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Abstract. We consider a random walk in a stationary ergodic environment in Z, with unbounded jumps. In addition to uniform
ellipticity and a bound on the tails of the possible jumps, we assume a condition of strong transience to the right which implies that
there are no “traps.” We prove the law of large numbers with positive speed, as well as the ergodicity of the environment seen from
the particle. Then, we consider Knudsen stochastic billiard with a drift in a random tube in Rd , d ≥ 3, which serves as environment.
The tube is infinite in the first direction, and is a stationary and ergodic process indexed by the first coordinate. A particle is moving
in straight line inside the tube, and has random bounces upon hitting the boundary, according to the following modification of the
cosine reflection law: the jumps in the positive direction are always accepted while the jumps in the negative direction may be
rejected. Using the results for the random walk in random environment together with an appropriate coupling, we deduce the law
of large numbers for the stochastic billiard with a drift.

Résumé. Nous considérons une marche aléatoire dans un milieu stationnaire ergodique sur Z, avec des sauts non bornés. En plus
de l’uniforme ellipticité et d’une borne uniforme sur la queue de la loi des sauts, nous supposons une condition de transience forte
qui garantit l’absence de “pièges.” Nous montrons la loi des grands nombres avec vitesse strictement positive, ainsi que l’ergodicité
de l’environnement vu de la particule. Par ailleurs, nous étudions aussi le billard stochastique de Knudsen avec dérive dans un tube
aléatoire dans Rd , d ≥ 3, qui constitue l’environnement. Le tube est infini dans la première direction, et, vu comme un processus
indéxé par la première coordonnée, il est supposé stationnaire ergodique. Une particule se déplace en ligne droite à l’intérieur
du tube, avec des rebonds aléatoires sur le bord, selon la modification suivante de la loi de reflexion en cosinus: les sauts dans la
direction positive sont toujours acceptés, tandis que ceux dans l’autre direction peuvent être rejetés. En utilisant les résultats pour la
marche aléatoire en milieu aléatoire et un couplage approprié, nous obtenons la loi des grands nombres pour le billard stochastique
avec dérive.

MSC: Primary 60K37; secondary 37D50; 60J25

Keywords: Cosine law; Stochastic billiard; Knudsen random walk; Random medium; Random walk in random environment; Unbounded jumps;
Stationary ergodic environment; Regenerative structure; Point of view of the particle

1. Introduction

Stochastic billiards deal with the motion of a particle inside a connected domain in the Euclidean space, travelling in
straight lines inside the domain and subject to random bouncing when hitting the boundary. They are motivated by
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problems of transport and diffusion inside nanotubes, where the complex microscopic structure of the tube boundary
allows for a stochastic description of the collisions: they can be viewed as limits of deterministic billiards on tables
with rough boundary as the ratio of macro to micro scales diverges [8]. See also [5] and [7] for a detailed perspective
from physics and chemistry, and [5,8] for basic results. A natural reflection law is when the outgoing direction has a
density proportional to the cosine of its angle with the inner normal vector, independently from the past. This model,
originally introduced by Martin Knudsen, is called the Knudsen stochastic billiard. It has two important features: the
uniform measure on the phase space is invariant for the dynamics, and moreover it is reversible. To understand large
time behavior of Knudsen billiards, one needs to consider infinite domains. Recurrence and transience is studied in
[13], for billiards in a planar tube extending to infinity in the horizontal direction, under assumptions of regularity and
growth on the tube. For the physically relevant case of an infinite tube which is irregular but has some homogeneity
properties at large scale, the description of the tube as a random environment has been introduced in [6]: the domain is
the realization of a stationary ergodic process indexed by the horizontal coordinate. Diffusivity of the particle is studied
in this paper in dimension d = 1 + (d − 1) ≥ 2: generically, when the tube does not have arbitrarily long cavities,
the billiard is diffusive in dimension d ≥ 3, and also for d = 2 when the billiard has “finite horizon.” Reversibility
allows to find the limit of the environment seen from the particle, and to use the appropriate techniques which have
been extended to Random Walks in Random Environments (RWRE). We briefly mention [7] for the nonequilibrium
dynamics aspects of the billiard and some features as a microscopic model for diffusion.

In the model of [6] the large-scale picture of the motion of the particle is purely diffusive; in particular, the lim-
iting velocity of the particle equals zero. In this paper, we consider a stochastic billiard in a random tube as in [6]
traversed by a flow with constant current to the right; our goal is to prove the law of large numbers (with positive
limiting velocity). This current is modelled in the following way: the jumps in the positive direction are always ac-
cepted, but the jumps in the negative direction are accepted with probability e−λu, where u is the horizontal size of
the attempted jump. This method of giving a drift to the particle has the following advantage: the reversibility of the
stochastic billiard is preserved (although, of course, the reversible measure is no longer the same), which simplifies
considerably the analysis of the model. In view of the above, the large scale picture is expected to be similar to the
one-dimensional RWRE with a drift when the environment is given by a “resistor network” with a similar accep-
tance/rejection mechanism; the environment is not i.i.d. but stationary ergodic, the jumps are not nearest neighbor but
unbounded.

