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Abstract. We consider a discrete-time version of the parabolic Anderson model. This may be described as a model for a directed
(1 + d)-dimensional polymer interacting with a random potential, which is constant in the deterministic direction and i.i.d. in the
d orthogonal directions. The potential at each site is a positive random variable with a polynomial tail at infinity. We show that, as
the size of the system diverges, the polymer extremity is localized almost surely at one single point which grows ballistically. We
give an explicit characterization of the localization point and of the typical paths of the model.

Résumé. Nous considérons une version discrète du modèle parabolique d’Anderson. Ceci nous permet, par exemple, d’étudier un
polymère dirigé en dimension 1 + d qui interagit avec un potentiel constant dans la direction déterministe et i.i.d. dans l’hyperplan
orthogonal. Le potentiel en chaque site est une variable aléatoire positive dont la queue décroît polynomialement. Nous prouvons
que, lorsque la taille du système tend vers l’infini, l’extrémité du polymère se localise presque surement en un site unique, que nous
caractérisons et qui s’éloigne balistiquement de l’origine. Nous donnons également une caractérisation du comportement typique
des trajectoires de ce modèle.
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1. Introduction and results

The model we consider is built on two main ingredients, a random walk S and a random potential ξ . We start describing
these ingredients. A word about notation: throughout the paper, we denote by | · | the �1 norm on R

d , that is |x| =
|x1| + · · · + |xd | for x = (x1, . . . , xd), and we set BN := {x ∈ Z

d : |x| ≤ N}.

1.1. The random walk

Let S = {Sk}k≥0 denote the coordinate process on the space ΩS := (Zd)N0:={0,1,2,...}, that we equip as usual with the
product topology and σ -field. We denote by P the law on ΩS under which S is a (lazy) nearest-neighbor random walk
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started at zero, that is P(S0 = 0) = 1 and under P the variables {Sk+1 − Sk}k≥0 are i.i.d. with P(S1 = y) = 0 if |y| > 1.
We also assume the following irreducibility conditions:

P(S1 = 0) =: κ > 0 and P(S1 = y) > 0 ∀y ∈ Z
d with |y| = 1. (1.1)

The usual assumption E(S1) = 0 is not necessary. For x ∈ Z
d , we denote by Px the law of the random walk started at

x, that is Px(S ∈ ·) := P(S + x ∈ ·).
We could actually deal with random walks with finite range, i.e., for which there exists R > 0 such that P(S1 =

y) = 0 if |y| > R, but we stick for simplicity to the case R = 1.

1.2. The random potential

We let ξ = {ξ(x)}x∈Zd denote a family of i.i.d. random variables taking values in R
+, defined on some probability

space (Ωξ , F ,P), which should not be confused with ΩS . We assume that the variables ξ(x) are Pareto distributed,
that is

P
(
ξ(0) ∈ dx

) = α

x1+α
1[1,∞)(x)dx (1.2)

for some α ∈ (0,∞). Although the precise assumption (1.2) on the law of ξ could be relaxed to a certain extent, we
prefer to keep it for the sake of simplicity.

In the sequel we could work with the product space ΩS × Ωξ , equipped with the product probability P ⊗ P, under
which ξ and S are independent, but it is actually not necessary, because ξ and S will act on a separate level, as it will
be clear in a moment.

1.3. The model

Given N ∈ N := {1,2,3, . . .} and a P-typical realization of the variables ξ = {ξ(y)}y∈Zd , our model is the probability
PN,ξ on ΩS defined by

dPN,ξ

dP
(S) := 1

UN,ξ

eHN,ξ (S), where HN,ξ (S) :=
N∑

i=1

ξ(Si) (1.3)

and the normalizing constant UN,ξ (partition function) is of course

UN,ξ := E
[
eHN,ξ (S)

] = E

[
exp

(
N∑

i=1

ξ(Si)

)]
. (1.4)

We stress that we are dealing with a quenched disordered model: we are interested in the properties of the law PN,ξ

for P-typical but fixed realizations of the potential ξ .
Let us also introduce the constrained partition function uN,ξ (x), defined for x ∈ Z

d by

uN,ξ (x) := E

[
exp

(
N∑

i=1

ξ(Si)

)
1{SN=x}

]
(1.5)

so that UN,ξ = ∑
x∈Zd uN,ξ (x). Note that the law of SN under PN,ξ is given by

pN,ξ (x) := PN,ξ (SN = x) = uN,ξ (x)

UN,ξ

= uN,ξ (x)∑
y∈Zd uN,ξ (y)

. (1.6)

The law PN,ξ admits the following interpretation: the trajectories {(i, Si)}0≤i≤N model the configurations of
a (1 + d)-dimensional directed polymer of length N which interacts with the random potential (or environment)
{ξ(x)}x∈Zd . The random variable ξ(x) should be viewed as a reward sitting at site x ∈ Z

d , so that the energy of each
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polymer configuration is given by the sum of the rewards visited by the polymer. On an intuitive ground, the polymer
configurations should target the sites where the potential takes very large values. The corresponding energetic gain
entails of course an entropic loss, which however should not be too relevant, in view of the heavy tail assumption (1.2).
As we are going to see, this is indeed what happens, in a very strong form.

Besides the directed polymer interpretation, PN,ξ is a law on ΩS = (Zd)N0 which may be viewed as a natural
penalization of the random walk law P. In particular, when looking at the process {Sk}k≥0 under the law PN,ξ , we
often consider k as a time parameter.

Remark 1.1. An alternative interpretation of our model is to describe the spatial distribution of a population evolving
in time. At time zero, the population consists of one individual located at the site x = 0 ∈ Z

d . In each time step, every
individual in the population performs one step of the random walk S, independently of all other individuals, jumping
from its current site x to a site y (possibly y = x) and then splitting into a number of individuals (always at site y)
distributed like a Po(eξ(y)), where Po(λ) denotes the Poisson distribution of parameter λ > 0. The expected number
of individuals at site x ∈ Z

d at time N ∈ N is then given by uN,ξ (x), as one checks easily.

Remark 1.2. Our model is somewhat close in spirit to the much studied directed polymer in random environment
[2,3,9], in which the rewards ξ(i, x) depend also on i ∈ N (and are usually chosen to be jointly i.i.d.). In our model,
the rewards are constant in the “deterministic direction” (1,0), a feature which makes the environment much more
attractive from a localization viewpoint. Notice in fact that a site x with a large reward ξ(x) yields a favorable straight
corridor {0, . . . ,N} × {x} for the polymer {(i, Si)}0≤i≤N .

We also point out that the so-called stretched polymer in random environment with a fixed length, considered e.g. in
[7], is a model which provides an interpolation between the directed polymer in random environment and our model.

1.4. The main results

The closest relative of our model is obtained considering the continuous-time analog ût,ξ (x) of (1.5), defined for
t ∈ [0,∞) and x ∈ Z

d by

ût,ξ (x) := E

[
exp

(∫ t

0
ξ(Ŝu)du

)
1{Ŝt=x}

]
, (1.7)

where ({Ŝu}u∈[0,∞),P) denotes the continuous-time, simple symmetric random walk on Z
d . One can check that the

function ût,ξ (x) is the solution of the following Cauchy problem:{
∂
∂t

ût,ξ (x) = 
ût,ξ (x) + ξ(x)ût,ξ (x),

û0,ξ (x) = 10(x)
for (t, x) ∈ (0,∞) × Z

d,

known in the literature as the parabolic Anderson problem. We refer to [4–6] and references therein for the physical
motivations behind this problem and for a survey of the main results.

When the potential ξ is i.i.d. with heavy tails like in (1.2) and α > d , the asymptotic properties as t → ∞ of the
function ût,ξ (·) were investigated in [8], showing that a very strong form of localization takes place: for large t , the
function ût,ξ (·) is essentially concentrated on two points almost surely and on a single point in probability. More

precisely, for all t > 0 and ξ ∈ Ωξ there exist ẑ(1)
t,ξ , ẑ(2)

t,ξ ∈ Z
d such that

lim
t→∞

ût,ξ (ẑ
(1)
t,ξ ) + ût,ξ (ẑ

(2)
t,ξ )∑

x∈Zd ût,ξ (x)
= 1, P-almost surely, (1.8)

lim
t→∞

ût,ξ (ẑ
(1)
t,ξ )∑

x∈Zd ût,ξ (x)
= 1, in P-probability, (1.9)

cf. [8, Theorems 1.1 and 1.2]. The points ẑ(1)
t,ξ , ẑ(2)

t,ξ are typically at superballistic distance (t/ log t)1+q with q =
d/(α − d) > 0, cf. [8], Remark 6. We point out that localization at one point like in (1.9) cannot hold P-almost surely,
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that is, the contribution of ẑ(2)
t,ξ cannot be removed from (1.8): this is due to the fact that ût,ξ (x) is a continuous function

of t for every fixed x ∈ Z
d , as explained in [8], Remark 1.

It is natural to ask if the discrete-time counterpart of ût,ξ (·), i.e., the constrained partition function uN,ξ (·) defined
in (1.5), exhibits similar features. Generally speaking, models built over discrete-time or continuous-time simple
random walks are not expected to be very different. However, due to the heavy tail of the potential distribution, the
localization points ẑ(1)

t,ξ , ẑ(2)
t,ξ of the continuous-time model grow at a superballistic speed, a feature that is clearly

impossible for the discrete-time model, for which uN,ξ (x) ≡ 0 for |x| > N . Another interesting question is whether
for the discrete model one may have localization at one single point P-almost surely. Before answering, we need to
set up some notation.

We recall that BN := {x ∈ Z
d : |x| ≤ N}. It is not difficult to check that the values {pN,ξ (x)}x∈BN

are all distinct,
for P-a.e. ξ ∈ Ωξ and for all N ∈ N, because the potential distribution is continuous, cf. (1.2). Therefore we can set

wN,ξ := arg max
{
pN,ξ (x): x ∈ BN

}
(1.10)

and P-almost surely wN,ξ is a single point in Z
d : it is the point at which pN,ξ (·) attains its maximum. We can now

state our first main result.

Theorem 1.3 (One-site localization). We have

lim
N→∞pN,ξ (wN,ξ ) = lim

N→∞
uN,ξ (wN,ξ )∑
x∈Zd uN,ξ (x)

= 1, P(dξ)-almost surely. (1.11)

Furthermore, as N → ∞ we have the following convergence in distribution:

wN,ξ

N

⇒ w, where P(w ∈ dx) = cα(1 − |x|)α1{|x|≤1} dx (1.12)

and cα := (
∫
|y|≤1(1 − |y|)α dy)−1.

Recalling the definition (1.6) of pN,ξ (x), Theorem 1.3 shows that SN under PN,ξ is localized at the ballistic point
wN,ξ ≈ w · N .

Next we look more closely at the localization site wN,ξ . We introduce two points z
(1)
N,ξ , z

(2)
N,ξ ∈ Z

d , defined explicitly
in terms of the potential ξ , through

z
(1)
N,ξ := arg max

{(
1 − |x|

N + 1

)
ξ(x): x ∈ BN

}
,

(1.13)

z
(2)
N,ξ := arg max

{(
1 − |x|

N + 1

)
ξ(x): x ∈ BN \ {

z
(1)
N,ξ

}}
.

Again, the values of {(1 − |x|
N+1 )ξ(x)}x∈BN

are P-a.s. distinct, by the continuity of the potential distribution, therefore

z
(1)
N,ξ and z

(2)
N,ξ are P-a.s. single points in BN . We can now give the discrete-time analogues of (1.8) and (1.9).

Theorem 1.4 (Two-sites localization). The following relations hold:

lim
N→∞

(
pN,ξ

(
z
(1)
N,ξ

) + pN,ξ

(
z
(2)
N,ξ

)) = 1 P(dξ)-almost surely, (1.14)

lim
N→∞pN,ξ

(
z
(1)
N,ξ

) = 1 in P(dξ)-probability. (1.15)

Putting together Theorems 1.3 and 1.4, we obtain the following information on wN,ξ .

Corollary 1.5. For P-a.e. ξ ∈ Ωξ , we have wN,ξ ∈ {z(1)
N,ξ , z

(2)
N,ξ } for large N . Furthermore,

lim
N→∞ P

(
wN,ξ = z

(1)
N,ξ

) = 1. (1.16)
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In Proposition 1.6 below, we stress that the convergence in (1.15) does not occur P(dξ)-almost surely in dimension
d = 1, i.e., wN,ξ is not equal to z

(1)
N for all N large enough. We strongly believe that the latter remains true for d > 1.

Proposition 1.6. In dimension d = 1, we have

P
(
wN,ξ = z

(2)
N,ξ for infinitely many N

) = 1. (1.17)

The proof of two sites localization given in [8] for the continuous-time model is quite technical and exploits tools
from potential theory and spectral analysis. We point out that such tools can be applied also in the discrete-time
setting, but they turn out to be unnecessary. Our proof is indeed based on shorter and simpler geometric arguments.
For instance, we exploit the fact that before reaching a site x ∈ Z

d a discrete-time random walk path must visit a
least |x| − 1 different sites ( 
=x) and spend at each of them a least one time unit. Of course, this is no longer true for
continuous-time random walks.

