣ cov(g,h)
∣∣ ≤ ∥∥Hess−1/p

f ∇g
∥∥

q

∥∥λ
(2−p)/p

min Hess−1/p
f ∇h

∥∥
p
. (1.6)

This is sharp in the sense that (1.6) cannot hold, generally, with a constant smaller than 1 on the right side.

For p = 2, (1.6) is (1.4). Note that (1.6) implies in particular that for Lipschitz functions g,h on R
n,

∣∣ cov(g,h)
∣∣ ≤ ∥∥λ

−1/p

min ∇g
∥∥

q

∥∥λ
−1/q

min ∇h
∥∥

p
.

For p = ∞ and q = 1, the latter is∣∣ cov(g,h)
∣∣ ≤ ‖∇g‖1

∥∥λ−1
min∇h

∥∥∞ (1.7)

which for n = 1 reproduces exactly (1.5).
We also prove the following theorem. In addition to its intrinsic interest, it gives rise to an alternative proof, which

we give later, of Theorem 1.1 in the case p = ∞ (though this proof only yields the sharp constant for R
1, which is the

original Otto–Menz case (1.5)).
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Theorem 1.2 (Divided differences and gradients). Let μ be a probability measure with log-concave density (1.1).
For any locally Lipschitz function h on R

n,∫
Rn

∫
Rn

|h(x) − h(y)|
|x − y| dμ(x)dμ(y) ≤ 2n

∫
Rn

∣∣∇h(x)
∣∣dμ. (1.8)

Remark 1.3. The constant 2n is not optimal, as indicated by the examples in Section 4 (we will actually briefly
mention how to reach the constant 2n/2). We do not know whether the correct constant grows with n (and then how),
or is bounded uniformly in n. We do know that for n = 1, the constant is at least 2 ln 2. We will return to this later.

The rest of the paper is organized as follows: Section 2 contains the proof of Theorem 1.1, and Section 3 contains
the proof of Theorem 1.2, as well as an explanation of the connection between the two theorems. Section 4 contains
comments and examples concerning the constant and optimizers in Theorem 1.2. Section 5 contains a discussion of
an application that motivated Otto and Menz, and finally, the Appendix provides some additional details on the orig-
inal proof of the Brascamp–Lieb inequalities, which proceeds by induction on the dimension, and has an interesting
connection with the application discussed in Section 5.

We end this introduction by expressing our gratitude to D. Bakry and M. Ledoux for fruitful exchanges on the
preliminary version of our work. We originally proved (1.7) with the constant n2n using Theorem 1.2, as explained
in Section 3. Bakry and Ledoux pointed out to us that using a stochastic representation of the gradient along the
semi-group associated to μ (sometimes referred to as the Bismut formula), one could derive inequality (1.7) with the
right constant 1. This provided evidence that something more algebraic was at stake. It was confirmed by our general
statement Theorem 1.1 and by its proof below.

2. Bounds on covariance

The starting point of the proof we now give for Theorem 1.1 is a classical dual representation for the covariance which,
in the somewhat parallel setting of plurisubharmonic potentials, goes back to the work of Hörmander. We shall then
adapt to our Lp setting Hörmander’s L2 approach [8] to spectral estimates.

Let g and h be smooth and compactly supported on R
n. Define the operator L by

L = Δ − ∇f · ∇ (2.1)

and note that∫
Rn

g(x)Lh(x)dμ(x) = −
∫

Rn

∇g(x) · ∇h(x)dμ(x), (2.2)

so that L is self-adjoint on L2(μ). Let us (temporarily) add ε|x|2 to f to make it uniformly convex, so that the Hessian
of f is invertible and so that the operator L has a spectral gap. (Actually, L always has a spectral gap since μ is a
log-concave probability measure, as noted in [1,9]. Our simple regularization makes our proof independent of these
deep results.)

Then provided∫
Rn

h(x)dμ(x) = 0, (2.3)

u := −
∫ ∞

0
etLh(x)dt (2.4)

exists and is in the domain of L, and satisfies Lu = h.
Thus, assuming (2.3), and by standard approximation arguments,

cov(g,h) =
∫

Rn

g(x)h(x)dμ(x) =
∫

Rn

g(x)Lu(x)dμ(x)

= −
∫

Rn

∇g(x) · ∇u(x)dμ(x). (2.5)
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This representation for the covariance is the starting point of the proof we now give for Theorem 1.1.