We review known results on the law of large numbers for transient RWREs on Z. For nearest neighbor jumps, the
sub-ballistic and ballistic regimes – meaning that the speed is zero, resp. nonzero – are fully understood (e.g., [18]
and Section 1 in [16]) with the explicit formula of Solomon for the speed [15] in the case of i.i.d. environment; the
extension to stationary ergodic environment is given in [1]. When the jumps are bounded but not nearest neighbor,
Key [10] shows that transience of the walk to the right amounts to positivity of some middle Lyapunov exponent of a
product of random matrices. The regime where the law of large numbers holds with a positive speed is characterized
in Brémont’s [4] by the positivity of this exponent and existence of an invariant law for the environment absolutely
continuous to the static law, but no explicit formula is anymore available. Goldsheid [9] gives sufficient conditions
(which are also necessary in the case of i.i.d. environment), and also for the quenched central limit theorem. For
completeness, we mention a result of Bolthausen and Goldsheid [3] for recurrent RWREs with bounded jumps: if
the quenched drift is not a.s. zero, the typical displacement at time n is of order ln2 n, i.e., the RWRE has a similar
lingering behavior as Sinaï’s walk.

The case of unbounded jumps has been very seldom considered; in fact, we can only mention that Andjel [2] proves
a 0–1 law when the jumps have uniform exponential tails.

In this paper, we prove the law of large numbers with a positive speed for RWRE on Z with unbounded jumps,
under the following assumptions: stationary ergodic environment, (E) uniform ellipticity; (C) uniform (and integrable,
but not necessarily exponential) tails for the jumps; (D) strong uniform transience to the right. We do not assume
reversibility of the RWRE. The strategy is to consider an auxiliary RWRE with truncated jumps, to prove the existence
of limits for the speed and the environment seen from the walker, then let the truncation parameter tend to infinity,
and find a limit point for the environment measure. We mention also that assumption (D) precludes the existence of
arbitrarily long traps – i.e., pieces of the environment where the random walk can spend an unusually large time –, and
it is rather strong. We emphasize that we do not assume any mixing – hence, no independence – on the environment.
As we see below, this set of conditions is adapted to our purpose. In our opinion, it is a challenging problem to
find weaker conditions that still permit to obtain the law of large numbers for RWREs with unbounded jumps with
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only polynomial tails. In particular, it would be especially interesting to substitute the current condition (D) by a
weaker one; however, at the moment we do not have any concrete results and/or plausible conjectures which go in
that direction.

To apply this result to the billiard in random tube, we need a discretization procedure to compare the billiard to a
random walk. This can be performed by coupling the billiard with an independent coin tossing; the integer part of the
horizontal coordinate of hitting points on the boundary, sampled at success times of the coin tossing, is an embedded
RWRE in some environment determined by the random tube. We check condition (D) for the RWRE by making use of
the reversibility of the billiard and spectral estimates (as in [14] for a reversible RWRE on Zd ). This coupling allows
to transfer results from the RWRE – a simplified model – to the stochastic billiard – a much more involved one. Under
fairly reasonable assumptions on the random tube, we obtain for the billiard the law of large numbers with positive
speed.

The paper is organized as follows: we define the two models and state the results in the next section. Section 3 con-
tains the proofs for RWRE, and Section 4 those for the stochastic billiard, including the construction of the coupling
with the RWRE.

2. Formal definitions and results

Now, we formally define the random billiard with drift in a random tube and the one-dimensional random walk in
stationary ergodic random environment with unbounded jumps.

Already at this point we warn the reader that the (continuous) random environment for the billiard processes and
the (discrete) random environment for the random walk are denoted by the same letter ω. Hopefully, this creates no
confusion since at all times we tried to make it clear which model is under consideration. Also, we use the same
notation P (the law of the random environment) for both models.

2.1. Random billiards with drift

We define the model of random billiard in a random tube, basically keeping the notations of [6].
In this paper, Rd−1 will always stand for the linear subspace of Rd which is perpendicular to the first coordinate

vector e, we use the notation ‖ · ‖ for the Euclidean norm in Rd . Let B(x, ε) = {y ∈ Rd : ‖x − y‖ < ε} be the open
ε-neighborhood of x ∈ Rd . Define Sd−1 = {y ∈ Rd : ‖y‖ = 1} to be the unit sphere in Rd . We write |A| for the
d-dimensional Lebesgue measure in case A ⊂ Rd , and (d − 1)-dimensional Hausdorff measure in case A ⊂ Sd−1. Let

Sh = {
w ∈ Sd−1: h · w > 0

}
be the half-sphere looking in the direction h. For x ∈ Rd , it will frequently be convenient to write x = (α,u), being α

the first coordinate of x and u ∈ Rd−1; then, α = x · e, and we write u = U x, where U is the projector on Rd−1. Fix
some positive constant M̂ , and define

Λ = {
u ∈ Rd−1: ‖u‖ ≤ M̂

}
. (1)

We denote by ∂A the boundary of A ⊂ Rd , by Ā = A ∪ ∂A the closure of A and by A◦ the interior of A (i.e., the
largest open set contained in A).