1.5. Further path properties

Theorem 1.3 states that P(dξ)-a.s. the probability measure PN,ξ concentrates on the subset of ΩS gathering those
random walk trajectories S such that SN = wN,ξ . It turns out that this subset can be radically narrowed. In fact, we
can introduce a restricted subset CN,ξ ⊆ ΩS of random walk trajectories, defined as follows:

• the trajectories in CN,ξ must reach the site wN,ξ for the first time before time N , following an injective path, and
then must remain at wN,ξ until time N ;

• the length of the injective path until wN,ξ differs from |wN,ξ | – which is the minimal one – at most for a small error
term hN := (log logN)2/αN1−1/α if α > 1 and hN := (logN)1+2/α if α ≤ 1 (note that in any case hN = o(N));

• all the sites x visited by the random walk before reaching wN,ξ must have an associated field ξ(x) that is strictly
smaller than ξ(wN,ξ ).

More formally, denoting by τx = τx(S) := inf{n ≥ 0: Sn = x} the first passage time at x ∈ Z
d of a random walk

trajectory S, we set

CN,ξ := {
S ∈ ΩS : Si 
= Sj ∀i < j ≤ τwN,ξ

, Si = wN,ξ ∀i ∈ {τwN,ξ
, . . . ,N},

ξ(Si) < ξ(wN,ξ )∀i < τwN,ξ
, τwN,ξ

≤ |wN,ξ | + hN

}
. (1.18)

We then have the following result.

Theorem 1.7. For P-a.e. ξ ∈ Ωξ , we have

lim
N→∞ PN,ξ (CN,ξ ) = 1. (1.19)

Remark 1.8. It is worth stressing that in dimension d = 1 the set CN,ξ reduces to a single N -steps trajectory. In fact,
we have CN,ξ = S (N,wN,ξ ), where we denote by S (N,x), for x ∈ BN , the set of trajectories S ∈ ΩS such that

Si :=
{

i · sign(x) for 0 ≤ i ≤ |x|,
x for |x| ≤ i ≤ N .

As stated in Corollary 1.5, for large N the site wN,ξ is either z
(1)
N,ξ or z

(2)
N,ξ . Note that z

(1)
N,ξ and z

(2)
N,ξ are easily

determined, by (1.13). In order to decide whether wN,ξ = z
(1)
N,ξ or wN,ξ = z

(2)
N,ξ , by Theorem 1.7 it is sufficient to

compare the explicit contributions of just two trajectories, i.e., PN,ξ (S (N,z
(1)
N,ξ )

) and PN,ξ (S (N,z
(2)
N,ξ )

). More precisely,
setting κ(i) := P(S1 = i) for i ∈ {±1,0} (so that κ = κ(0), cf. (1.1)) and

bN,ξ (x) := e
∑|x|−1

i=1 ξ(i sign(x))+(N+1−|x|)ξ(x)κ
(
sign(x)

)|x|
κ(0)N−|x|,



1054 F. Caravenna, P. Carmona and N. Pétrélis

we have wN,ξ = z
(1)
N,ξ if bN,ξ (z

(1)
N,ξ ) > bN,ξ (z

(2)
N,ξ ) and wN,ξ = z

(2)
N,ξ otherwise. Therefore, in dimension d = 1, we have

a very explicit characterization of the localization point wN,ξ .

Remark 1.9. A strong localization result is displayed in [1] for the directed polymer model with a “very heavy tailed”
random environment (α < 2). It is shown that, in any dimension, the polymer moves balistically in the hyperplane
orthogonal to the deterministic direction. Moreover, for any δ > 0, the polymer of size N remains, with probability
1−e−cδN (cδ > 0), in a cylinder of width δN around the trajectory that minimizes the energy. If the inverse temperature
β is rescalled by N1−2/α , the attracting trajectory becomes the minimizer of a variational formula involving both an
energetic and an entropic term.

1.6. Organization of the paper

The paper is organized as follows.

• In Section 2 we gather some basic estimates on the field, that will be the main tool of our analysis.
• In Section 3 we prove Theorem 1.4.
• In Section 4 we prove Theorem 1.3.
• In Section 5 we prove Proposition 1.6.
• In Section 6 we prove Theorem 1.7.
• Finally, the Appendices contain the proofs of some technical results.

In the sequel, the dependence on ξ of various quantities, like HN,ξ , wN,ξ , z
(1)
N,ξ , etc., will be frequently omitted for

short.

2. Asymptotic estimates for the environment

This section is devoted to the analysis of the almost sure asymptotic properties of the random potential ξ . With the
exception of Proposition 2.5, which plays a fundamental role in our analysis, the proof of the results of this section are
obtained with the standard techniques of extreme values theory and are therefore deferred to the Appendices A and B.

Before starting, we set up some notation. We say that a property of the field ξ depending on N ∈ N holds eventually
P-a.s. if for P-a.e. ξ ∈ Ωξ there exists N0 = N0(ξ) < ∞ such that the property holds for all N ≥ N0. We recall that
| · | denotes the �1 norm on R

d and BN = {x ∈ Z
d : |x| ≤ N}. With some abuse of notation, the cardinality of BN will

be still denoted by |BN |. Note that |BN | = cdNd + O(Nd−1) as N → ∞, where cd = ∫
Rd 1{|x|≤1} dx = 2d/d!.

2.1. Order statistics for the field

The order statistics of the field {ξ(x)}x∈BN
is the set of values attained by the field rearranged in decreasing order, and

is denoted by

X
(1)
N > X

(2)
N > · · · > X

(|BN |)
N > 1. (2.1)

For simplicity, when t ∈ [1, |BN |] is not an integer we still set X
(t)
N := X

(�t�)
N . For later convenience, we denote by

x
(k)
N the point in BN at which the value X

(k)
N is attained, that is X

(k)
N = ξ(x

(k)
N ). We are going to exploit heavily the

following almost sure estimates.

Lemma 2.1. For every ε > 0, eventually P-a.s.

Nd/α

(log logN)1/α+ε
≤ X

(1)
N ≤ Nd/α(logN)1/α+ε. (2.2)

For every θ > 1 and ε > 0, eventually P-a.s.

Nd/α

(logN)θ/α+ε
≤ X

((logN)θ )

N ≤ Nd/α

(logN)θ/α−ε
. (2.3)
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There exists a constant A > 0 such that eventually P-a.s.

sup
(logN)≤k≤|BN |

(
k1/αX

(k)
N

) ≤ ANd/α. (2.4)

The proof of Lemma 2.1 is given in Appendix A.2. For completeness, we point out that X
(1)
N /(cdNd/α) converges

in distribution as N → ∞ toward the law μ on (0,∞) with μ((0, x]) = exp(−x−α), called Fréchet law of shape
parameter α, as one can easily prove.

Next we give a lower bound on the gaps X
(k)
N − X

(k+1)
N for moderate values of k.

Proposition 2.2. For every θ > 0 there exists a constant γ > 0 such that eventually P-a.s.

inf
1≤k≤(logN)θ

(
X

(k)
N − X

(k+1)
N

) ≥ Nd/α

(logN)γ
. (2.5)

The proof of Proposition 2.2 is given in Appendix A.3.

2.2. Order statistics for the modified field

An important role is played by the modified field {ψN(x)}x∈BN
, defined by

ψN(x) :=
(

1 − |x|
N + 1

)
ξ(x). (2.6)

The motivation is the following: for any given point x ∈ BN , a random walk trajectory (S0, S1, . . . , SN) that goes to x

in the minimal number of steps and sticks in x afterwards has an energetic contribution equal to
∑|x|−1

i=1 ξ(Si) + (N +
1)ψN(x) (recall (1.3)).

The order statistics of the modified field {ψN(x)}x∈BN
will be denoted by

Z
(1)
N > Z

(2)
N > · · · > Z

|BN |
N ,

and we let z(k)
N be the point in BN at which ψN attains Z

(k)
N , that is ψN(z

(k)
N ) = Z

(k)
N . A simple but important observation

is that Z
(k)
N is increasing in N , for every fixed k ∈ N, since ψN(x) is increasing in N for fixed x. Also note that

Z
(k)
N ≤ X

(k)
N , because ψN(x) ≤ ξ(x).

Our attention will be mainly devoted to Z
(1)
N and Z

(2)
N , whose almost sure asymptotic behaviors are analogous to

that of X
(1)
N , cf. (2.2).

Lemma 2.3. For every ε > 0, eventually P-a.s.

Nd/α

(log logN)1/α+ε
≤ Z

(2)
N ≤ Z

(1)
N ≤ Nd/α(logN)1/α+ε. (2.7)

The proof is given in Appendix B.2. Note that only the first inequality needs to be proved, thanks to (2.2) and to
the fact that, plainly, Z

(2)
N ≤ Z

(1)
N ≤ X

(1)
N .

Next we focus on the gaps between Z
(1)
N ,Z

(2)
N and Z

(3)
N . The main technical tool is given by the following easy

estimates, proved in Appendix B.1.

Lemma 2.4. There is a constant c such that for all N ∈ N and δ ∈ (0,1)

P
(
Z

(2)
N > (1 − δ)Z

(1)
N

) ≤ cδ, P
(
Z

(3)
N > (1 − δ)Z

(1)
N

) ≤ cδ2. (2.8)

As a consequence, we have the following result, which will be crucial in the sequel.
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Proposition 2.5. For every d and α, there exists β ∈ (1,∞) such that

Z
(1)
N − Z

(3)
N ≥ Nd/α

(logN)β
, eventually P-a.s. (2.9)

Although we do not use this fact explicitly, it is worth stressing that the gap Z
(1)
N − Z

(2)
N can be as small as Nd/α−1

(up to logarithmic corrections), hence much smaller than the right hand side of (2.9), cf. Appendix B.3. This is the
reason behind the fact that localization at the two points {z(1)

N,ξ , z
(2)
N,ξ } can be proved quite directly, cf. Section 3,

whereas localization at a single point wN,ξ ∈ {z(1)
N,ξ , z

(2)
N,ξ } is harder to obtain, cf. Section 4. Furthermore, one may

have wN,ξ 
= z
(1)
N,ξ precisely when the gap Z

(1)
N − Z

(2)
N is small, cf. Section 5.

Proof of Proposition 2.5. For r ∈ (0,1) (that will be fixed later), we set Nk := �ekr �, for k ∈ N. By the second relation
in (2.8), for γ > 0 (to be fixed later) we have

∑
k∈N

P

(
Z

(1)
Nk

− Z
(3)
Nk

≤ 1

(logNk)γ
Z

(1)
Nk

)
≤ c1

∑
k∈N

1

(logNk)2γ
≤ (const.)

∑
k∈N

1

k2rγ
< ∞,

provided 2rγ > 1. Therefore, by the Borel–Cantelli lemma and (2.7), eventually (in k) P-a.s.

Z
(1)
Nk

− Z
(3)
Nk

≥ (Nk)
d/α

(logNk)γ+1
. (2.10)

Now for a generic N ∈ N, let k ∈ N be such that Nk−1 ≤ N < Nk . We can write

Z
(1)
N − Z

(3)
N = (

Z
(1)
N − Z

(1)
Nk

) + (
Z

(1)
Nk

− Z
(3)
Nk

) + (
Z

(3)
Nk

− Z
(3)
N

)
.

We already observed that Z
(k)
N is increasing in N , therefore the third term in the right hand side is non-negative and

can be neglected. From (2.10) we then get for large N

Z
(1)
N − Z

(3)
N ≥ (Nk)

d/α

(logNk)γ+1
− (

Z
(1)
Nk

− Z
(1)
N

) ≥ Nd/α

2(logN)γ+1
− (

Z
(1)
Nk

− Z
(1)
N

)
(2.11)

because Nk ≥ N and Nk ≤ 2N for large N (note that Nk/Nk−1 → 1 as k → ∞).
It remains to estimate Z

(1)
Nk

− Z
(1)
N . Observe that Z

(1)
n = ψn(z

(1)
n ) ≥ ψn(z

(1)
n+1), because Z

(1)
n is the maximum of ψn.

Therefore we obtain the estimate

Z
(1)
n+1 − Z(1)

n = ψn+1
(
z
(1)
n+1

) − ψn

(
z(1)
n

) ≤ ψn+1
(
z
(1)
n+1

) − ψn

(
z
(1)
n+1

)
= |z(1)

n+1|ξ(z
(1)
n+1)

(n + 1)(n + 2)
≤ ξ(z

(1)
n+1)

n

which yields

Z
(1)
Nk

− Z
(1)
N =

Nk−1∑
n=N

(
Z

(1)
n+1 − Z(1)

n

) ≤ Nk − Nk−1

Nk−1
ξ
(
z
(1)
Nk

) ≤ Nk − Nk−1

Nk−1
X

(1)
Nk

. (2.12)

Observe that as k → ∞
ekr − e(k−1)r

e(k−1)r
= ekr−(k−1)r − 1 = r

k1−r

(
1 + o(1)

)
. (2.13)
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Since N ≤ Nk = �ekr �, it comes that k ≥ (logN)1/r and therefore (2.13) allows to write for large N

Nk − Nk−1

Nk−1
≤ 1

(logN)1/r−1
.

Looking back at (2.11) and (2.12), by (2.2) we then have eventually P-a.s.