Proof of Theorem 1.1. Fix 2 ≤ p < ∞, and let q = p/(p − 1), as in the statement of the theorem. Suppose h

satisfies (2.3), and define u by (2.4) so that Lu = h. Then from (2.5),

∣∣ cov(g,h)
∣∣ ≤

∣∣∣∣
∫

Rn

∇g(x) · ∇u(x)dμ(x)

∣∣∣∣
≤

∫
Rn

∣∣Hess−1/p
f ∇g(x) · Hess1/p

f ∇u(x)
∣∣dμ(x)

≤ ∥∥Hess−1/p
f ∇g(x)

∥∥
q

∥∥Hess1/p
f ∇u(x)

∥∥
p
. (2.6)

Thus, to prove (1.6) for 2 ≤ p < ∞, it suffices to prove the following W−1,p–W 1,p type estimate:∥∥Hess1/p
f ∇u(x)

∥∥
p

≤ ∥∥λ
(2−p)/p

min Hess−1/p
f ∇h

∥∥
p
. (2.7)

Toward this end, we compute

L
(|∇u|p) = p|∇u|p−2(L∇u) · ∇u

+ p|∇u|p−2 Tr
(
Hess2

u

) + p(p − 2)|∇u|p−4|Hessu ∇u|2

≥ p|∇u|p−2(L∇u) · ∇u, (2.8)

where we have used the fact that p ≥ 2, and where the notation L(∇u) refers to the coordinate-wise action
(L∂1u, . . . ,L∂nu) of L.

Then, using the commutation formula (see the remark below)

L(∇u) = ∇(Lu) + Hessf ∇u, (2.9)

we obtain

0 =
∫

Rn

L
(|∇u|p)

dμ(x) ≥ p

∫
Rn

|∇u|p−2∇u · ∇hdμ(x) + p

∫
Rn

|∇u|p−2∇u · Hessf ∇udμ(x),

and hence∫
Rn

|∇u|p−2
∣∣Hess1/2

f ∇u
∣∣2 dμ(x) ≤

∫
Rn

|∇u|p−2
∣∣Hess1/p

f ∇u
∣∣∣∣Hess−1/p

f ∇h
∣∣dμ(x). (2.10)

We now observe that for any positive n × n matrix and any vector v ∈ R
n,∣∣A1/pv

∣∣p ≤ |v|p−2
∣∣A1/2v

∣∣2
.

To see this, note that we may suppose |v| = 1. Then in the spectral representation of A, by Jensen’s inequality,

∣∣A1/pv
∣∣ =

(
n∑

j=1

λ
1/p
j v2

j

)1/2

≤
(

n∑
j=1

λ
1/2
j v2

j

)1/p

.

Using this on the left side of (2.10), and using the obvious estimate

|∇u| ≤ λ
−1/p

min

∣∣Hess1/p
f ∇u

∣∣
on the right, we have

∥∥Hess1/p
f ∇u

∥∥p

p
≤

∫
Rn

∣∣Hess1/p
f ∇u

∣∣p−1∣∣λ(2−p)/p

min Hess−1/p
f ∇h

∣∣dμ(x). (2.11)
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Then by Hölder’s inequality we obtain (2.7).
It is now obvious that we can take the limit in which ε tends to zero, so that we obtain the inequality without any

additional hypotheses on f . Our calculations so far have required 2 ≤ p < ∞, however, having obtained the inequality
for such p, by taking the limit in which p goes to infinity, we obtain the p = ∞, q = 1 case of the theorem.