Definition 2.1. Let k ∈ {d − 1, d}, and A a subset of Rk . We say that ∂A is (ε̂, L̂)-Lipschitz, if for any x ∈ ∂A there
exist an affine isometry Ix : Rk → Rk and a function fx : Rk−1 → R such that

• fx satisfies Lipschitz condition with constant L̂, i.e., |fx(z) − fx(z
′)| ≤ L̂‖z − z′‖ for all z, z′;

• Ixx = 0, fx(0) = 0, and

Ix

(
A◦ ∩ B(x, ε̂)

) = {
z ∈ B(0, ε̂): z(k) > fx

(
z(1), . . . , z(k−1)

)}
.
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Now, fix M̂ , and define E to be the set of all open domains A such that A ⊂ Λ and ∂A is (ε̂, L̂)-Lipschitz for some
(ε̂, L̂) (which may depend on A). We turn E into a metric space by defining the distance between A and B to be equal
to |(A \ B) ∪ (B \ A)|. Let Ω be the space of all càdlàg functions R → E , let A be the sigma-algebra generated by
the cylinder sets with respect to the Borel sigma-algebra on E , and let P be a probability measure on (Ω, A). This
defines a E -valued process ω = (ωα,α ∈ R). Write θα for the spatial shift: θαω· = ω·+α . We suppose that the process
ω is stationary and ergodic with respect to the family of shifts (θα,α ∈ R). With a slight abuse of notation, we denote
also by

ω = {
(α,u) ∈ Rd : u ∈ ωα

}
the random domain (“tube”) where the billiard lives. Intuitively, ωα is the “slice” obtained by crossing ω with the
hyperplane {α} × Rd−1.

We will assume that the domain ω is connected. A trivial sufficient condition is that ωα is connected for all α;
a typical example is when ∂ω is generated by rotating around the horizontal axis the graph of a one-dimensional
(stationary ergodic) process with values in [1, M̂]. In this paper, we will work under the more general Condition P
below, which implies that ω is arc-connected.

We also assume the following condition.

Condition L. There exist ε̃, L̃ such that ∂ω is (ε̃, L̃)-Lipschitz (in the sense of Definition 2.1) P-a.s.

Denote by νω the (d − 1)-dimensional Hausdorff measure on ∂ω; from Condition L one obtains that νω is lo-
cally finite. We keep the usual notation dx,dv,dh, . . . for the (d − 1)-dimensional Lebesgue measure on Λ (usually
restricted to ωα for some α) or the surface measure on Sd−1.

Define the set of regular points

Rω = {x ∈ ∂ω: ∂ω is continuously differentiable in x}.
For all x = (α,u) ∈ Rω , let us define also the normal vector nω(x) = nω(α,u) ∈ Sd−1 pointing inside the domain ω.

We suppose that the following condition holds:

Condition R. We have νω(∂ω \ Rω) = 0, P-a.s.

We say that y ∈ ω̄ is seen from x ∈ ω̄ if there exists h ∈ Sd−1 and t0 > 0 such that x + th ∈ ω for all t ∈ (0, t0) and
x + t0h = y. Clearly, if y is seen from x then x is seen from y, and we write “x

ω↔ y” when this occurs.
One of the main objects of study in the paper [6] is the Knudsen random walk (KRW) which is a discrete time

Markov process on ∂ω, defined through its transition density K with respect to the surface measure νω: for x, y ∈ ∂ω

K(x, y) = γd

((y − x) · nω(x))((x − y) · nω(y))

‖x − y‖d+1
1{x, y ∈ Rω, x

ω↔ y}, (2)

where γd = (
∫

Se
h · e dh)−1 is the normalizing constant. We also refer to the Knudsen random walk as the random

walk with cosine reflection law, since it can be easily seen from (2) that the density of the outgoing direction is
proportional to the cosine of the angle between this direction and the normal vector (see, e.g., formula (4) in [5]). In
this paper, however, we shall consider the walk which “prefers” the positive direction: a jump in the direction e is
always accepted, but if the walk attempts to jump in the negative direction (−e), it is accepted with probability e−λu,
where u is the horizontal size of the attempted jump and λ > 0 is a given parameter. Formally, define

K̂(x, y) =
{

K(x,y) if (y − x) · e ≥ 0,
eλ(y−x)·eK(x,y) if (y − x) · e < 0,

(3)

and let

Θ(x) = 1 −
∫

∂ω

K̂(x, y)dνω(y). (4)
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Fig. 1. Knudsen random walk with drift.