Z
(1)
N − Z

(3)
N ≥ Nd/α

2(logN)γ+1
− Nd/α

(logN)1/r−1/α−2
. (2.14)

The second term in the right hand side of (2.14) can be neglected provided the parameters r ∈ (0,1) and γ ∈ (0,∞)

fulfill the condition 1/r − 1/α − 2 > γ + 1. We recall that we also have to obey the condition 2rγ > 1. Therefore,
for a fixed value of r , the set of allowed values for γ is the interval ( 1

2r
, 1

r
− 1

α
− 3), which is non-empty if r is

small enough. This shows that the two conditions on r, γ can indeed be satisfied together (a possible choice is, e.g.,
r = α

6(3α+1)
and γ = 4(3α+1)

α
). Setting β := γ + 1, it then follows from (2.14) that equation (2.9) holds true. �

3. Almost sure localization at two points

In this section we prove Theorem 1.4. We first set up some notation and give some preliminary estimates.

3.1. Prelude

We recall that z
(1)
N and z

(2)
N are the two sites in BN at which the modified potential ψN , cf. (2.6), attains its two largest

values Z
(1)
N = ψN(z

(1)
N ) and Z

(2)
N = ψN(z

(2)
N ).

It is convenient to define J1, J2 ∈ {1, . . . , |BN |} as the ranks (in the order statistics) of the two sites where the
modified potential reaches its maximum and its second maximum, respectively. Thus,

z
(1)
N = x

(J1)
N , z

(2)
N = x

(J2)
N , (3.1)

where we recall that x
(k)
N is the point in BN at which the potential ξ attains its kth largest value, i.e., X

(k)
N = ξ(x

(k)
N ),

cf. Section 2.1. We stress that J1 and J2 are functions of N and ξ , although we do not indicate this explicitly. An
immediate consequence of Lemma 2.3 and relation (2.3) is the following

Corollary 3.1. For every d , α, ε > 0, eventually P-a.s.

max{J1, J2} ≤ (logN)1+ε. (3.2)

Next we define the local time �N(x) of a random walk trajectory S ∈ ΩS by

�N(x) = �N(x,S) =
N∑

i=1

1{Si=x}, (3.3)

so that the Hamiltonian HN(S), cf. (1.3), can be rewritten as

HN(S) =
∑

x∈BN

�N(x)ξ(x). (3.4)

We also associate to every trajectory S the quantity

βN(S) := min
{
k ≥ 1: �N

(
x

(k)
N

)
> 0

}
. (3.5)
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In words, x
(βN (S))
N is the site in BN which maximizes the potential ξ among those visited by the trajectory S before

time N . Finally, we introduce the basic events

A1,N := {
S ∈ ΩS : βN(S) = J1

}
, A2,N := {

S ∈ ΩS : βN(S) = J2
}
. (3.6)

In words, the event Ai,N consists of the random walk trajectories S that before time N visit the site z
(i)
N (recall (3.1))

and do not visit any other site x with ξ(x) > ξ(z
(i)
N ).

It turns out that the localization of SN at the point z
(i)
N is implied by the event Ai,N , i.e., for both i = 1,2 we have

lim
N→∞ PN,ξ

(
Ai,N , SN 
= z

(i)
N

) = 0, P(dξ)-almost surely. (3.7)

The proof is simple. Denoting by τ̃N,i the last passage time of the random walk in z
(i)
N before time N , that is

τ̃N,i := max
{
n ≤ N : Sn = z

(i)
N

}
,

we can write, recalling (1.3),

PN,ξ

(
Ai,N , SN 
= z

(i)
N

) =
N−1∑
r=0

E[eHN(S)1Ai,N
1{̃τN,i=r}]

UN,ξ

. (3.8)

We stress that the sum stops at r = N − 1, because we are on the event SN 
= z
(i)
N . Furthermore, on the event Ai,N ∩

{̃τN,i = r} we have Sn /∈ {x(1)
N , . . . , x

(Ji )
N } for all n ∈ {r + 1, . . . ,N} (we recall that z

(i)
N = x

(Ji)
N ). By the Markov

property, we can then bound the numerator in the right hand side of (3.8) by

E
[
eHN(S)1Ai,N

1{̃τN,i=r}
] ≤ E

[
eHr(S)1{Sr=z

(i)
N }

]
B

(N,i)
N−r ,

where B
(N,i)
l := E

x
(Ji )

N

[
eHl(S)1{Sn /∈{x(1)

N ,...,x
(Ji )

N }∀n=1,...,l}
]
. (3.9)

Analogously, for the denominator in the right hand side of (3.8), recalling (1.1), we have

UN,ξ ≥ E
[
eHN(S)1{Sn=x

(Ji )

N ,∀n∈{r,...,N}}
] = E

[
eHr(S)1{Sr=x

(Ji )

N }
]
κN−re(N−r)X

(Ji )

N .

Plainly, B
(N,i)
l ≤ exp(lX

(Ji+1)
N ), therefore we can write

PN,ξ

(
Ai,N , SN 
= z

(i)
N

) ≤
N−1∑
r=0

e−(N−r)(X
(Ji )

N +logκ)B
(N,i)
N−r =

N∑
l=1

e−l(X
(Ji )

N +logκ)B
(N,i)
l

≤
∞∑
l=1

e−l(X
(Ji )

N −X
(Ji+1)

N −logκ) = e−(X
(Ji )

N −X
(Ji+1)

N −logκ)

1 − e−(X
(Ji )

N −X
(Ji+1)

N −logκ)
. (3.10)

From Corollary 3.1 and Proposition 2.2 it follows that P(dξ)-almost surely X
(Ji)
N − X

(Ji+1)
N → +∞ as N → ∞,

therefore (3.7) is proved.

3.2. Proof of (1.14)

Let us set, for i = 1,2,

Wi,N := {
S ∈ ΩS : βN(S) = Ji, SN = z

(i)
N

}
= {

S ∈ ΩS : SN = z
(i)
N , �N(x) = 0∀x ∈ BN such that ξ(x) > ξ

(
z
(i)
N

)}
. (3.11)
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In words, the event Wi,N consists of those trajectories S such that SN = z
(i)
N and that before time N do not visit any

site x with ξ(x) > ξ(z
(i)
N ). We are going to prove that

lim
N→∞

(
PN,ξ (W1,N ) + PN,ξ (W2,N )

) = 1, P(dξ)-almost surely (3.12)

which is a stronger statement than (1.14). In view of (3.7), it is sufficient to prove that

lim
N→∞

(
PN,ξ (A1,N ) + PN,ξ (A2,N )

) = 1, P(dξ)-almost surely. (3.13)

We start deriving an upper bound on the Hamiltonian HN = HN,ξ (recall (1.3)). For an arbitrary k ∈ {1, . . . , |BN |},
to be chosen later, recalling (3.3), (3.4), (3.5) and the fact that

∑
x∈Zd �N(x) = N , we can write

HN(S) =
k∑

i=βN (S)

�N

(
x

(i)
N

)
ξ
(
x

(i)
N

) +
|BN |∑

i=k+1

�N

(
x

(i)
N

)
ξ
(
x

(i)
N

)

≤
(

k∑
i=βN (S)

�N

(
x

(i)
N

))
ξ
(
x

(βN (S))
N

) + NX
(k+1)
N . (3.14)

Note that �N(x
(βN (S))
N ) > 0, that is, any trajectory S visits the site x

(βN (S))
N before time N , by the very definition (3.5)

of βN(S). It follows that any trajectory S before time N must visit at least |x(βN (S))
N | different sites, of which at least

|x(βN (S))
N | − k are different from x

(1)
N , . . . , x

(k)
N . This leads to the basic estimate

k∑
i=βN (S)

�N

(
x

(i)
N

) ≤ N − ∣∣x(βN (S))
N

∣∣ + k. (3.15)

By (3.14) and recalling (2.6), this yields the crucial upper bound

HN(S) ≤ (N + 1)ψN

(
x

(βN (S))
N

) + (k − 1)ξ
(
x

(βN (S))
N

) + NX
(k+1)
N

≤ (N + 1)ψN

(
x

(βN (S))
N

) + (k − 1)X
(1)
N + NX

(k+1)
N . (3.16)

We stress that this bound holds for all k ∈ {1, . . . , |BN |} and for all trajectories S ∈ ΩS .
Next we give a lower bound on UN,ξ (recall (1.4)). We restrict the expectation to one single N -steps random walk

trajectory, denoted by S∗ = {S∗
i }0≤i≤N , that goes to z

(1)
N in the minimal number of steps, i.e. |z(1)

N |, and then stays
there until epoch N . By (1.1), this trajectory has a probability larger than e−cN for some positive contant c, therefore

UN,ξ ≥ eHN(S∗)−cN ≥ eξ(z
(1)
N )(N+1−|z(1)

N |)−cN = e(N+1)ψN (z
(1)
N )−cN ≥ e(N+1)(Z

(1)
N −c), (3.17)

where we have used the definition of ψN , see (2.6).
We can finally come to the proof of (3.13). For all trajectories S ∈ (A1,N ∪ A2,N )c we have βN(S) /∈ {J1, J2},

therefore x
(βN (S))
N /∈ {z(1)

N , z
(2)
N } and consequently ψN(x

(βN (S))
N ) ≤ Z

(3)
N . From (3.16) and (3.17) we then obtain

PN,ξ

(
(A1,N ∪ A2,N )c

) = E(eHN(S)1(A1,N∪A2,N )c )

UN,ξ

≤ exp

(
−(N + 1)

((
Z

(1)
N − Z

(3)
N

) − X
(k+1)
N − k − 1

N + 1
X

(1)
N − c

))
. (3.18)

By (2.9), there exists β ∈ (1,∞) such that Z
(1)
N − Z

(3)
N ≥ Nd/α/(logN)β eventually P-almost surely. We now choose

k = kN = (logN)θ with θ := 3 max{βα,1} > 1. Applying (2.2) with ε = 1/α and (2.3) with ε = β , we have eventually
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P-a.s.((
Z

(1)
N − Z

(3)
N

) − X
(kN+1)
N − kN − 1

N + 1
X

(1)
N − c

)
≥ Nd/α

(
1

(logN)β
− 1

(logN)2β
− (logN)θ+2/α

N
− c

Nd/α

)
= Nd/α

(logN)β

(
1 + o(1)

)
,

therefore, eventually P-almost surely,

PN,ξ (A1,N ) + PN,ξ (A2,N ) = 1 − PN,ξ

(
(A1,N ∪ A2,N )c

)
≥ 1 − exp

(
− N1+d/α

(logN)β

(
1 + o(1)

))
,

which completes the proof of (3.13).

3.3. Proof of (1.15)

Recalling (3.11), we are going to prove that

lim
N→∞ PN,ξ (W1,N ) = 1, in P(dξ)-probability, (3.19)

which is stronger than (1.15). In view of (3.7), it suffices to show that

lim
N→∞ PN,ξ (A1,N ) = 1, in P(dξ)-probability. (3.20)

We actually prove the following: for every N ∈ N there exists a subset ΓN ⊆ Ωξ such that as N → ∞ one has
P(ΓN) → 1 and infξ∈ΓN

PN,ξ (A1,N ) → 1, which implies (3.20).

For every trajectory S ∈ (A1,N )c we have βN(S) 
= J1, therefore x
(βN (S))
N 
= z

(1)
N and consequently ψN(x

(βN (S))
N ) ≤

Z
(2)
N . From (3.16) and (3.17) we then obtain

PN,ξ

(
(A1,N )c

) = E(eHN(S)1(A1,N )c )

UN,ξ

≤ exp

(
−(N + 1)

((
Z

(1)
N − Z

(2)
N

) − X
(k+1)
N − k − 1

N + 1
X

(1)
N − c

))
. (3.21)

We set Γ
(1)
N := {Z(2)

N ≤ (1 − 1
logN

)Z
(1)
N } and it follows from (2.8) that P(Γ

(1)
N ) → 1 as N → ∞. Note that for ξ ∈ Γ

(1)
N

we have((
Z

(1)
N − Z

(2)
N

) − X
(k+1)
N − k − 1

N + 1
X

(1)
N − c

)
≥

(
1

logN
Z

(1)
N − X

(k+1)
N − k − 1

N + 1
X

(1)
N − c

)
.

We now fix k = kN = (logN)θ with θ := 3 max{2α,1} > 1. Applying (2.2) with ε = 1/α, (2.3) with ε = 2 and (2.7),
we have eventually P-a.s.(

1

logN
Z

(1)
N − X

(kN+1)
N − kN − 1

N + 1
X

(1)
N − c

)
≥ Nd/α

(
1

(logN)2
− 1

(logN)4
− (logN)θ+2/α

N
− c

Nd/α

)
= Nd/α

(logN)2

(
1 + o(1)

)
.
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In particular, defining Γ
(2)
N := { 1

logN
Z

(1)
N − X

(k+1)
N − k−1

N+1X
(1)
N − c > Nd/α/(logN)3}, we have P(Γ

(2)
N ) → 1 as N →

∞. Setting ΓN := Γ
(1)
N ∩ Γ

(2)
N , we have P(ΓN) → 1 as N → ∞; furthermore, by the preceding steps we have that,

for all ξ ∈ ΓN ,

PN,ξ (A1,N ) = 1 − PN,ξ

(
(A1,N )c

) ≥ 1 − exp

(
(N + 1)

Nd/α

(logN)3

)
.