Finally, considering the case in which

dμ(x) = (2π)−n/2e−|x|2 dx,

and g = h = x1, we have that Hessf = Id and so

λmin = ∣∣Hess−1/p
f ∇g

∣∣ = ∣∣Hess−1/p
f ∇h

∣∣ = 1

for all x, and so the constant is sharp, as claimed. �

Remark 2.1. Many special cases and variants of the commutation relation (2.9) are well-known under different names.
Perhaps most directly relevant here is the case in which f (x) = |x|2/2. Then ∂j and its adjoint in L2(μ), ∂∗

j = xj −∂j ,
satisfy the canonical commutation relations, and the operator L = −∑n

j=1 ∂∗
j ∂j is (minus) the Harmonic oscillator

Hamiltonian in the ground state representation. This special case of (2.9), in which the Hessian on the right is the
identity, is the basis of the standard determination of the spectrum of the quantum harmonic oscillator using “raising
and lowering operators.”

In the setting of Riemannian manifolds, a commutation relation analogous to (2.9) in which L is the Laplace–
Beltrami operator and the Hessian is replaced by Ric, the Ricci curvature tensor, is known as the Bochner–
Lichnerowicz formula. Both the Hessian version (2.9) and the Bochner–Lichnerowicz version have been used a number
of times to prove inequalities related to those we consider here, for instance in the work of Bakry and Emery on loga-
rithmic Sobolev inequalities.

We note that our proof immediately extends, word for word, to the Riemannian setting if we use, in place of (2.9)
the commutation satisfied by the operator L given by (2.1) where f is a (smooth) potential on the manifold; That is,
with some abuse of notation, L(∇u) = ∇(Lu) + Hessf ∇u + Ric∇u, or rather, more rigorously,

L
(|∇u|p) ≥ p|∇u|p−2[∇(Lu) · ∇u + Hessf ∇u · ∇u + Ric∇u · ∇u

]
.

Thus, an analog of Theorem 1.1 holds on a Riemannian manifold M equipped with a probability measure

dμ(x) = e−f (x) d vol(x),

where d vol is the Riemannian element of volume and f a smooth function on M , provided Hessf at each point x is
replaced in the statement by the symmetric operator

Hx = Hessf (x) + Ricx

defined on the tangent space. Of course, the convexity condition on f is accordingly replaced by the assumption that
Hx > 0 at every point x ∈ M .

3. Bounds on differences

Proof of Theorem 1.2. Since h(x) − h(y) = ∫ 1
0 ∇h(xt ) · (x − y)dt , we have

∣∣h(x) − h(y)
∣∣ ≤ |x − y|

∫ 1

0

∣∣∇h(xt )
∣∣dt, where xt := tx + (1 − t)y. (3.1)

Next, by the convexity of f ,

e−f (x)e−f (y) = e−(1−t)f (x)e−tf (y)e−tf (x)e−(1−t)f (y) ≤ e−f (xt )e−(1−t)f (x)e−tf (y). (3.2)
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Introduce the variables

w = tx + (1 − t)y,

z = x − y. (3.3)

A simple computation of the Jacobian shows that this change of variables is a measure preserving transformation for
all 0 ≤ t ≤ 1, and hence∫

Rn

∫
Rn

|h(x) − h(y)|
|x − y| dμ(x)dμ(y)

≤
∫ 1

0

(∫
Rn

∫
Rn

∣∣∇h(w)
∣∣e−(1−t)f (w+(1−t)z)e−tf (w−tz) dz dμ(w)

)
dt. (3.4)

We estimate the right side of (3.4). By Hölder’s inequality,∫
Rn

e−(1−t)f (w+(1−t)z)e−tf (w−tz) dnz

≤
(∫

Rn

e−f (w+(1−t)z) dz

)1−t(∫
Rn

e−f (w−tz) dz

)t

. (3.5)

But ∫
Rn

e−f (w+(1−t)z) dz = (1 − t)−n and
∫

Rn

e−f (w−tz) dz = t−n,

and finally, (1 − t)−n(1−t)t−nt = e−n(t log t+(1−t) log(1−t)) ≤ 2n. �

A corollary of Theorem 1.2 is a proof of Theorem 1.1 for the special case of q = 1 and p = ∞. This proof is not
only restricted to this case, it also has the defect that the constant is not sharp, except in one-dimension. We give it,
nevertheless, because it establishes a link between the two theorems.