For a fixed ω, we define the Knudsen random walk with drift (KRWD) (ξn;n ≥ 0) – and denote by Pω,Eω the
corresponding quenched probability and expectation – as the Markov chain on ∂ω starting from ξ0 = 0 such that, for
any x ∈ Rω and any measurable B ⊂ ∂ω such that x /∈ B ,

Pω[ξn+1 ∈ B|ξn = x] =
∫

B

K̂(x, y)dνω(y),

and

Pω[ξn+1 = x|ξn = x] = Θ(x).

On Fig. 1 one can see a typical path of the random walk (rejected jumps are shown as dotted lines).
As observed in [5], K(·, ·) is symmetric (that is, K(x,y) = K(y,x) for all x, y ∈ Rω), so that the (d − 1)-

dimensional Hausdorff measure νω is reversible for K . Then, with π(x) = eλ(x·e), the measure νω
λ on ∂ω given

by

dνω
λ

dνω
(x) = π(x) = eλ(x·e) (5)

is such that π(x)K̂(x, y) = π(y)K̂(y, x), showing that νω
λ is reversible for the KRWD ξ . With some abuse of notation,

we shall sometimes write π(B) := νω
λ (B) for B ⊂ ∂ω.

We need also require a last technical assumption:

Condition P. There exist constants N,ε, δ such that for P-almost every ω, for any x, y ∈ Rω with |(x − y) · e| ≤ 2
there exist B1, . . . ,Bn ⊂ ∂ω, n ≤ N − 1 with νω(Bi) ≥ δ for all i = 1, . . . , n, and such that

• K(x, z) ≥ ε for all z ∈ B1,
• K(y, z) ≥ ε for all z ∈ Bn,
• K(z, z′) ≥ ε for all z ∈ Bi , z′ ∈ Bi+1, i = 1, . . . , n − 1

(if N = 1 we only require that K(x,y) ≥ ε). In other words, there exists a “thick” path of length at most N joining x

and y. This assumption is already used in [6], it prevents the tube from splitting into separate channels of arbitrary
length, which could slow down the homogeneization.

We prove the existence of the speed of KRWD:

Theorem 2.2. Assume that d ≥ 3. There exists a positive deterministic v̂ such that for P-almost every ω

ξn · e
n

→ v̂ as n → ∞, Pω-a.s. (6)

The assumption d ≥ 3 crucially enters estimate (61). In dimension 2, depending on the geometry, KRWD can have
large jumps, and then may not obey the law of large numbers. Naturally, if one assumes a strong additional condition
that the size of the jumps is a.s. uniformly bounded (so-called finite horizon condition in the billiard literature), then
our argument works in the case d = 2 as well. Still, we feel that Theorem 2.2 can hold in dimension 2 even without
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the finite horizon condition; for the proof, however, one would need estimates on the size of the jump that are finer
than the “uniform” one provided by (59). Note that in the driftless case we can control the average size of the jump
using the explicit form of the stationary measure for the environment seen from the particle (cf. Lemma 4.1 in [6]).
Unfortunately, in the presence of the drift one does not obtain the stationary measure for this process in such an
explicit way, and this is the reason why the situation in dimension 2 is less clear.

2.2. One-dimensional random walk in random environment

Let us consider a collection of nonnegative numbers ω = (ωxy;x, y ∈ Z), with the property
∑

y ωxy = 1 for all x. This
collection is called the environment, and we denote by Ω the space of all environments. Next, we consider a Markov
chain (Sn,n = 0,1,2, . . .) with the transition probabilities

Px0
ω [Sn+1 = x + y|Sn = x] = ωxy for all n ≥ 0, Px0

ω [S0 = x0] = 1,

so that Px0
ω is the quenched law of the Markov chain starting from x0 in the environment ω. Let us write Pω for P0

ω .
The environment is chosen at random from the space Ω according to a law P before the random walk starts. We
denote by Ex0

ω and E the expectations with respect to Px0
ω and P correspondingly. Also, we assume that the sequence

of random vectors (ωx·, x ∈ Z) is stationary and ergodic.
We need the following (one-sided) uniform ellipticity condition:

Condition E. There exists ε̃ such that P[ω01 ≥ ε̃] = 1.

For any integer � > 1 let us define also the “truncated” environment ω� by

ω
�
xy =

⎧⎨⎩
ωxy if 0 < |y| < �,
0 if |y| ≥ �,
ωx0 + ∑

y:|y|≥� ωxy if y = 0,

and observe also that formally ω = ω∞. The truncated random walk S� is then defined by

Px0
ω

[
S

�

n+1 = x + y|S�
n = x

] = ω
�
xy for all n ≥ 0, Px0

ω

[
S

�

0 = x0
] = 1.