This completes the proof of (3.20).

4. Almost sure localization at one point

In this section we prove Theorem 1.3. Relation (1.11) is obtained in two steps. First, we refine the results of the previ-
ous section, showing that (3.12) still holds if we replace the events Wi,N , i = 1,2, that were introduced in (3.11), by

W̃i,N :=
{
S ∈ ΩS : βN(S) = Ji, SN = z

(i)
N , �N

(
z
(i)
N

)
>

N − |z(i)
N |

2

}

=
{
S ∈ ΩS : SN = z

(i)
N , �N

(
z
(i)
N

)
>

N − |z(i)
N |

2
,

�N(x) = 0∀x ∈ BN such that ξ(x) > ξ
(
z
(i)
N

)}
, (4.1)

that is, if we require that the random walk trajectories spend at z
(i)
N at least (N − |z(i)

N |)/2 units of time (recall (3.3)).
In the second step, we show that eventually P(dξ)-almost surely

max
{
PN,ξ (W̃1,N ),PN,ξ (W̃2,N )

} � min
{
PN,ξ (W̃1,N ),PN,ξ (W̃2,N )

}
(4.2)

which yields (1.11). Finally, we prove (1.12) in Section 4.3.

4.1. Step 1

In this step we refine (3.12), showing that

lim
N→∞

(
PN,ξ (W̃1,N ) + PN,ξ (W̃2,N )

) = 1, P(dξ)-almost surely, (4.3)

where W̃i,N is defined in (4.1). Consider indeed S ∈ Wi,N \ W̃i,N , with i ∈ {1,2}. Before reaching z
(i)
N , S must visit

at least |z(i)
N | − 1 different sites at which, by definition of Wi,N , the field is smaller than ξ(z

(i)
N ) = X

(Ji)
N (recall (3.1)),

hence

HN(S) ≤ �N

(
z
(i)
N

)
X

(Ji)
N +

|z(i)
N |−1∑
j=1

X
(Ji+j)
N + (

N − �N

(
z
(i)
N

) − (|z(i)
N | − 1

))
X

(Ji+1)
N .

Since �N(z
(i)
N ) ≤ (N − |z(i)

N |)/2 on Wi,N \ W̃i,N , we obtain

HN(S) ≤ N − |z(i)
N |

2
X

(Ji)
N +

|z(i)
N |−1∑
j=1

X
(Ji+j)
N +

(
N − |z(i)

N |
2

+ 1

)
X

(Ji+1)
N .
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Rewriting (3.17) as UN,ξ ≥ e(N+1−|z(i)
N |)X(Ji )

N −cN (recall (2.6)), we can write

PN,ξ (Wi,N \ W̃i,N ) =
E(eHN(S)1{S∈Wi,N\W̃i,N })

UN

≤ ecN exp

(
−N − |z(i)

N |
2

(
X

(Ji)
N − X

(Ji+1)
N

) +
|z(i)

N |−1∑
j=1

X
(Ji+j)
N

)
. (4.4)

Applying (2.7) with ε = 1/α and (2.2) with ε = ε/2, it follows that eventually P-a.s.

Z
(1)
N ≥ Z

(2)
N ≥ Nd/α

(log logN)2/α
and max

{
X

(J1)
N ,X

(J2)
N

} ≤ Nd/α(logN)1/α+ε/2.

Since by definition Z
(i)
N = (1 − |z(i)

N |
N+1 )X

(Ji)
N , it follows that for both i ∈ {1,2} and for every ε > 0, eventually P-a.s.

N − ∣∣z(i)
N

∣∣ ≥ N

(logN)1/α+ε
. (4.5)

Next we observe that, by the upper bound in (2.2) and (2.4), we have

N∑
j=1

X
(j)
N ≤ (logN)X

(1)
N +

N∑
j=�logN�

X
(j)
N ≤ Nd/α

(
(logN)1+3/2α +

N∑
j=�logN�

1

j1/α

)
,

therefore there exists a constant c > 0 such that, eventually P-almost surely,

N∑
j=1

X
(j)
N ≤

{
cNd/α+1−1/α if α > 1,
(logN)1+3/2αNd/α if α ≤ 1.

(4.6)

Looking back at (4.4), we can apply (4.5) and (4.6) as well as Proposition 2.2 and Corollary 3.1 to conclude that
P(dξ)-a.s. the right hand side of (4.4) vanishes as N → ∞. Recalling (3.12), it follows that (4.3) holds true, and the
first step is completed.

4.2. Step 2

In this step we prove that

lim
N→∞

∣∣log PN,ξ (W̃1,N ) − log PN,ξ (W̃2,N )
∣∣ = ∞, P(dξ)-almost surely. (4.7)

Together with (4.3), this shows that

lim
N→∞ max

{
PN,ξ (W̃1,N ),PN,ξ (W̃2,N )

} = 1, P(dξ)-almost surely, (4.8)

which yields (1.11) and, moreover, shows that

wN,ξ =
{

z
(1)
N if PN,ξ (W̃1,N ) > PN,ξ (W̃2,N ),

z
(2)
N if PN,ξ (W̃2,N ) > PN,ξ (W̃1,N )

eventually P(dξ)-almost surely.

It is convenient to introduce some further notation. Recalling (4.1), for N ∈ N and x ∈ BN we define the following
subsets of ΩS :

W̃N(x) :=
{
S ∈ ΩS : SN = x, �N(x) >

N − |x|
2

, �N(z) = 0∀z s.t. ξ(z) > ξ(x)

}
, (4.9)
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so that W̃i,N = W̃N(z
(i)
N ). Next we set

CN(x) := log E
[
eHN(S)1{S∈W̃N(x)}

]
, (4.10)

so that we can write∣∣log PN,ξ (W̃1,N ) − log PN,ξ (W̃2,N )
∣∣ = ∣∣CN

(
z
(1)
N

) − CN

(
z
(2)
N

)∣∣. (4.11)

Finally, given an arbitrary ε ∈ (0, d/α) and setting Nk := �k2/ε�, we introduce the event Hk ⊆ Ωξ defined by

Hk :=
{
ξ ∈ Ωξ : ∃x, y ∈ BNk+1, x 
= y,∃n ∈ {

max
{|x|, |y|}, . . . ,Nk+1

}
such that

ξ(x) >
(Nk)

d/α

(logNk+1)2/α
, ξ(y) >

(Nk)
d/α

(logNk+1)2/α
,
∣∣Cn(x) − Cn(y)

∣∣ ≤ N
d/α−ε
k

}
. (4.12)

We are going to show that∑
k∈N

P(Hk) < ∞. (4.13)

We claim that this implies (4.7) and completes the step. Indeed, by the Borel–Cantelli lemma it follows from (4.13)
that for P-almost every ξ ∈ Ωξ there exists k = k(ξ) < ∞ such that ξ /∈ Hk for all k ≥ k. For any N ≥ Nk , let

k ∈ N, k ≥ k be such that Nk < N ≤ Nk+1 and note that, plainly, z
(1)
N , z

(2)
N ∈ BN ⊆ BNk+1 . Recalling the lower bound

in (2.7) and (4.11), since ξ /∈ Hk for all k ≥ k we conclude that eventually P(dξ)-almost surely∣∣log PN,ξ (W̃1,N ) − log PN,ξ (W̃2,N )
∣∣ ≥ Nd/α−ε,

which is a stronger statement than (4.7).
We are left with proving (4.13), for which we have to estimate

P
(
ξ(x) > t, ξ(y) > t,

∣∣Cn(x) − Cn(y)
∣∣ ≤ M

)
(4.14)

for suitable t and M . Recalling (4.9) and (4.10), it is useful to set

CN(y;x) := log E
[
eHN(S)1{S∈W̃N (y)}1{�N (x)=0}

]
. (4.15)

Note in fact that, on the event ξ(x) > ξ(y), we have CN(y) = CN(y;x), by the definition (4.9) of W̃N(y). Therefore,
splitting (4.14) on {ξ(x) > ξ(y)} and {ξ(x) < ξ(y)} and using the symmetry between x and y, we can easily estimate

P
(
ξ(x) > t, ξ(y) > t,

∣∣Cn(x) − Cn(y)
∣∣ ≤ M

)
≤ 2P

(
ξ(x) > t, ξ(y) > t,

∣∣Cn(x) − Cn(y;x)
∣∣ ≤ M

)
≤ 2E

[
1{ξ(y)>t}P

(
ξ(x) > t,

∣∣Cn(x) − Cn(y;x)
∣∣ ≤ M|Gx

)]
, (4.16)

where Gx := σ({ξ(z)}z∈Zd\{x}). We stress that Cn(y;x) is Gx -measurable, because by definition it does not depend on
ξ(x) (recall (4.15)).

We now need to study the dependence of Cn(x) on ξ(x) conditionally on Gx , i.e., when all the other field variables
{ξ(z), z 
= x} are fixed. Recalling (4.10), (4.9) and summing over the values of the variable �N(x), we can write
Cn(x) = g(ξ(x)), where

g(s) := log
n−|x|∑

k=(1/2)(n−|x|+1)

ekscn,k and cn,k := E
[
eHn(S)−kξ(x)1{S∈W̃n(x)}1{�N (x)=k}

]
.
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We stress that, on the event {�n(x) = k}, the term Hn(S) − kξ(x) does not depend on ξ(x). Therefore the coefficients
cn,k (and, hence, the function g(·)) only depend on {ξ(z), z 
= x}, i.e., they are Gx -measurable. Also note that the
function g(·) is smooth and Lipschitz, since

g′(s) =
∑n−|x|

k=(1/2)(n−|x|+1) kekscn,k∑n−|x|
k=(1/2)(n−|x|+1) ekscn,k

≥ 1

2
(n − |x| + 1).

Therefore, by the change of variables formula, from (1.2) we obtain

P
(
ξ(x) > t,Cn(x) ∈ dv|Gx

) = P
(
ξ(x) > t, g

(
ξ(x)

) ∈ dv|Gx

)
= 1{g−1(v)>max{1,t}}

1

|g′(g−1(v))|
α

(g−1(v))1+α
dv ≤ 2

(n − |x| + 1)

α

t1+α
dv,

hence

P
(
ξ(x) > t,

∣∣Cn(x) − Cn(y;x)
∣∣ ≤ M|Gx

)
= P

(
ξ(x) > t,Cn(x) ∈ [

Cn(y;x) − M,Cn(y;x) + M
]|Gx

) ≤ 2α

(n − |x| + 1)t1+α
· 2M.

Coming back to (4.16), since P(ξ(y) > t) ≤ t−α , we conclude that

P
(
ξ(x) > t, ξ(y) > t,

∣∣Cn(x) − Cn(y)
∣∣ ≤ M

) ≤ 8αM

(n − |x| + 1)t1+2α
. (4.17)

We are finally ready to estimate P(Hk). Recalling the definition (4.12) and the fact that Nk = �k2/ε�, applying
(4.17) we obtain

P(Hk) ≤ 2
∑

x 
=y∈BNk+1

|x|≥|y|

Nk+1∑
n=|x|

P

(
ξ(x), ξ(y) >

(Nk)
d/α

(logNk+1)2/α
,
∣∣Cn(x) − Cn(y)

∣∣ ≤ N
d/α−ε
k

)

≤ 2(const.)(Nk+1)
2d 8αN

d/α−ε
k

{(Nk)d/α/(logNk+1)2/α}(1+2α)

Nk+1∑
n=|x|

1

n − |x| + 1

≤ (
const.′

) (logNk+1)
2/α+5

Nε
k

≤ (
const.′′

) (logk2/ε)2/α+5

k2
,

from which (4.13) follows. This completes the step.

4.3. Proof of (1.12)

In view of (1.16), it is sufficient to prove that

z
(1)
N

N

⇒ w, where P(w ∈ dx) = cα(1 − |x|)α1{|x|≤1} dx (4.18)

and we recall that cα := (
∫
|y|≤1(1 − |y|)α dy)−1.

Setting ϕN(x) := 1 − |x|
N+1 and recalling (1.2), for x ∈ BN and t ∈ (1,∞) we have

P
(
z
(1)
N = x, ξ(x) ∈ dt

) = P
(
ξ(z) < t ∀z ∈ BN \ {x}, ξ(x) ∈ dt

)
=

∏
z∈BN ,z 
=x

(
1 − ϕN(z)α

tαϕN(x)α

)
α

t1+α
dt,
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therefore for all function f : Rd → R we can write

E

[
f

(
z
(1)
N

N

)]
=

∑
x∈BN

f

(
x

N

)∫ ∞

1
dt

∏
z∈BN ,z 
=x

(
1 − ϕN(z)α

tαϕN(x)α

)
α

t1+α
. (4.19)

Now set t = Nd/αs and note that as N → ∞, uniformly in s ∈ (ε,∞) and x ∈ B(1−ε)N , where ε > 0 is arbitrary but
fixed, by a Riemann sum approximation we have

∑
z∈BN ,z 
=x

log

(
1 − ϕN(z)α

tαϕN(x)α

)
= − 1

sα(1 − |x|/(N + 1))αNd

∑
z∈BN ,z 
=x

(
1 − |z|

N + 1

)α(
1 + o(1)

)
= − c−1

α

sα(1 − |x|/(N + 1))α

(
1 + o(1)

)
.