Alternative proof of Theorem 1.1 for q = 1. We shall use the identity

cov(g,h) = 1

2

∫
Rn

∫
Rn

[
g(x) − g(y)

][
h(x) − h(y)

]
dμ(x)dμ(y), (3.6)

and estimate the differences on the right in different ways.
Fix any x 
= y in R

n, and define the vector v := x − y, and for 0 ≤ t ≤ 1, define xt = y + tv = tx + (1 − t)y. Then
for any Lipschitz function h,

h(x) − h(y) =
∫ t

0
v · ∇h(xt )dt. (3.7)

Now note that

d

dt
v · ∇f (xt ) = (

v,Hessf (xt )v
) ≥ |x − y|2λmin(xt ) > 0. (3.8)

Integrating this in t from 0 to 1, we obtain

(
x − y,∇f (x) − ∇f (y)

) =
∫ 1

0

(
v,Hessf (xt )v

)
dt > 0 (3.9)

which expresses the well-known monotonicity of gradients of convex functions.
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Next, multiplying and dividing by (v,Hessf (xt )v) in (3.7), we obtain

∣∣h(x) − h(y)
∣∣ =

∣∣∣∣
∫ 1

0

(
v,Hessf (xt )v

)(
v,Hessf (xt )v

)−1
v · ∇h(xt )dt

∣∣∣∣
≤

∫ 1

0

(
v,Hessf (xt )v

)∣∣(v,Hessf (xt )v
)−1

v · ∇h(xt )
∣∣dt

≤
∫ 1

0

(
v,Hessf (xt )v

)∣∣(λmin(xt )
)−1|x − y|−2v · ∇h(xt )

∣∣dt

≤ sup
z∈Rn

{ |∇h(z)|
λmin(z)

}
|x − y|−1

∫ 1

0

(
v,Hessf (xt )v

)
dt

= sup
z∈Rn

{ |∇h(z)|
λmin(z)

}
|x − y|−1(x − y,∇f (x) − ∇f (y)

)
. (3.10)

Define

C := sup
z∈Rn

{ |∇h(z)|
λmin(z)

}

and use (3.10) in (3.6):

∣∣ cov(g,h)
∣∣ ≤ 1

2

∫
Rn

∫
Rn

∣∣g(x) − g(y)
∣∣∣∣h(x) − h(y)

∣∣dμ(x)dμ(y)

≤ C

2

∫
Rn

∫
Rn

∣∣g(x) − g(y)
∣∣ 1

|x − y| (x − y) · [∇f (x) − ∇f (y)
]

dμ(x)dμ(y)

= C

2

∫
Rn

∫
Rn

∣∣g(x) − g(y)
∣∣ 1

|x − y| (x − y) · [∇ye−f (y)e−f (x) − ∇xe−f (x)e−f (y)
]

dnx dny

= −C

∫
Rn

∫
Rn

∣∣g(x) − g(y)
∣∣ 1

|x − y| (x − y) · ∇xe−f (x)e−f (y) dnx dny,

where, in the last line, we have used symmetry in x and y.
Now integrate by parts in x. Suppose first that n > 1. Then

div

(
1

|z|z
)

= n − 1

|z|
and |∇x |g(x) − g(y)|| = |∇xg(x)| almost everywhere. Hence we obtain

∣∣ cov(g,h)
∣∣ ≤ C

(∫
Rn

∣∣∇g(x)
∣∣dμ(x) + (n − 1)

∫
Rn

∫
Rn

|g(x) − g(y)|
|x − y| dμ(x)dμ(y)

)
. (3.11)

For n = 1, div( 1
|z|z) = 2δ0(z) and (3.11) is still valid since |g(x) − g(y)|δ0(x − y) = 0.