In words, the random walk S� in the truncated environment ω� is the modification of the original random walk where
jumps of lengths less than ρ are kept, but larger jumps are rejected and the particle does not move. We shall sometimes
also write e.g. Pω[S�1 ∈ ·, S�2 ∈ ·] meaning here the natural coupling of two versions of the random walk with different
truncation but in the same environment. This coupling is defined in the following way:

• if S
�1
n �= S

�2
n , then S

�1
n+1 and S

�2
n+1 are independent given S

�1
i , S

�2
i , i ≤ n;

• if S
�1
n = S

�2
n = x, and Yn is a random variable with Pω[Yn = y] = ωxy and independent of S

�1
i , S

�2
i , i ≤ n, then

S
�i

n+1 =
{

x + Yn if |Yn| < �i ,
x if |Yn| ≥ �i ,

for i = 1,2.

Let us assume the following condition on the tails of the possible jumps of the random walks:

Condition C. There exist γ1 > 0 and α > 1 such that for all s ≥ 1 we have∑
y:|y|≥s

ω0y ≤ γ1s
−α P-a.s. (7)
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For I ⊂ Z+ and A ⊂ Z we denote by N
�

I (A) the number of visits to A of the random walk S� during the time set
I , i.e.,

N
�

I (A) =
∑
k∈I

1
{
S

�

k ∈ A
}
.

We use the shorter notations N
�

I (x) for N
�

I ({x}), N
�

k (A) := N
�

[0,k](A) for the number of visits to A during the time

interval [0, k], and N
�

k (x) := N
�

k ({x}).
Next, we make another assumption that says, essentially, that the random walk is “uniformly” transient to the right

(i.e., there are no “traps”).

Condition D. There is a nonincreasing function g1 ≥ 0 with the property
∑∞

k=1 kg1(k) < ∞ and a finite �0, such that
for all x ≤ 0 and all � ≥ �0, P-almost surely it holds that E0

ωN
�∞(x) ≤ g1(|x|).

With these assumptions, we can prove that the speed of the random walk is well defined and positive:

Theorem 2.3. For all � ∈ [�0,∞] there exists v� > 0 such that for P-a.a. ω we have

S
�
n

n
→ v� as n → ∞, Pω-a.s. (8)

Next, we are interested in the environment seen from the particle. Let θz be the shift to z acting on ω in the following
way: (θzω)xy = ωx+z,y . The process of the environment viewed from the particle (with respect to S�) is defined by
ω(n) = θS

�
n
ω.

Theorem 2.4. For all � ∈ [�0,+∞] there exists an unique invariant measure Q� for the process of the environment
viewed from the particle with Q� � P. Then, we have

v� =
∫

Ω

E0
ωS

�

1 dQ�. (9)

Moreover, for all � ∈ [�0,+∞] the measure Q� is ergodic and Q� weakly converges to Q∞ as � → ∞. Finally, it
holds that v� → v∞ as � → ∞.

Remark 2.5. In the case � < ∞ the invariant measure Q� is given by the formula (27) in Section 3.

3. Proofs for RWRE

Denote by T
�
z = min{k ≥ 0: S

�

k ≥ z}. We use the simplified notation T � := T
�

0 . Let

r
�
x (z) = Px

ω

[
S

�

T
�
z

= z
]

be the probability that, at moment T
�
z , the (truncated) random walk is located exactly at z. We also use the shorter

notation r
�
x := r

�
x (0). Of course, the quantity r

�
x (z) depends also on ω, but, for the sake of simplicity, we keep it this

way.
The key fact needed in the course of the proof of our results is the following lemma:

Lemma 3.1. Assume Conditions E, C, D. Then, there exists ε1 > 0 such that, P-a.s.,

r
�
x ≥ 2ε1

for all x ≤ 0 and for all � ∈ [�0,∞].
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Proof. Let us denote Z∗− := Z ∩ (−∞,−1], Z− := Z ∩ (−∞,0]. For � ≥ �0 and x ≤ −1,

Ex
ωN

�∞(Z−) =
∑
z≤x

Ex
ωN

�∞(z) +
∑

x<z≤0

Ex
ωN

�∞(z)

=
∑
z≤x

Ex
ωN

�∞(z) +
∑

x<z≤0

Ez
ωN

�∞(z) (Markov property)

≤
∑

k

g1(k) + |x|g1(0) (Condition D)

≤ C1|x| (10)

for P-almost all ω, with some finite constant C1. Since{
T � > k

} = {
N

�

k

(
Z∗−

) ≥ k + 1
} ⊂ {

N
�

k (Z−) ≥ k
}

for such an x, using Chebyshev’s inequality we obtain, for P-almost all ω and for all � ≥ �0,