Coming back at (4.19) and noting that
∫ ∞

0
α

s1+α e−A/sα
ds = ∫ ∞

0 e−Au du = A−1, by a simple change of variables, it
follows again by a Riemann sum argument that if f is continuous and bounded we have

lim
N→∞ E

[
f

(
z
(1)
N

N

)]
= lim

N→∞
1

Nd

∑
x∈BN

f

(
x

N

)
cα

(
1 − |x|

N + 1

)α

= cα

∫
|y|≤1

f (y)(1 − |y|)α dy,

proving (4.18).

5. Proof of Proposition 1.6

We want to prove, for d = 1, that

P
(
wN,ξ = z

(2)
N,ξ for infinitely many N

) = 1. (5.1)

To simplify notation, we only consider the case α > 1 and we set mα = E(ξ1) = α/(α − 1), cf. (1.2). Recalling (1.1),
we set κ = P(S1 = 0) and κ̂ = P(S1 = 1). For the sake of simplicity, we also assume that log(κ̂/κ) > −mα . The cases
log(κ̂/κ) < −mα and log(κ̂/κ) = −mα are controlled with analogous arguments.

For α,η > 0 and for n ∈ N and ε > 0 we define the event Bε,η,n ⊆ Ωξ by

Bε,η,n :=
{

∃!x ∈ [
n, (1 + ε)n

]
: ξ(x) ∈ (1,1 + ε)n1/α,

∃!y ∈ [
3n, (1 + ε)3n

]
: ξ(y) ∈ (1,1 + ε)

5

3
n1/α,

∀z ∈ [−7n, (1 + ε)7n
] \ {x, y}: ξ(z) <

1

2
n1/α,

y−1∑
i=x+1

ξ(i) > (mα − η)(y − x)

}
, (5.2)

where we set [a, b] := [a, b] ∩ Z for short. By direct computation, one checks easily that limn→∞ P(Bε,η,n) > 0 for
all fixed ε, η > 0. In what follows, we denote by x, y the (random) points appearing in the definition of Bε,η,n.
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Recalling (2.6), for all N ∈ N we have(
1 − n

N
(1 + ε)

)
n1/α < ψN(x) <

(
1 − n

N

)
(1 + ε)n1/α,

(5.3)(
1 − 3n

N
(1 + ε)

)
5

3
n1/α < ψN(y) <

(
1 − 3n

N

)
(1 + ε) 5

3n1/α.

It follows that for all N ∈ [ 11
2 n, 13

2 n] we have ψN(x) > (1 − 1+ε
11/2 )n1/α = ( 9

11 + O(ε))n1/α , ψN(y) > (1 −
3(1+ε)

11/2 ) 5
3n1/α = ( 25

33 + O(ε))n1/α , while ψN(z) < 1
2n1/α for all z ∈ [−N,N ] \ {x, y}. Therefore, by choosing ε small

enough, we can state that on the event Bε,η,n and for all n ∈ N, N ∈ [ 11
2 n, 13

2 n] we have

{
z
(1)
N , z

(2)
N

} = {x, y}. (5.4)

For N = 11
2 n we have ψN(x) = ( 9

11 +O(ε))n1/α and ψN(y) = ( 25
33 +O(ε))n1/α , uniformly in n; on the other hand,

for N = 13
2 n we have ψN(x) = ( 11

13 + O(ε))n1/α and ψN(y) = ( 35
39 + O(ε))n1/α , always uniformly in n. It follows

that, if ε > 0 is chosen small enough we have for all n ∈ N,

ψ(11/2)n(y) − ψ(11/2)n(x) < 0 but ψ(13/2)n(y) − ψ(13/2)n(x) > 0. (5.5)

At this stage, we pick ε0 > 0 such that (5.4) and (5.5) are satisfied. Next observe that

(N + 1)
(
ψN(y) − ψN(x)

) = xξ(x) − yξ(y) + (N + 1)
(
ξ(y) − ξ(x)

)
(5.6)

is increasing in N , because by construction (ξ(y) − ξ(x)) > 0. It follows that there is N∗
n ∈ ( 11

2 n, 13
2 n) such that:

• for 11
2 n < N ≤ N∗

n we have (ψN(y) − ψN(x)) < 0, hence x = z
(1)
N and y = z

(2)
N ;

• for N∗
n < N < 13

2 n we have (ψN(y) − ψN(x)) > 0, hence x = z
(2)
N and y = z

(1)
N .

By (5.6) (N + 1)(ψN(y) − ψN(x)) increases by (ξ(y) − ξ(x)) when N increases by 1. Since (N∗
n + 1)(ψN∗

n
(y) −

ψN∗
n
(x)) < 0 and ((N∗

n + 1) + 1)(ψN∗
n+1(y) − ψN∗

n+1(x)) > 0, it then follows that (N∗
n + 1)(ψN∗

n
(y) − ψN∗

n
(x)) >

−(ξ(y) − ξ(x)), that is(
N∗

n + 1
)(

Z
(1)
N∗

n
− Z

(2)
N∗

n

) = (
N∗

n + 1
)(

ψN∗
n
(x) − ψN∗

n
(y)

) ≤ (
ξ(y) − ξ(x)

)
(5.7)

≤
(

2

3
+ 5

3
ε0

)
n1/α =: c0n

1/α,

by the definition of the event Bε0,η,n.
Consider now the contributions of the two N -steps random walk trajectories S (N,x) and S (N,y) that reach respec-

tively x and y in the minimal number of steps and stick there until time N , i.e.,

PN,ξ

(
S (N,x)

) = κN e
∑x−1

i=1 ξ(i)+(N+1)ψN (x)+x log(κ̂/κ),

PN,ξ

(
S (N,y)

) = κN e
∑y−1

i=1 ξ(i)+(N+1)ψN (y)+y log(κ̂/κ),

so that

PN,ξ (S (N,y))

PN,ξ (S (N,x))
= e

∑y−1
i=x ξ(i)−(N+1)(ψN (x)−ψN(y))+(y−x) log(κ̂/κ). (5.8)



Discrete-time PAM with heavy tailed potential 1067

We apply this relation for N = N∗
n on the event Bε0,η0,n, with 2η0 := mα + log(κ̂/κ) (which is strictly positive, by our

initial assumtion). Then x = z
(1)
N∗

n
, y = z

(2)
N∗

n
and (5.8) becomes

PN∗
n ,ξ (S (N∗

n ,z
(2)

N∗
n
)
)

PN∗
n ,ξ (S (N∗

n ,z
(1)

N∗
n
)
)

≥ e
∑y−1

i=x+1 ξ(i)−(N∗
n+1)(Z

(1)

N∗
n
−Z

(2)

N∗
n
)+(y−x) log(κ̂/κ)

≥ e(mα−η+log(κ̂/κ))(y−x)−c0n
1/α ≥ eηn−c0n

1/α

, (5.9)

where we have used (5.7), the last condition in (5.2) and the fact that y − x ≥ n, again by (5.2). Since α > 1 by
assumption, we have shown that on the event Bε0,η0,n

PN∗
n ,ξ (S (N∗

n ,z
(2)

N∗
n
)
) � PN∗

n ,ξ (S (N∗
n ,z

(1)

N∗
n
)
).

If PN,ξ (S (N,z
(2)
N )) + PN,ξ (S (N,z

(1)
N )) > 3

4 , this shows that wN,ξ = z
(2)
N . To sum up, there exists n0 ∈ N such that for

n ≥ n0

Bε0,η0,n ⊆
{
∃N ∈

(
11

2
n,

13

2
n

)
: wN,ξ = z

(2)
N

}
∪

{
∃N ∈

(
11

2
n,

13

2
n

)
: PN,ξ

(
S (N,z

(2)
N )

) + PN,ξ

(
S (N,z

(1)
N )

) ≤ 3

4

}
.

Recalling that PN,ξ (S (N,z
(2)
N )) + PN,ξ (S (N,z

(1)
N )) → 1 as N → ∞, P(dξ)-almost surely when d = 1, cf. Remark 1.8, it

follows that almost surely

lim sup
n→∞

Bε0,η0,n := {Bε0,η0,n for infinitely many n} ⊆ {
wN,ξ = z

(2)
N for infinitely many N

}
.

Finally, note that P(lim supn→∞ Bε0,η0,n) ≥ limn→∞ P(Bε0,η0,n) > 0, and it is not difficult to realize that indeed
P(lim supn→∞ Bε0,η0,n) = 1, because when m � n the event Bε0,η0,m is asymptotically independent of Bε0,η0,n. This
completes the proof.

6. Path properties

In this section we prove Theorem 1.7, i.e., we show that limN→∞ PN,ξ (CN,ξ ) = 1, P(dξ)-almost surely, where the set
CN,ξ is defined in (1.18).

For i = 1,2, we denote for simplicity by τi := inf{n ∈ N: Sn = z
(i)
N } the first time at which the random walk visits

the site z
(i)
N and we set

Di,N := {
S ∈ ΩS : τi ≤ N,Sm 
= Sn ∀m < n ≤ τi, Sn = z

(i)
N ∀n ∈ {τi, . . . ,N}}

(6.1)
Ki,N := {

S ∈ ΩS : τi ≤ ∣∣z(i)
N

∣∣ + hN

}
,

where we recall that hN := (log logN)2/αN1−1/α if α > 1 and hN := (logN)1+2/α if α ≤ 1. Recalling the definition
(4.1) of the set W̃i,N , we are going to show that for both i = 1,2

lim
N→∞ PN,ξ (W̃i,N \ Di,N ) = 0, P(dξ)-almost surely, (6.2)

lim
N→∞ PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

) = 0, P(dξ)-almost surely. (6.3)

Recalling relation (4.8), proved in the last section, Theorem 1.7 is a consequence of (6.2) and (6.3). The rest of this
section is therefore devoted to proving these relations.
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6.1. Step 1: proof of (6.2)

We fix i ∈ {1,2} throughout the section. By definition, a random walk trajectory S ∈ Wi,N \ Di,N makes either some
loops before time τi (i.e., before reaching z

(i)
N ) or some excursions outside z

(i)
N between time τi and time N . We need

to set up some notation to account for such loops and excursions.
We set i0 = j0 := −1 and, for k ∈ N, we denote by ik = ik(S), jk = jk(S) the extremities of the kth loop made by

a trajectory S ∈ ΩS before reaching z
(i)
N :

ik := inf
{
n ∈ {jk−1 + 1, . . . , τi − 1}: ∃m ∈ {n + 1, . . . , τi − 1} s.t. Sm = Sn

}
,

(6.4)
jk := max{n < τi :Sn = Sik },

with the usual convention inf ∅ := ∞. We also set Ik := {ik + 1, . . . , jk} and |Ik| := jk − ik for conciseness. Then
we denote by N = N (S) := max{k ∈ N: ik < ∞} the total number and by L = L(S) := ∑N

k=1 |Ik| the total length of
the loops of the trajectory S. Note that N = L = 0 if i1 = ∞, i.e., if the trajectory S has no loops. Finally, we denote
by π(S) the injective skeleton of S before reaching z

(i)
N , i.e., the random walk trajectory of τi − L steps defined (with

some abuse of notation) by

π(S) = {
π(S)n

}
n∈{0,...,τi−L} := {Sn}n∈{0,...,τi }\⋃N

k=1 Ik
. (6.5)

We let Vi,N,r denote the set of all r-steps injective paths, starting at 0 and ending at z
(i)
N , which do not visit any site

x ∈ BN with ξ(x) > ξ(z
(i)
N ) (recall (3.3)):

Vi,N,r := {
(Sn)n≤r : Sr = z

(i)
N , Sn 
= Sm for m 
= n, �r(x) = 0 when ξ(x) > ξ

(
z
(i)
N

)}
. (6.6)

Note that for S ∈ Wi,N \ Di,N we have π(S) ∈ Vi,N,τi−L(S).

Next we deal with the excursions outside z
(i)
N . Set i′0 = j ′

0 = τi − 1 and for k ∈ N denote by i′k = i′k(S), j ′
k = j ′

k(S)

the extremities of the kth excursion outside z
(i)
N made by the trajectory S between time τi and time N :

i′k := min
{
n ∈ {jk−1 + 1, . . . ,N − 1}: Sn 
= z

(i)
N

}
,

(6.7)
j ′
k := min

{
n > i′k: Sn = z

(i)
N

}
.