Now, for n = 1, (3.11) reduces directly to (1.5). For n > 1, it reduces to (1.7) upon application of Theorem 1.2, but
with the constant n2n instead of 1. �

4. Examples and remarks on optimizers in Theorem 1.2

Our first examples address the question of the importance of log-concavity.
(1) Some restriction on μ is necessary: If a measure dμ(x) = F(x)dx on R has F(a) = 0 for some a ∈ R, and F

has positive mass to the left and right of a, then inequality (1.8) cannot possibly hold with any constant. The choice
of h to be the Heaviside step function shows that (1.8) cannot hold with any constant for this μ.
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(2) Unimodality is not enough: Take dμ(x) = F(x)dx, with F(x) = 1/4ε on (−ε, ε) and F(x) = 1/4(1 − ε)

otherwise on the interval (−1,1) and F(x) = 0 for |x| > 1. Let g(x) = 1 for |x| < ε + δ and g(x) = 0 otherwise.
When δ is positive but small,∫

R

|∇g|dμ(x) = 1/2(1 − ε)

while ∫
R

∫
R

|g(x) − g(y)|
|x − y| dμ(x)dμ(y) = O

(− ln(ε)
)
.

(3) For n = 1, the best constant in (1.8) is at least 2 ln 2: Take dμ(x) = F(x)dx, with F(x) = 1/2 on (−1,1) and
F(x) = 0 for |x| > 1. Let g(x) = 1 for x ≥ 0 and g(x) = 0 for x < 0. All integrals are easily computed.

(4) The best constant is achieved for characteristic functions: When seeking the best constant in (1.8), it suffices, by
a standard truncation argument, to consider bounded Lipschitz functions h. Then, since neither side of the inequality
is affected if we add a constant to h, it suffices to consider non-negative Lipschitz functions. We use the layer-cake
representation [11]:

h(x) =
∫ ∞

0
χ{h>t}(x)dt.

Then ∫
Rn

∫
Rn

|h(x) − h(y)|
|x − y| dμ(x)dμ(y) ≤

∫ ∞

0

∫
Rn

∫
Rn

|χ{h>t}(x) − χ{h>t}(y)|
|x − y| dμ(x)dμ(y)dt. (4.1)

Define Cn to be the best constant for characteristic functions of sets A and log-concave measures μ:

Cn := sup
f,A

{∫
Rn

∫
Rn |χA(x) − χA(y)|/|x − y|dμ(x)dμ(y)∫

∂A
e−f (x) dHn−1(x)

}
, (4.2)

where Hn−1 denotes n − 1 dimensional Hausdorff measure. Apply this to (4.1) to conclude that∫
Rn

∫
Rn

|h(x) − h(y)|
|x − y| dμ(x)dμ(y) ≤ Cn

∫ ∞

0

∫
∂χ{h>t}

e−f (x) dHn−1(x)dt

= Cn

∫
Rn

∣∣∇h(x)
∣∣dμ(x), (4.3)

where the co-area formula was used in the last line. Thus, inequality (1.8) holds with the constant Cn; in short, it
suffices to consider characteristic functions as trial functions. Note that the argument is also valid at the level of each
measure μ individually, although we are interested here in uniform bounds.

With characteristic functions in mind, let us consider the case that g is the characteristic function of a half-space
in R

n. Without loss of generality let us take this to be {x: x1 < 0}. Clearly, the left side of (1.8) is less than the integral
with |x − y|−1 replaced by |x1 − y1|−1. Since the marginal (obtained by integrating over x2, . . . , xn) of a log-concave
function is log-concave, we see that our inequality reduces to the one-dimensional case. In other words, the constant
Cn in (4.2) would equal C1, independent of n, if the supremum were restricted to half-spaces instead of to arbitrary
measurable sets.

(5) Improved constants and geometry of log-concave measures: With additional assumptions on the measure one
can see that the constant is not only bounded in n, but of order 1/

√
n. We are grateful to F. Barthe and M. Ledoux for

discussions and improvements in particular cases concerning the constant in Theorem 1.2. This relies on the Cheeger
constant α(μ)−1 > 0 associated to the log-concave probability measure dμ, which is defined to be the best constant
in the inequality

∀A ⊂ R
n(regular enough), μ(A)

(
1 − μ(A)

) ≤ α(μ)

∫
∂A

e−f (x) dHn−1(x).
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M. Ledoux suggested the following procedure. Split the function |x − y|−1 into two pieces according to whether
|x − y| is less than or greater than R, for some R > 0. With h being the characteristic function of A, the contribution
to the left side of (4.3) for |x − y| > R is bounded above by 2R−1α(μ)

∫
∂A

e−f (x) dHn−1(x). The contribution for
|x − y| ≤ R is bounded above in the same manner as in the proof of Theorem 1.2, but this time we only have to
integrate z over the domain |z| ≤ R in each of the integrals in (3.5). Thus, our bound 2n is improved by a factor, which
is the dμ volume of the ball BR = {|z| ≤ R}, once we used the Brunn–Minkowski inequality for the bound

μ
(
(1 − t)BR + w

)1−t
μ(tBR + w)t ≤ μ(BR + w) ≤ μ(BR) := sup

x
μ(BR + x).