Px
ω

[
T � > k

] ≤ Px
ω

[
N

�

k (Z−) ≥ k
] ≤ Px

ω

[
N

�∞(Z−) ≥ k
]

≤ Ex
ωN

�∞(Z−)

k
≤ C1|x|

k
. (11)

Let us fix δ1 > 0 such that 1 + δ1 < α with α from Condition C, and fix some β ∈ (1, α
1+δ1

). Observe that (11)

implies that for any x ∈ [−nβ,0]
Px

ω

[
T � > nβ(1+δ1)

] ≤ C1n
−βδ1 (12)

for P-almost all ω and for all � ≥ �0.
Fix a real number s ≥ 1 and denote

σs = min
{
k ≥ 0: S

�

k ∈ [−s,0]}.
Let Gs be the event defined as

Gs = {∣∣S�

k − S
�

k−1

∣∣ ≤ s for all k ≤ sβ(1+δ1)
}
.

By Condition C, it is straightforward to obtain that, for some C2 > 0

Pω[Gs] ≥ 1 − C2s
−(α−(1+δ1)β) (13)

for all � ≥ �0 (observe that, by definition, α > (1 + δ1)β). Also, note that, by the Markov property, when x ≤ y and
−s ≤ y ≤ 0,

r
�
y = Px

ω

[
S

�

T � = 0|σs < T �,S�
σs

= y
]
. (14)

On the event Gs ∩ {T � ≤ sβ(1+δ1)} we have σs < T � a.s. for x < 0, and using also (12), (13), (14), we obtain for any
x ∈ [−sβ,0)

r
�
x = Px

ω

[
S

�

T � = 0
]

≥ Px
ω

[
S

�

T � = 0|σs < T �
]
Px

ω

[
σs < T �

]
≥

(
min

y∈[−s,0] r
�
y

)
Px

ω

[
Gs,T

� ≤ sβ(1+δ1)
]

≥
(

min
y∈[−s,0] r

�
y

)(
1 − C1s

−βδ1 − C2s
−(α−(1+δ1)β)

)
. (15)
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For any real number k ≥ 1, define

uk = ess inf
P

min
y∈[−k,0] r

�
y ,

which depends also on ω, and let ϕ := min{βδ1, α − (1 + δ1)β}. Now, (15) implies that for some C3 > 0

usβ ≥ (
1 − C3s

−ϕ
)
us. (16)

By the ellipticity Condition E, we have u2 > 0. Iterating (16), we obtain that um ≥ 2ε1 > 0 for all m ≥ 2, where

ε1 = 1

2
u2

(
1 − C32−ϕ

)(
1 − C32−βϕ

)(
1 − C32−β2ϕ

)(
1 − C32−β3ϕ

) · · ·

is indeed positive since it holds that
∑

j 2−βj ϕ < ∞. This concludes the proof of Lemma 3.1. �

Now, fix some integer � ∈ [�0,∞), and consider a sequence of i.i.d. random variables ζ1, ζ2, ζ3, . . . with P [ζj =
1] = 1 − P [ζj = 0] = ε1 (the parameter ε1 is from Lemma 3.1, and P stands for the law of this sequence; in the
sequel we shall use also E for the expectation corresponding to P ). Then, our strategy can be described in words in
the following way. For all j ≥ 1, Lemma 3.1 implies that r

�
x (j�) ≥ 2ε1 for all x ∈ [(j − 1)�, j� − 1]. We couple the

sequence ζ = (ζ1, ζ2, ζ3, . . .) with the random walk S� in such a way that ζj = 1 implies that S
�

T
�

j�

= j�. Denote

�1 = min{j : ζj = 1}. (17)

Then, since ζ (and therefore �1) is independent of ω, θ�1�ω has the same law P as ω. This allows us to break the
trajectory of the random walk into stationary ergodic (after suitable shift) sequence of pieces, and then apply the
ergodic theorem to obtain the law of large numbers. The stationary measure of the environment seen from the particle
(for the truncated random walk) can also be obtained from this construction by averaging along the cycle. Then, we
pass to the limit as ρ → ∞.

So, let us now construct the quenched law Pω,ζ , i.e., the law of the random walk S� when both the environment ω

and the sequence ζ are fixed. This is done inductively: first, the law of (S
�

k , k ≤ T
�
� ) is defined by

1{ζ1 = 1}Pω

[·|S�

T
�
�

= �
] + 1{ζ1 = 0}

(
r
�

0 (�) − ε1

1 − ε1
Pω

[·|S�

T
�
�

= �
] + 1 − r

�

0 (�)

1 − ε1
Pω

[·|S�

T
�
�

> �
])

.