We also set I ′
k := {i′k +1, . . . , j ′

k} and |I ′
k| := j ′

k − i′k ; furthermore, we denote by N ′ = N ′(S) := max{k ≥ 0: i′k < ∞}
the total number and by L′ = L′(S) := ∑N ′

k=1 |I ′
k| the total length of the excursions of the trajectory S. Note that

N ′ = L′ = 0 if i′1 = ∞, i.e., if there are no excursions.
We can now start with the proof of (6.2). Recalling the definition (1.3) of our model and using the notation we have

just introduced, we obtain the decomposition

PN,ξ (W̃i,N \ Di,N ) = 1

UN,ξ

N∑
r=|z(i)

N |

∑
S∗∈Vi,N,r

E
(
eHN,ξ (S)1{S∈W̃i,N\Di,N }1{π(S)=S∗}

)
. (6.8)

We bound the partition function UN,ξ from below by considering the trajectories that reach z
(i)
N through an injective

path, avoiding the sites x with ξ(x) > ξ(z
(i)
N ), and stick at z

(i)
N afterwards, getting

UN,ξ ≥
N∑

r=|z(i)
N |

∑
S∗∈Vi,N,r

e
∑r−1

n=1 ξ(S∗
n)+(N+1−r)ξ(z

(i)
N )P

(
S∗)κN−r , (6.9)

where for simplicity we set P(S∗) := P(S1 = S∗
1 , . . . , Sr = S∗

r ) and we recall (1.1).
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Next we estimate the double sum in the right hand side of (6.8). Observe that for S ∈ W̃i,N \ Di,N we have
L + L′ ≥ 1, because S must make at least one loop before reaching z

(i)
N or one excursion outside z

(i)
N before time

N . By definition of Wi,N , cf. (4.1), any site x visited by S in the loops or excursions has an associated potential
ξ(x) < ξ(z

(i)
N ), hence ξ(x) ≤ X

(Ji+1)
N = ξ(z

(i)
N ) − (X

(Ji)
N − X

(Ji+1)
N ), cf. (3.1). It follows that on {L = l, L′ = l′} we

have HN(S) ≤ ∑r−1
n=1 ξ(S∗

n) + (N + 1 − r)ξ(z
(i)
N ) − (l + l′)(X(Ji)

N − X
(Ji+1)
N ), hence

E
(
eHN,ξ (S)1{S∈W̃i,N\Di,N }1{π(S)=S∗}

)
≤

∑
l,l′∈N0,l+l′≥1

e
∑r−1

n=1 ξ(S∗
n)+(N+1−r)ξ(z

(i)
N )−(l+l′)(X(Ji )

N −X
(Ji+1)

N )P
(

L = l, L′ = l′,π(S) = S∗).
Looking back at (6.8) and (6.9), we conclude that

PN,ξ (W̃i,N \ Di,N )

≤ sup
r∈{|z(i)

N |,...,N}
S∗∈Vi,N,r

∑
l,l′∈N0,l+l′≥1

e−(l+l′)(X(Ji )

N −X
(Ji+1)

N ) P(L = l, L′ = l′,π(S) = S∗)
P(S∗)κN−r

. (6.10)

We are left with estimating the ratio in the right hand side of (6.10). It is convenient to disintegrate the event
{L = l} (resp. {L′ = l′}) by summing on the total number N and the locations I = {Ik}k≤N of the loops (resp. the
total number N ′ and the locations I ′ = {I ′

k}k≤N of the excursions). Using the Markov property and bounding the
probability of each loop and excursion (trivially) by 1, for all n, I = {Ik}k≤n, n′, I ′ = {I ′

k}k≤n and for all injective
trajectories S∗ ∈ Vi,N,r we have

P
(

N = n, I = I, N ′ = n′, I ′ = I ′,π(S) = S∗) ≤ P
(
S∗)κN−r−l−l′ ,

because |{n ∈ {τi, . . . ,N − 1}: Sn = Sn+1}| = N − τi − L′, by definition of L′, and τi = r + L when π(S) = S∗ ∈
Vi,N,r , by definition of L. It follows that

P(L = l, L′ = l′,π(S) = S∗)
P(S∗)κN−r

≤ κ−l−l′ ·
∣∣∣∣∣
{(

n, I, n′, I ′):
n∑

k=1

|Ik| = l,

n′∑
k=1

∣∣I ′
k

∣∣ = l′
}∣∣∣∣∣.

It remains to bound the cardinality of the set in the right hand side. For fixed n ∈ {0, . . . , l}, the intervals I = {Ik}k≤n

consist of 2n points in {0, . . . , τi} ⊆ {0, . . . ,N}, therefore the number of possible choices for I is bounded from above
by (N +1)2n ≤ (N +1)2l . Analogously, for every n′ ∈ {0, . . . , l′}, the number of choices for I ′ is bounded from above
by (N + 1)2n′ ≤ (N + 1)2l′ . Looking back at (6.10), we can write

PN,ξ (W̃i,N \ Di,N ) ≤
∑

l,l′∈N0,l+l′≥1

e−(l+l′)(X(Ji )

N −X
(Ji+1)

N +logκ−2 log(N+1))(l + 1)
(
l′ + 1

)

≤ (const.)
∞∑

m=1

e−m(X
(Ji )

N −X
(Ji+1)

N +logκ−2 log(N+1))m3

≤ (
const.′

) e−(X
(Ji )

N −X
(Ji+1)

N +logκ−2 log(N+1))

(1 − e−(X
(Ji )

N −X
(Ji+1)

N +logκ−2 log(N+1)))4
,

where in the second inequality we have used that
∑

l,l′∈N0: l+l′=m(l + 1)(l′ + 1) ≤ (const.)m3. It then follows from
Corollary 3.1 and Proposition 2.2 that relation (6.2) holds true, completing the first step.
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6.2. Step 2: proof of (6.3)

Throughout the section we fix i ∈ {1,2}. We recall that τi := inf{n ∈ N: Sn = z
(i)
N } denotes the first time at which the

random walk visits z
(i)
N .

A random walk trajectory S ∈ W̃i,N ∩ Di,N (cf. (4.1) and (6.1)) reaches z
(i)
N through an injective path, avoiding

sites where the potential is larger than ξ(z
(i)
N ), and sticks at z

(i)
N afterwards (from time τi to time N ). Therefore the

corresponding Hamiltonian (cf. (1.3)) is bounded from above by

HN,ξ (S) ≤
τi−1∑
n=1

ξ(Si) + (N + 1 − τi)ξ
(
z
(i)
N

) ≤
N∑

j=1

X
(j)
N + (N + 1 − τi)ξ

(
z
(i)
N

)
.

Recalling the definition (6.1) of the set Ki,N , for S ∈ (W̃i,N ∩ Di,N ) \ Ki,N we obtain

HN,ξ (S) ≤
N∑

j=1

X
(j)
N + (

N + 1 − ∣∣z(i)
N

∣∣ − hN

)
ξ
(
z
(i)
N

)
,

therefore, cf. (1.3),

PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

) ≤ 1

UN,ξ

e
∑N

j=1 X
(j)
N +(N+1−|z(i)

N |−hN )ξ(z
(i)
N )

.

As usual, we obtain a lower bound on UN,ξ by considering a single trajectory that reaches the site z
(i)
N in |z(i)

N | steps
and sticks there afterwards, getting

UN,ξ ≥ e(N+1−|z(i)
N |)ξ(z

(i)
N )cN ,

for a suitable c > 0, cf. (1.1). Note that ξ(z
(i)
N ) ≥ Z

(i)
N ≥ Nd/α/(log logN)3/2α eventually P(dξ)-almost surely, for

both i ∈ {1,2}, by relation (2.7). Therefore

PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

) ≤ e
∑N

j=1 X
(j)
N −hNNd/α/(log logN)3/2α

.

Since hN := (log logN)2/αN1−1/α if α > 1 and hN := (logN)1+2/α if α ≤ 1, it follows from (4.6) that PN,ξ ((W̃i,N ∩
Di,N ) \ Ki,N ) → 0 as N → ∞, P(dξ)-almost surely. This proves that (6.3) holds true and completes the second step.

Appendix A: Order statistics for the field

This section is devoted to the order statistics X
(1)
N , . . . ,X

(|BN |)
N of the field {ξ(x)}x∈BN

. We first give some basic
probability estimates, from which the proofs of Lemma 2.1 and Proposition 2.2 will be deduced.

A.1. Basic estimates

We start comparing the relative sizes of X
(k)
N and X

(p)
N .

Lemma A.1. For all N,p, k ∈ N with 1 ≤ p < k ≤ |BN | and for all δ ∈ (0,1) we have

P
(
X

(k)
N ≥ (1 − δ)X

(p)
N

) ≤
(

k − 1
k − p

)(
1 − (1 − δ)α

)k−p
. (A.1)

In the special case p = 1 the equality holds:

P
(
X

(k)
N ≥ (1 − δ)X

(1)
N

) = (
1 − (1 − δ)α

)k−1
. (A.2)
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Proof. We introduce the shortcuts MA := supx∈A ξ(x), {X(m)···(n)
N } := {X(m)

N , . . . ,X
(n)
N } and Ac := BN \ A for con-

venience. We recall that BN = {z ∈ Z
d : |z| ≤ N}. Summing over the location of the subsets {X(1)···(k−1)

N } = A and

{X(p)···(k−1)
N } = B , so that X

(k)
N = MAc and X

(p)
N = M(A\B)c , we can write

P
(
X

(k)
N ≥ (1 − δ)X

(p)
N

)
=

∑
A⊆BN ,|A|=k−1
B⊆A,|B|=k−p

P
(
X

(k)
N ≥ (1 − δ)X

(p)
N ,

{
X

(1)···(k−1)
N

} = A,
{
X

(p)···(k−1)
N

} = B
)

=
∑

A⊆BN ,|A|=k−1
B⊆A,|B|=k−p

P

(
MAc < ξ(y) <

1

1 − δ
MAc ∀y ∈ B,ξ(z) > MB ∀z ∈ A \ B

)
.

Since MB ≥ MAc on the event we are considering, we can replace MB by MAc and obtain the upper bound

P
(
X

(k)
N ≥ (1 − δ)X

(p)
N

) ≤
∑

A⊆BN ,|A|=k−1
B⊆A,|B|=k−p

P

(
(1 − δ)α

(MAc)α
<

1

ξ(y)α
<

1

(MAc)α
∀y ∈ B,

1

ξ(z)α
<

1

(MAc)α
∀z ∈ A \ B

)
.

We stress that in the special case p = 1 we have A = B , so that A \ B = ∅ and therefore the above inequality is an
equality.

By assumption the field ξ(·) has a Pareto distribution with parameter α > 0, cf. (1.2), therefore 1
ξα is uniformly

distributed on the interval (0,1): P(a < 1
ξ

< b) = b − a for all 0 < a < b < 1. It follows that

P
(
X

(k)
N ≥ (1 − δ)X

(p)
N

) ≤ (
1 − (1 − δ)α

)k−p
∑

A⊆BN ,|A|=k−1
B⊆A,|B|=k−p

E

(
1

(MAc)α(k−1)

)

≤
(

k − 1
k − p

)(
1 − (1 − δ)α

)k−p
∑

A⊆BN ,|A|=k−1

E

(
1

(MAc)α(k−1)

)
,

and again all these inequalities are equalities if p = 1. It only remains to check that the last sum equals one. To this
purpose, note that for all � ∈ N, summing on the location of the set {X(1)···(�)

N }, we can write

1 =
∑

A⊆BN ,|A|=�

P
({

X
(1)···(�)
N

} = A
) =

∑
A⊆BN ,|A|=�

P
(
ξ(x) > MAc ∀x ∈ A

)
=

∑
A⊆BN ,|A|=�

P

(
1

ξ(x)α
<

1

(MAc)α
∀x ∈ A

)
=

∑
A⊆BN ,|A|=�

E

(
1

(MAc)α�

)
.

�

Next we give some bounds on the absolute size of X
(k)
N .

Lemma A.2. Let c,C > 0 be such that c ≤ |BN |
Nd ≤ C. Then for all k ∈ {1, . . . , |BN |} and t ∈ (0,∞) the following

relations hold:

P
(
X

(k)
N > Nd/αt

) ≤ Ck

(k − 1)!
1

tkα
, (A.3)



1072 F. Caravenna, P. Carmona and N. Pétrélis

P
(
X

(k)
N ≤ tNd/α

) ≤ e−c/tα
k−1∑
m=0

1

m!
(

eC

tα

)m

. (A.4)

Proof. Throughout the proof we shall assume that t ≥ N−d/α . In fact, for t < N−d/α there is nothing to prove,
because the left hand side of (A.4) is zero (recall that the field ξ(·) is bounded from below by one, cf. (1.2)) and
the right hand side of (A.3) is greater than one: in fact, for k ≤ |BN | we have (k − 1)! ≤ kk ≤ |BN |k ≤ (CNd)k and
therefore for t < N−d/α

Ck

k!
1

tkα
≥ Ck

(CNd)k

1

tkα
= 1

(Nd/αt)α
≥ 1.

We start proving (A.3). The case k = 1 is easy:

P
(
X

(1)
N ≤ Nd/αt

) = P
(
ξ(x) ≤ Nd/αt ∀x ∈ BN

) =
(

1 − 1

tαNd

)|BN |

and since (1 − z)a ≥ 1 − az for a ≥ 1 and z ∈ [0,1] we obtain

P
(
X

(1)
N > Nd/αt

) = 1 −
(

1 − 1

tαNd

)|BN |
≤ |BN |

Nd

1

tα
≤ C

tα
. (A.5)

For the general case, summing over the location of the set {X(1)···(k−1)
N } := {X(1)

N , . . . ,X
(k−1)
N } and recalling the short-

cuts MA := supx∈A ϕ(x) and Ac := BN \ A we get

P
(
X

(k)
N > Nd/αt

) =
∑

A⊆BN ,|A|=k−1

P
(
X

(k)
N > Nd/αt,

{
X

(1)···(k−1)
N

} = A
)

=
∑

A⊆BN ,|A|=k−1

P
(
MAc > Nd/αt, ξ(x) > MAc ∀x ∈ A

)
=

∑
A⊆BN ,|A|=k−1

P

(
MAc > Nd/αt,

1

ξ(x)α
<

1

Mα
Ac

∀x ∈ A

)
.