The final step is to optimize the sum of the contributions of the two terms with respect to R. Thus, if we denote Cn(μ)

the best constant in the inequality (1.8) of Theorem 1.2 for a fixed measure μ, we have

Cn(μ) ≤ inf
R>0

{
2nμ(BR) + 2R−1α(μ)

} ≤ 2n. (4.4)

Note that if μ is symmetric (i.e. if f is even), then the Brunn–Minkowski inequality ensures that μ(BR) = μ(BR).
Unlike in (1.8), this improved bound depends on μ but there are situation where this gives optimal estimates as

pointed out to us by F. Barthe. As an example, consider the case where μ is the standard Gaussian measure on R
n.

Using the known value of the Cheeger constant for this μ, and linear trial functions, one finds that the constant is
bounded above and below by a constant times n−1/2.

Actually, we can use (4.4) to improve the constant from 2n to 2n/2 for arbitrary measures using some recent results
from the geometry of log-concave measures. Without loss of generality, we can assume, by translation of μ, that∫ |x|dμ(x) = infv

∫ |x + v|dμ(x) =: Mμ. It was proved in [1,9] that for every log-concave measure on R
n,

α(μ) ≤ cMμ,

where c > 0 is some numerical constant (meaning a possibly large, but computable, constant, in particular independent
of n and μ, of course). On the other hand, it was proved by Guédon [7] that for every log-concave measure ν on R

n

ν(BR) ≤ C∫ |x|dν
R

for some numerical constant C > 0. In the case μ is not symmetric, we pick v such that μ(Br + v) = μ(BR), and then
we apply the previous bound to ν(·) = μ(· + v) in order to get that μ(BR) ≤ C

Mμ
. Using these two estimates in (4.4)

we see that

Cn(μ) ≤ inf
s>0

{
C2ns + c/s

} = κ2n/2

for some numerical constant κ > 0.
The Brascamp–Lieb inequality (1.3), as well as inequality (1.8), have connections with the geometry of convex

bodies. It was observed in [2] that (1.3) can be deduced from the Prékopa–Leindler inequality (which is a functional
form of the Brunn–Minkowski inequality). But the converse is also true: the Prékopa theorem follows, by a local
computation, from the Brascamp–Lieb inequality (see [5] where the procedure is explained in the more general com-
plex setting). To sum up, the Brascamp–Lieb inequality (1.3) can be seen as the local form of the Brunn–Minkowski
inequality for convex bodies.

5. Application to conditional expectations

Otto and Menz were motivated to prove (1.5) for an application that involves a large amount of additional structure
that we cannot go into here. We shall however give an application of Theorem 1.1 to a type of estimate that is related
to one of the central estimates in [12].

We use the notation in [4], which is adapted to working with a partitioned set of variables. Write a point x ∈ R
n+m

as x = (y, z) with y ∈ R
m and z ∈ R

n. For a function A on R
n+m, let 〈A〉z(y) denote the conditional expectation of A
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given y, with respect to μ. For a function B of y alone, 〈B〉y is the expected value of B , with respect to μ. As in [4],
a subscript y or z on a function denotes differentiation with respect to y or z, while a subscript y or z on a bracket
denotes integration. For instance, for a function g on R

n+m, gy denotes the vector (
∂g
∂yi

)i≤n in R
n, and for i ≤ n, gyiz

denotes the vector (
∂2g

∂yi∂zj
)j≤m in R

m. Finally, (gyz) denotes the n × m matrix having the previous vectors as rows.
Let h be non-negative with 〈h〉x = 1 so that h(x)dμ(x) is a probability measure, and so is 〈h〉z(y)dν(y), where

dν(y) is the marginal distribution of y under dμ(x).
A problem that frequently arises [3,6,10,12,13] is to estimate the Fisher information of 〈h〉z(y)dν(y) in terms of

the Fisher information of h(x)dμ(x) by proving an estimate of the form

〈 |(〈h〉z)y |2
〈h〉z

〉
y

≤ C

〈 |hx |2
h

〉
x

. (5.1)