Then, given S
�

T
�

j�

= y ∈ [j�, (j + 1)� − 1], the law of (S
�

k , T
�

j� + 1 ≤ k ≤ T
�

(j+1)�) is

1{ζj+1 = 1}Py
ω

[·|S�

T
�

(j+1)�

= (j + 1)�
]

+ 1{ζj+1 = 0}
(

r
�

0 ((j + 1)�) − ε1

1 − ε1
Py

ω

[·|S�

T
�

(j+1)�

= (j + 1)�
]

+ 1 − r
�

0 ((j + 1)�)

1 − ε1
Pω

[·|S�

T
�

(j+1)�

> (j + 1)�
])

.

Let P′ := P ⊗ P (where P is the law of ζ ), and E′ the expectation corresponding to P′. With �0 := 0, let us define
consistently with (17)

�k+1 = min{j > �k: ζj = 1}, k ≥ 0. (18)

Note that, by construction,

S
�

T
�

�k�

= �k�
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for all k ≥ 1. We now define a regeneration structure, which is fundamental in our construction. Following Chapter 8 of
[17], we recall the definition of cycle-stationarity of a stochastic process together with a sequence of points. Consider,
on some probability space, (i) a sequence Z = (Zn)n of random variables with values in some measurable space
(F, F ), (ii) a sequence of random times � (called “time points”), 0 < �1 < �2 < · · · . Define the kth cycle Ck =
(Zn;�k ≤ n ≤ �k+1 − 1) ∈ ⋃

m≥1 Fm. The sequence Z is cycle-stationary with points � if (Ck; k ≥ 1) has the same
law as (Ck+1; k ≥ 1). It is cycle-stationary and ergodic if (Ck; k ≥ 1) is stationary and ergodic.

Lemma 3.2. Let ρ < ∞. The pair (θS
�· ω,T

�

�·�) is cycle-stationary and ergodic. In particular, θ�k�ω has the same law
as ω for all k = 1,2,3, . . . .

In short, the kth cycle Ck is the sequence of environments seen from the truncated walk S
�· from time T

�

�k−1�
to

time T
�

�k�
− 1 (k = 1,2, . . .). The first statement in the lemma is that the sequence (Ck; k ≥ 1) is stationary under the

measure P ⊗ P ⊗ Pω,ζ .

Proof of Lemma 3.2. Let us denote by C the above sequence, and by ϑ the shift (ϑC)k = Ck+1. With f ≥ 0 a
measurable function on the appropriate space, we write

EEEω,ζ f (ϑC) =
∑
m≥1

EE1{�1 = m}Eω,ζ f (ϑC)

=
∑
m≥1

EE1{�1 = m}Em�
ω,ζ f (C) (Markov property)

=
∑
m≥1

ε1(1 − ε1)
m−1EE

m�
ω,ζ f (C) (independence)

=
∑
m≥1

ε1(1 − ε1)
m−1EEω,ζ f (C) (P-stationarity)

= EEEω,ζ f (C),

which shows the cycle-stationarity. The ergodicity then follows from the ergodicity of P and independence of ω and
ζ , see Section 7 of Chapter 8 of [17]. �

Now, we are able to prove the existence of the speed v� for the truncated random walk. First, we prove the following
lemma.

Lemma 3.3. There exist C4,C5 > 0 such that for P-almost all ω and for all � ∈ [�0,∞) we have

C4� ≤ EEω,ζ T
�

�1�
≤ C5�. (19)

Proof. We begin by proving the second inequality in (19). Write

Px
ω

[
T � > k

] ≤ Px
ω

[
N

�

k

(
Z∗−

) ≥ k + 1
] ≤ Px

ω

[
N

�∞(Z−) ≥ k + 1
]
,

so, using (10) we obtain

Ex
ωT � =

∑
k≥0

Px
ω

[
T � > k

]
≤

∑
k≥0

Px
ω

[
N

�∞(Z−) ≥ k + 1
]

= Ex
ωN

�∞(Z−)

≤ C1|x|. (20)
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Using the elementary inequality E(Y |A) ≤ EY
P[A] for Y ≥ 0 together with Lemma 3.1, we obtain that on {ζ1 = 1}

Eω,ζ T
�
� = Eω

(
T �

� |S�

T
�
�

= �
) ≤ EωT

�
�

r
�

0 (�)
≤ 1

ε1
EωT �

� ,

and that on {ζ1 = 0} (observe that
r
�

0 (�)−ε1

r
�

0 (�)
≤ 1

ε1
by Lemma 3.1)

Eω,ζ T
�
� = r

�

0 (�) − ε1

1 − ε1
Eω

(
T �

� |S�

T
�
�

= �
) + 1 − r

�

0 (�)

1 − ε1
Eω

(
T �

� |S�

T
�
�

> �
)

= r
�

0 (�) − ε1

(1 − ε1)r
�

0 (�)
r
�

0 (�)Eω

(
T �

� |S�

T
�
�

= �
)

+ 1

1 − ε1

(
1 − r

�

0 (�)
)
Eω

(
T �

� |S�

T
�
�

> �
)