We have already remarked that the random variables 1/ξ(x)α are uniformly distributed over the interval (0,1), that is
P( 1

ξ(x)α
≤ s) = s for s ∈ (0,1). Then with some easy bounds we obtain

P
(
X

(k)
N > Nd/αt

) =
∑

A⊆BN

|A|=k−1

E

(
1

M
α(k−1)
Ac

,MAc > Nd/αt

)

≤ 1

Nd(k−1)tα(k−1)

∑
A⊆BN

|A|=k−1

P
(
MAc > Nd/αt

) ≤ 1

Nd(k−1)tα(k−1)

∑
A⊆BN

|A|=k−1

P
(
X

(1)
N > Nd/αt

)

where we have used that P(MAc > Nd/αt) ≤ P(X
(1)
N > Nd/αt) for all A ⊆ BN . Since

(
n
m

) ≤ nm/m! and |BN | ≤ CNd ,
we obtain

P
(
X

(k)
N > Nd/αt

) ≤ 1

Nd(k−1)tα(k−1)

( |BN |
k − 1

)
P
(
X

(1)
N > Nd/αt

)
≤ 1

Nd(k−1)tα(k−1)

|BN |k−1

(k − 1)!
C

tα
≤ Ck

(k − 1)!
1

tαk
,

having applied (A.5). Equation (A.3) is proved.
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To prove (A.4), note that the random variable Y := #{z ∈ BN : ξ(z) > tNd/α} is binomial B(n,p) with parameters
n = |BN | and p = P(ξ > tNd/α) = 1/(tαNd), therefore

P
(
X

(k)
N ≤ tNd/α

) = P(Y ≤ k − 1) =
k−1∑
m=0

(
n

m

)
pm(1 − p)n−m

=
k−1∑
m=0

( |BN |
m

)(
1

tαNd

)m(
1 − 1

tαNd

)|BN |−m

. (A.6)

Using the estimates (1 − x)a ≤ e−ax and
(
n
m

) ≤ nm/m! we get

P
(
X

(k)
N ≤ tNd/α

) ≤ e−(|BN |/Nd)(1/tα)

k−1∑
m=0

1

m!
1

tαm

( |BN |
Nd

e1/(tαNd)

)m

,

from which (A.4) follows, recalling that |BN | ≥ cNd and 1/(tαNd) ≤ 1 by assumption. �

We are finally ready for the proof of Lemma 2.1 and Proposition 2.2, to which the next subsections are devoted.

A.2. Proof of Lemma 2.1

We start considering equation (2.2). Let us set Nk := 2k . By (A.3) we have∑
k∈N

P
(
X

(1)
Nk

> (Nk)
d/α(logNk)

1/α+ε/2) ≤ C

(log 2)1+αε/2

∑
k∈N

1

k1+αε/2
< ∞

and by (A.4)∑
k∈N

P
(
X

(1)
Nk

≤ (Nk)
d/α(log logNk)

−1/α−ε/2) ≤
∑
k∈N

exp
(−c(log logNk)

1+εα/2)
=

∑
k∈N

1

(k log 2)c(log log 2+log k)εα/2 < ∞,

because for large k the exponent c(log log 2 + logk)εα/2 exceeds 1. By the Borel–Cantelli lemma, it follows that
eventually (in k) P-a.s.

(Nk)
d/α

(log logNk)1/α+ε/2
≤ X

(1)
Nk

≤ (Nk)
d/α(logNk)

1/α+ε/2. (A.7)

Now take a generic N ∈ N and set k := �log2(N)�, so that Nk ≤ N < Nk+1. Observe that X
(1)
Nk

≤ X
(1)
N ≤ X

(1)
Nk+1

,

because X
(1)
N is increasing in N . Plainly, one has Nk+1 ≤ 2N , Nk ≥ 1

2N , logNk ≤ logN and logNk+1 ≤ log 2 +
logN ≤ 2 logN (for large N ). Then it follows from (A.7) that for large N

2−d/α Nd/α

(log logN)ε/2
≤ X

(1)
Nk

≤ X
(1)
N ≤ X

(1)
Nk+1

≤ 2d/α+1/α+ε/2Nd/α(logN)1/α+ε/2.

Equation (2.2) follows observing that 2d/α ≤ (log logN)ε/2 and 2d/α+1/α+ε/2 ≤ (logN)ε/2 for large N .
Next we focus on the lower bound in equation (2.3). By (A.4) we can write

P

(
X

((logN)θ )

N ≤ Nd/α

(logN)θ/α+ε

)
≤ e−c(logN)θ+αε

�(logN)θ �−1∑
m=0

1

m!
(
eC(logN)θ+αε

)m
.
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Observe that, for fixed x > 0, the sequence m �→ xm/m! is increasing for m ≤ x, therefore for k ≤ x we have∑k−1
m=0 xm/m! ≤ kxk/k! ≤ k(ex/k)k , because m! ≥ (m/e)m for all m ∈ N. It follows that for some constant C′ > 0

and for large N we can write

P

(
X

((logN)θ )

N ≤ Nd/α

(logN)θ/α+ε

)
≤ e−c(logN)θ+αε

(logN)θ
(
C′(logN)αε

)(logN)θ

≤ (logN)θ e−c(logN)θ+αε+(logN)θ [αε log logN+logC′]

≤ (logN)θ e−(1/2)c(logN)θ+αε ≤ N−2, (A.8)

because by assumption θ > 1 and ε > 0 (the −2 could be replaced by any negative number). The Borel–Cantelli
lemma then yields directly the lower bound in (2.3).

Finally, we prove together the upper bound in (2.3) and (2.4). By Stirling’s formula we have (k − 1)! ≥ ( k−1
e )k−1 ≥

( k
3 )k for large k. Applying (A.3), we can then write

P

(
X

(k)
N > A

Nd/α

k1/α

)
≤ Ck

(k − 1)!
(

k1/α

A

)αk

≤
(

3C

Aα

)k

≤ e−2k,

provided A is chosen larger than (e2/3C)1/α . By the inclusion bound,

P

(
∃k ∈ {

(logN), . . . , |BN |}: X
(k)
N > A

Nd/α

k1/α

)
≤

∑
k≥logN

e−2k ≤ (const.)

N2
,

therefore by the Borel–Cantelli lemma it follows that, eventually P-almost surely in N , one has X
(k)
N ≤ ANd/α

k1/α for all
k ≥ logN . This yields immediately (2.4), as well as the upper bound in (2.3), because by assumption θ > 1.

A.3. Proof of Proposition 2.2

Since the relation (2.5) becomes stronger as β increases, we can safely assume that β > 1. Then by (2.3) we have that,
eventually P-a.s.,

X
(k)
N ≥ X

((logN)β)

N ≥ Nd/α

(logN)2β/α
∀k ≤ (logN)β. (A.9)

Since a more quantitative control will be needed later, we observe that for large N

P(CN) ≤ 1

N
, where CN :=

⋃
m≥N

{
X

((logm)β)
m ≤ md/α

(logm)2β/α

}
, (A.10)

as it follows from (A.8).
Thanks to (A.9), in order to prove (2.5) it suffices to show that for every β > 1 there exists γ > 0 such that,

eventually P-a.s., the following event holds:

VN :=
{
∀k ≤ (logN)β : X

(k)
N − X

(k+1)
N ≥ X

(k)
N

(logN)γ

}
.

In order to apply the Borel–Cantelly lemma, it is convenient to group the events VN together. More precisely, for
n ∈ N0 we set Nn := �enr �, where the constant r ∈ (0,1) will be fixed later, and we define

Ṽn :=
⋂

Nn<m≤Nn+1

Vm.
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The proof is then completed once we show that the event Ṽn holds eventually P-a.s. (in n).
It only remains to show that P(Ṽ c

n) decays fast enough as n → ∞. By construction, if Ṽn does not hold, there must

exist m ∈ {Nn + 1, . . . ,Nn+1} and k ≤ (logm)β such that 0 < X
(k)
m − X

(k+1)
m < (logm)−γ X

(k)
m . Let y, z ∈ Bm be the

two points at which the values X
(k)
m and X

(k+1)
m are attained, that is ξ(y) = X

(k)
m and ξ(z) = X

(k+1)
m . It is convenient to

distinguish three cases, according to whether y and z are in BNn or not.

(1) If both y, z ∈ BNn , we can write ξ(y) = X
(k′)
Nn

and ξ(z) = X
(k′′)
Nn

for some k′ < k′′. Since by construction ξ(z) =
X

(k+1)
m and Bm ⊇ BNn , we must have k′′ ≤ k + 1, whence k′ ≤ k ≤ (logm)β ≤ (logNn+1)

β . Also note that

X
(k′)
Nn

− X
(k′+1)
Nn

≤ X
(k′)
Nn

− X
(k′′)
Nn

= X(k)
m − X(k+1)

m < (logm)−γ X(k)
m = (logm)−γ X

(k′)
Nn

≤ (logNn)
−γ X

(k′)
Nn

.

This shows that, if Ṽn does not hold and both y, z ∈ BNn , there must exist k′ ≤ (logNn+1)
β such that X

(k′)
Nn

−
X

(k′+1)
Nn

≤ (logNn)
−γ X

(k′)
Nn

.
(2) To handle the case when y, z ∈ Bm \ BNn ⊆ BNn+1 \ BNn , it is sufficient to observe that ξ(y) and ξ(z) must take

large values, because of (A.9). More precisely, on the event Cc
Nn

, cf. (A.10), both ξ(y) and ξ(z) must be larger

than md/α/(logm)2β/α ≥ N
d/α
n /(logNn+1)

2β/α .
(3) Consider finally the case when exactly one of the points y, z lies in BNn . If y ∈ BNn and z ∈ Bm \ BNn , we have

ξ(y) = X
(k′)
Nn

for some k′ ≤ (logm)β , as we have already remarked, therefore 0 < X
(k′)
Nn

− ξ(z) < (logm)−γ X
(k′)
Nn

.

Vice versa, if z ∈ BNn and y ∈ Bm \ BNn , we may write 0 < ξ(y) − X
(k′′)
Nn

< (logm)−γ ξ(y), for some k′′ ≤
(logm)β . In either case, we can state that there exists some point x ∈ BNn+1 \ BNn and some k̄ ≤ (logNn+1)

β such

that (1 − (logNn)
−γ ) < ξ(x)/X

(k̄)
Nn

< (1 − (logNn)
−γ )−1.

These considerations lead us directly to the following basic decomposition:

Ṽ c
n ⊆ W (1)

n ∪ (
CNn ∪ W (2)

n

) ∪ W (3)
n ,

where the event CN has been introduced in (A.10) and we have set

W (1)
n :=

⋃
k′≤(logNn+1)

β

{
X

(k′+1)
Nn

>

(
1 − 1

(logNn)γ

)
X

(k′)
Nn

}
,

W (2)
n :=

⋃
y,z∈BNn+1 \BNn ,y 
=z

{
ξ(y) ≥ N

d/α
n

(logNn+1)2β/α
, ξ(z) ≥ N

d/α
n

(logNn+1)2β/α

}
,

W (3)
n :=

⋃
x∈BNn+1 \BNn ,k̄≤(logNn+1)

β

{
1 − 1

(logNn)γ
<

ξ(x)

X
(k̄)
Nn

<

(
1 − 1

(logNn)γ

)−1}
.

Note that, by (A.10),
∑

n∈N
P(CNn) ≤ ∑

n∈N

1
Nn

≤ ∑
n∈N

e−nr+1 < ∞. By the Borel–Cantelli lemma, it suffices to

show that
∑

n∈N
P(W (i)

n ) < ∞ for i = 1,2,3 and it will follow that Ṽn holds eventually P-a.s., that is what we want
to prove.

Let us consider W (1)
n . By (A.1) we have P(X

(k+1)
N ≥ (1 − ε)X

(k)
N ) ≤ ckε for some constant c > 0. Recalling that

Nn = enr
, for large n we have

P
(

W (1)
n

) ≤
�(logNn+1)

β�∑
k=1

P

(
X

(k+1)
Nn

>

(
1 − 1

(logNn)γ

)
X

(k)
Nn

)

≤ c
1

(logNn)γ

�(logNn+1)
β�∑

k=1

k ≤ c′ (logNn+1)
2β

(logNn)γ
≤ c′′

nr(γ−2β)
(A.11)
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for suitable c, c′′ > 0. It follows that
∑

n∈N
P(W (1)

n ) < ∞ provided r(γ − 2β) > 1.

Next we consider W (2)
n . Observe that there exist constants c, c′ > 0 such that

|BNn+1 \ BNn | ≤ c(Nn+1 − Nn)(Nn)
d−1 ≤ c′ (Nn)

d

n1−r
(A.12)

because Nn+1 − Nn = �e(n+1)r � − �enr � = enr
rnr−1(1 + o(1)) as n → ∞. Recalling that P(ξ(x) > t) ≤ t−α by (1.2),

for a suitable c′′ > 0 we can write

P
(

W (2)
n

) ≤
∑

y,z∈BNn+1 \BNn ,y 
=z

P

(
ξ(y) >

N
d/α
n

(logNn+1)2β/α

)2

≤ (
c′)2 (Nn)

2d

n2(1−r)

(logNn+1)
4β

(Nn)2d
≤ c′′ n4βr

n2(1−r)
= c′′

n2−(4β+2)r
.