Direct differentiation under the integral sign in the variable yi gives

(〈h〉z
)
yi

= 〈hyi
〉z − covz(h,fyi

),

where covz denotes the conditional covariance of h(y, z) and fyi
(y, z), integrating in z for each fixed y. Let u =

(u1, . . . , um) be any unit vector in R
m. Then, for each y,

(〈h〉z
)
y

· u =
m∑

i=1

(〈h〉z
)
yi

ui =
m∑

i=1

〈hyi
〉zui −

m∑
i=1

covz(h,fyi
)ui

= 〈hy〉z · u − covz(h,fy · u),

and hence, choosing u to maximize the left hand side,

∣∣(〈h〉z
)
y

∣∣2 ≤ 2
∣∣〈hy〉z

∣∣2 + 2
(
covz(h,fy · u)

)2
. (5.2)

By (1.6),∣∣ covz(h,fy · u)
∣∣ ≤ 〈|hz|

〉
z

∥∥λ−1
min

∣∣(fy · u)z
∣∣∥∥∞. (5.3)

Note that the least eigenvalue of the n × n block fzz is at least as large as the least eigenvalue λmin(y, z) of the full
Hessian, by the variational principle. Hence, while we are entitled to use the least eigenvalue of the n×n block fzz of
the full (n + m) × (n + m) Hessian matrix fxx , and this would be important in the application in the one-dimensional
case made in [12], here, without any special structure to take advantage of, we simply use the least eigenvalue of the
full matrix in our bound.

Next note that

∣∣(fy · u)z
∣∣2 ≤

m∑
i=1

(
n∑

j=1

(fyi ,zj
)2

)
u2

i ,

and that
∑n

j=1(fyi ,zj
)2 is the i, i entry of f T

yzfyz where fyz denotes the upper right corner block of the Hessian
matrix. This number is no greater than the i, i entry of the square of the full Hessian matrix. This, in turn, is no greater
than λ2

max. Then, since u is a unit vector, we have∣∣(fy · u)z
∣∣ ≤ λmax.

Using this in (5.3), we obtain∣∣ covz(h,fy · u)
∣∣ ≤ 〈|hz|

〉
z
‖λmax/λmin‖∞, (5.4)
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and then from (5.2)∣∣(〈h〉z
)
y

∣∣2 ≤ 2
∣∣〈hy〉z

∣∣2 + 2‖λmax/λmin‖2∞
〈|hz|

〉2
z
. (5.5)

Then the Cauchy–Schwarz inequality yields

(〈|hz|
〉
z

)2 ≤
〈 |hz|2

h

〉
z

〈h〉z. (5.6)

Use this in (5.5), divide both sides by 〈h〉z, and integrate in y. The joint convexity in A and α > 0 of A2/α yields (5.1)
with the constant C = 2‖λmax/λmin‖2∞.

The bound we have obtained becomes useful when λmax(x)/λmin(x) is bounded uniformly. Suppose that f (x) has
the form f (x) = ϕ(|x|2). Then the eigenvalues of the Hessian of f are 2ϕ′(|x|2), with multiplicity m + n − 1, and
4ϕ′′(|x|2)|x|2 + 2ϕ′(|x|2), with multiplicity 1. Then both eigenvalues are positive, and the ratio is bounded, whenever
ϕ′ is positive and, for some c < 1 < C < ∞,

−cϕ′(s) ≤ sϕ′′(s) ≤ Cϕ′(s).

Remark 5.1 (Other asymmetric variants of the BL inequality). Together, (5.3) and (5.6) yield

(covz(h,fy · u))2

〈h〉z ≤
〈 |hz|2

h

〉
z

∥∥λ−1
min(fy · u)z

∥∥2
∞.

A weaker inequality is

(covz(h,fy · u))2

〈h〉z ≤
〈 |hz|2

h

〉
z

∥∥λ−1
min

∥∥2
∞

∥∥(fy · u)z
∥∥2

∞. (5.7)

In the context of the application in [12], finiteness of ‖(fy · u)z‖∞ limits f to quadratic growth at infinity. A major
contribution of [12] is to remove this limitation in applications of (5.1). The success of this application of (1.5)
depended on the full weight of the inverse Hessian being allocated to the L∞ term.

Nonetheless, once the topic of asymmetric BL inequalities is raised, one might enquire whether an inequality of the
type ∣∣ cov(g,h)

∣∣ ≤ C‖∇g‖∞
∥∥Hess−1

f ∇h
∥∥

1 (5.8)

can hold for any constant C. There is no such inequality, even in one dimension. To see this, suppose that for some
a ∈ R and some ε > 0, fxx > M on (a−ε, a+ε). Take h(x) = 1 for x > a and h(x) = 0 for x ≤ a. Take g(x) = x −a.
Suppose that f is even about a. Then cov(g,h) = ∫ ∞

a
(x − a)e−f (x) dx, while ‖Hess−1

f ∇h‖1 ≤ M−1, and f can be
chosen to make M arbitrarily large while keeping ‖∇g‖∞ ≤ 1, and cov(g,h) bounded away from zero.

Appendix

We recall that the original proof of (1.3), Theorem 4.1 of [4], used dimensional induction, though interesting non-
inductive proofs have since been provided [2].

The starting point for the inductive proof is that the proof for n = 1 is elementary. The proof of the inductive
step is more involved, and we take this opportunity to provide more detail about the passage from Eq. (4.9) of [4] to
Eq. (4.10) of [4]. There is an interesting connection with the application discussed in the previous section, which also
concerns 〈hy〉z − covz(h,fy). We continue using the notation introduced there, but now m = 1 (i.e. y ∈ R).

Equation (4.9) reads var(h) ≤ 〈B〉y where

B = varz(h) + [〈hy〉z − covz(h,fy)]2

〈fyy〉z − varz fy

. (A.1)
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Our goal is to prove

B ≤ 〈(
hz,f

−1
zz hz

)〉
z
+ 〈hy − (hz, f

−1
zz fyz)〉2

z

〈fyy − (fyz, f
−1
zz fyz)〉z

. (A.2)

To do this, use the inductive hypothesis; i.e., for any H on R
n−1,

varz(H) ≤ 〈
Hz,f

−1
zz Hz

〉
z
. (A.3)

Apply this to arbitrary linear combination H = λh + μfy to conclude the 2 × 2 matrix inequality[
varz(h) covz(h,fy)

covz(h,fy) varz(fy)

]
≤

[ 〈(
hz,f

−1
zz hz

)〉
z

〈(
hz,f

−1
zz fyz

)〉
z〈(

fyz, f
−1
zz hz

)〉
z

〈(
fyz, f

−1
zz fyz

)〉
z

]
.

Take the determinant of the difference to find that

〈(
hz,f

−1
zz hz

)〉
z
− varz(h) ≥ [〈(hz, f

−1
zz fyz)〉z − covz(h,fy)]2

〈(fyz, f
−1
zz fyz)〉z − varz(fy)

. (A.4)

Combine (A.1) and (A.4) to obtain

B ≤ 〈(
hz,f

−1
zz hz

)〉
z
+ [〈hy〉z − covz(h,fy)]2

〈fyy〉z − varz(fy)
− [〈(hz, f

−1
zz fyz)〉z − covz(h,fy)]2

〈(fyz, f
−1
zz fyz)〉z − varz(fy)

. (A.5)

Since a2/α is jointly convex in a and α > 0, and is homogeneous of degree one, for all α > β > 0 and all a and b,

a2

α
≤ b2

β
+ (a − b)2

α − β
.

That is, a2/α − b2/β ≤ (a − b)2/(α − β). Use this on the right side of (A.5) to obtain (A.2), noting that the positivity
of α − β = 〈fyy〉z − 〈(fyz, f

−1
zz fyz)〉z is a consequence of the positivity of the Hessian of f .
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