Therefore
∑

n∈N
P(W (2)

n ) < ∞ provided 2 − (4β + 2)r > 1.

We finally focus on W (3)
n . Note that by (1.2) for all t > 1 and ε < 1

2 we can write

P

(
(1 − ε) <

ξ(x)

t
< (1 − ε)−1

)
=

∫ (1−ε)−1t

(1−ε)t

α

s1+α
ds ≤ cα

ε

tα
(A.13)

for some universal constant c > 0. Note that ξ(x) is independent of X
(k)
Nn

if x /∈ BNn . If we are on the event Cc
Nn

, cf.

(A.10), X
(k)
Nn

≥ (Nn)
d/α/(logNn)

2β/α for k ≤ (logNn)
β , hence

P

(
1 − 1

(logNn)γ
<

ξ(x)

X
(k)
Nn

<

(
1 − 1

(logNn)γ

)−1

, Cc
Nn

)
≤ cα

1

(logNn)γ

(logNn)
α

(Nn)d
.

Recalling (A.10), it follows that

P
(

W (3)
n

) ≤ P(CNn) + P
(

W (3)
n , Cc

Nn

) ≤ 1

Nn

+ (logNn+1)
β |BNn+1 | · cα

(logNn)
α−γ

(Nn)d

≤ c′
(

1

enr + 1

nr(γ−α−β)

)
for a suitable constant c′ > 0. If r(γ − α − β) > 1 we then have

∑
n∈N

P(W (3)
n ) < ∞.

The proof is completed observing that the three relations we have found, namely

r(γ − 2β) > 1, 2 − (4β + 2)r > 1, r(γ − α − β) > 1,

can be satisfied at the same time. In fact, for any fixed β , we can choose r ∈ (0,1) small enough such that the second
relation holds (e.g. r := (4β + 3)−1) and then choose γ > 0 large enough so that the first and the third relations are
satisfied (e.g. γ := 6β + α + 3).

Appendix B: Order statistics for the modifed field

B.1. Proof of Lemma 2.4

We are going to prove the following stronger result.

Lemma B.1. For all k ≥ 2 and δ ∈ (0,1) one has

P
(
Z

(k)
N ≥ (1 − δ)Z

(1)
N

) ≤ (
1 − (1 − δ)α

)k−1
. (B.1)
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Proof. We set LA := supx∈A ψN(x) (recall (2.6)) and Ac := BN \ A for short. We also set ϕN(x) := (1 − |x|
N+1 ), so

that ψN(x) = ϕN(x)ξ(x). Summing over the location of the set A = {Z(1)
N , . . . ,Z

(k−1)
N }, so that Z

(k)
N = LAc , we can

write

P
(
Z

(k)
N ≥ (1 − δ)Z

(1)
N

) =
∑

A⊆BN ,|A|=k−1

P
({

Z
(1)
N , . . . ,Z

(k−1)
N

} = A,LAc ≥ (1 − δ)Z
(1)
N

)
=

∑
A⊆BN ,|A|=k−1

P
(
LAc < ψN(x) ≤ (1 − δ)−1LAc,∀x ∈ A

)
=

∑
A⊆BN ,|A|=k−1

P

(
(1 − δ)α

(
ϕN(x)

LAc

)α

≤ 1

ξ(x)α
<

(
ϕN(x)

LAc

)α

,∀x ∈ A

)
. (B.2)

It follows from (1.2) that the variable 1/ξ(x)α is uniformly distributed on the interval (0,1), that is, its distribution
function equals J (x) := (x ∧ 1)1(0,∞)(x), hence

P

(
(1 − δ)αtα ≤ 1

ξ(x)α
< tα

)
= J

(
tα

) − J
(
(1 − δ)αtα

)
.

One checks easily that J ((1 − δ)αtα) ≥ (1 − δ)αJ (tα) for all δ ∈ (0,1) and t ≥ 0 (the inequality is strict for t > 1),
therefore

P
(
Z

(k)
N ≥ (1 − δ)Z

(1)
N

) ≤ (
1 − (1 − δ)α

)k−1 ∑
A⊆BN ,|A|=k−1

E

[∏
x∈A

J

(
ϕN(x)α

(LAc)α

)]
. (B.3)

Setting δ = 1 in (B.2) we see that the sum in the right hand side of the last equation equals one, and the proof is
completed. �

Remark B.2. One can refine the proof of Lemma B.1 to show that

P
(
Z

(k)
N ≥ (1 − δ)Z

(1)
N

) ≥ (
1 − Cke−ckN

d )(
1 − (1 − δ)α

)k−1

for suitable constants ck,Ck ∈ (0,∞) and for large N . In fact, restricting the expectations in (B.2) to the event
{Z(k)

N > 1}, one has ϕN(x)/LAc ≤ 1 and therefore (B.3) becomes

P
(
Z

(k)
N ≥ (1 − δ)Z

(1)
N ,Z

(k)
N > 1

) = (
1 − (1 − δ)α

)k−1
P
(
Z

(k)
N > 1

)
.

It then remains to check that P(Z
(k)
N > 1) ≤ Ck exp(−ckN

d), which can be easily done by direct computation.

B.2. Proof of Lemma 2.3

As already remarked, only the first inequality in (2.7) needs to be proved, because Z
(2)
N ≤ Z

(1)
N ≤ X

(1)
N (recall (2.2)).

We start with an auxiliary lemma.

Lemma B.3. There exist constants c1, c2 such that for all N ∈ N and t ≥ 0

P
(
Z

(2)
N ≤ Nd/αt

) ≤ c1e−c2/t
α

. (B.4)

Proof. Setting Ox := supy∈BN\{x} ψN(y) for short, we can write

P
(
Z

(2)
N ≤ Nd/αt

) =
∑

x∈BN

P
(
Ox ≤ Nd/αt, ξ(x) > Ox

)
=

∑
x∈BN

P

(
1

Oα
x

≥ 1

Ndtα
,

1

ξ(x)α
<

1

Oα
x

)
≤

∑
x∈BN

E

(
1

Oα
x

1{1/Oα
x ≥1/(Nd tα)}

)
,
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because 1/ξ(x)α is uniformly distributed on the interval (0,1), as it follows from (1.2). We then apply the basic
formula E(Z1{Z≥a}) = aP(Z ≥ a) + ∫ ∞

a
P(Z ≥ s)ds, getting

P
(
Z

(2)
N ≤ Nd/αt

) ≤ 1

Nd

∑
x∈BN

{
1

tα
P

(
1

Oα
x

≥ 1

Ndtα

)
+

∫ ∞

t−α

P

(
1

Oα
x

≥ u

Nd

)
du

}
.

We now claim that there exists c > 0 such that for all N ∈ N, x ∈ BN and u > 0

P

(
1

Oα
x

≥ u

Nd

)
≤ e−cu. (B.5)

Since |BN | ≤ CNd for some constants C, we get

P
(
Z

(2)
N ≤ Nd/αt

) ≤ C

tα
e−ct−α + C

∫ ∞

t−α

e−cu du ≤ e−ct−α

(
C

tα
+ C

c

)
.

Since the function t �→ t−αe−(1/2)ct−α
is bounded on R

+, it follows that (B.4) holds true with c2 := 1
2c and for c1

large enough.
It remains to prove (B.5), for which we can write

P

(
1

Oα
x

≥ u

Nd

)
=

∏
z∈BN\{x}

P

(
1

ξ(z)α
≥ (1 − |z|/(N + 1))α

Nd
u

)

≤ exp

(
u

Nd

∑
z∈BN\{x}

(
1 − |z|

N + 1

)α)
,

because P(1/ξ(z)α ≥ a) = 1 − a ≤ e−a for a ∈ [0,1] (recall (1.2)). By a Riemann sum approximation, as N → ∞
one has

1

Nd

∑
z∈BN\{x}

(
1 − |z|

N + 1

)α

−→
∫

|y|≤1
(1 − |y|)α dy ∈ (0,∞),

from which it follows that (B.5) holds true for some c > 0. �

Proof of Lemma 2.3. Thanks to the inequality (B.4), the proof is identical to that of the lower bound in (2.2), cf.
Appendix A.2. More precisely, one first shows, through a standard Borel–Cantelli argument, that the first inequality
in (2.7) (with ε replaces by ε/2, say) holds along the subsequence Nk := 2k ; the extension to all values of N then
follows easily, because Z

(2)
N is increasing in N . We omit the details for conciseness. �

B.3. Further results

It may be useful to observe that if z
(1)
N+1 
= z

(1)
N then∣∣z(1)

N+1

∣∣ >
∣∣z(1)

N

∣∣ and ξ
(
z
(1)
N+1

)
> ξ

(
z
(1)
N

)
. (B.6)

In fact, when z
(1)
N+1 
= z

(1)
N we have by definition

Z
(1)
N = ψN

(
z
(1)
N

)
> ψN

(
z
(1)
N+1

)
, ψN+1

(
z
(1)
N

)
< ψN+1

(
z
(1)
N+1

) = Z
(1)
N+1, (B.7)

from which we obtain, recalling the definition (2.6) of ψN ,

|z(1)
N |ξ(z

(1)
N )

(N + 1)(N + 2)
= ψN+1

(
z
(1)
N

) − ψN

(
z
(1)
N

)
< ψN+1

(
z
(1)
N+1

) − ψN

(
z
(1)
N+1

) = |z(1)
N+1|ξ(z

(1)
N+1)

(N + 1)(N + 2)
,
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hence |z(1)
N |ξ(z

(1)
N ) < |z(1)

N+1|ξ(z
(1)
N+1). This shows that at least one of the two inequalities in (B.6) must hold. Two cases

remain that need to be excluded:

• if |z(1)
N+1| ≤ |z(1)

N | and ξ(z
(1)
N+1) > ξ(z

(1)
N ), then

ψN

(
z
(1)
N+1

) =
(

1 − |z(1)
N+1|

N + 1

)
ξ
(
z
(1)
N+1

)
>

(
1 − |z(1)

N |
N + 1

)
ξ
(
z
(1)
N

) = ψN

(
z
(1)
N

) = Z
(1)
N ,

which is absurd, because Z
(1)
N is by definition the maximum of ψN ;

• analogously, if |z(1)
N+1| > |z(1)

N | and ξ(z
(1)
N+1) ≤ ξ(z

(1)
N ), then

Z
(1)
N+1 = ψN+1

(
z
(1)
N+1

) =
(

1 − |z(1)
N+1|

N + 2

)
ξ
(
z
(1)
N+1

)
<

(
1 − |z(1)

N |
N + 2

)
ξ
(
z
(1)
N

) = ψN+1
(
z
(1)
N

)
,

which is again absurd, because Z
(1)
N+1 is by definition the maximum of ψN+1.

Next we show that a statement analogous to (2.9) for the gap Z
(1)
N −Z

(2)
N does not hold. Let us fix any N̄ for which

z
(1)

N̄

= z

(1)

N̄+1
(note that there are almost surely infinitely many such values of N̄ , otherwise Z

(1)
N = ψN(z

(1)
N ) would

be eventually constant). We set x := z
(1)

N̄
and y := z

(1)

N̄+1
for short. Then Z

(1)

N̄
= ψN(x) and Z

(2)

N̄
≥ ψN(y), hence,

recalling (2.6),

Z
(1)

N̄
− Z

(2)

N̄
≤ ψN̄(x) − ψN̄(y) = 1

N̄ + 1

(
(N̄ + 1)

(
ξ(x) − ξ(y)

) + |y|ξ(y) − |x|ξ(x)
)

= 1

N̄ + 1

(
(N̄ + 2)

(
ξ(x) − ξ(y)

) + |y|ξ(y) − |x|ξ(x)
) + ξ(y) − ξ(x)

N̄ + 1

= N̄ + 2

N̄ + 1

(
ψN̄+1(x) − ψN̄+1(y)

) + ξ(y) − ξ(x)

N̄ + 1
.

By construction y = z
(1)

N̄+1
and y 
= x, therefore ψN̄+1(y) = Z

(1)

N̄+1
> ψN̄+1(x). Recalling (2.2), we infer that eventu-

ally P-a.s.

Z
(1)

N̄
− Z

(2)

N̄
≤

ξ(z
(1)

N̄+1
) − ξ(z

(1)

N̄
)

N̄ + 1
≤

X
(1)

N̄+1

N̄ + 1
≤ N̄d/α−1(log N̄)1/α+ε. (B.8)

We stress that this bound differs from the one in (2.9) almost by a factor N−1. It turns out that the bound (B.8) is
quite sharp (up to logarithmic corrections): in fact, by the first bound in (2.8), (2.7) and a Borel–Cantelli argument, it
follows that for every ε > 0, eventually P-almost surely,

Z
(1)
N − Z

(2)
N ≥ Z

(1)
N

N(logN)1+ε/2
≥ Nd/α−1

(logN)1+ε
. (B.9)

This implies in particular that N(Z
(1)
N − Z

(2)
N ) → +∞, P-almost surely.
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