≤ 1

ε1(1 − ε1)
Eω

(
T �

�

)
,

so for any ζ we obtain

Eω,ζ T
�
� ≤ 1

ε1(1 − ε1)
EωT �

� . (21)

In the same way, we show that for any ζ and for all j ≥ 1

Ey
ω,ζ T

�

(j+1)� ≤ 1

ε1(1 − ε1)
Ey

ωT
�

(j+1)� (22)

for all y ∈ [j�, (j + 1)� − 1].
Writing

T
�

k� = T �
� + (

T
�

2� − T �
�

) + · · · + (
T

�

k� − T
�

(k−1)�

)
,

and using (20), (21), (22), we obtain on {�1 = k} that

Eω,ζ T
�

k� ≤ 1

ε1(1 − ε1)
kC1�.

Since P [�1 = k] = ε1(1 − ε1)
k−1, we see that, for P-a.a. ω

EEω,ζ T
�

�1�
≤

∞∑
k=1

(1 − ε1)
k−2kC1�

= C5�

with C5 = C1ε
−2
1 (1 − ε1)

−1, and the proof of the second inequality in (19) is finished.
Let us prove the first inequality in (19). Consider a sequence of i.i.d. positive integer-valued random variables

Y1, Y2, Y3, . . . with the law

P[Y1 ≥ s] = (
γ1s

−α
) ∧ 1,

s ≥ 1, with α,γ1 from Condition C. Then, on {S�

0 = 0}, it holds that for any � and for P-almost all ω, S
�
n is dominated

by Y1 + · · · + Yn. From this, we easily obtain

EωT �
� ≥ C7�. (23)
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Next, note that r
�

0 (�) − ε1 ≥ ε1, so on the event {ζ1 = 0} we have

Eω,ζ T
�
� = r

�

0 (�) − ε1

(1 − ε1)r
�

0 (�)
r
�

0 (�)Eω

(
T �

� |S�

T
�
�

= �
)

+ 1

1 − ε1

(
1 − r

�

0 (�)
)
Eω

(
T �

� |S�

T
�
�

> �
)

≥ ε1

1 − ε1
EωT �

� . (24)

So, using (23) we obtain that on {ζ1 = 0}

Eω,ζ T
�

�1�
≥ Eω,ζ T

�
� ≥ ε1

1 − ε1
EωT �

� ≥ C7ε1

1 − ε1
�,

and, finally,

E′Eω,ζ T
�

�1�
≥ C7ε1

1 − ε1
�P [ζ1 = 0] = C7ε1�.

Proof of Lemma 3.3 is finished. �

Now, we show that

v� = �E�1

E′Eω,ζ T
�

�1�

= �

ε1E′Eω,ζ T
�

�1�

, (25)

which implies that v� > 0 by Lemma 3.3. Indeed, suppose that n is such that T
�

�k�
≤ n < T

�

�k+1�
. Then, we have

�k+1� − (T
�

�k+1�
− T

�

�k�
)� < S

�
n < �k+1�, so

�k+1� − (T
�

�k+1�
− T

�

�k�
)�

T
�

�k+1�

≤ S
�
n

n
≤ �k+1�

T
�

�k�

. (26)

Now, we divide the numerator and the denominator by k in (26), we use Lemmas 3.2, 3.3 and the ergodic theorem to
get

lim
n→∞

S
�
n

n
= v�,

with v� given by the second member of (25). Since (�k+1 − �k) has a geometric distribution with parameter ε1 we get
the last expression in (25). This ends the proof of Theorem 2.3 for finite �.

With the help of Lemma 3.2, we derive that there exists an invariant measure for the environment seen from the
particle in the truncated case. By formula (4.14◦) of Chapter 8 of [17], for � < ∞ we can characterize this measure
Q� by its expectation E� ,

E�f (ω) = 1

E′Eω,ζ T
�

�1�

E′Eω,ζ

T
�

�1�∑
k=1

f (θS
�

k
ω). (27)

Next, we need to pass to the limit as � → ∞. This requires a fine analysis of the Radon–Nikodym derivative dQ�

dP
, and

this is what we are going to do now.
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Proposition 3.4. Let � be finite. Then,

dQ�

dP
(ω) = 1

E′Eω,ζ T
�

�1�

∑
x∈Z

EEθ−xω�,ζ N
�

T
�

�1�

(x). (28)

Moreover, there exist γ̂1, γ̂2 ∈ (0,∞) (not depending on �) such that for P-almost all ω

γ̂1 ≤ dQ�

dP
(ω) ≤ γ̂2. (29)

Proof. Using translation invariance of P, we write expression (27) as

E�f (ω) = 1

E′Eω,ζ T
�

�1�

∫
dP′Eω,ζ

T
�

�1�∑
k=1

f (θS
�
k
ω)

= 1

E′Eω,ζ T
�

�1�

∫
dP′

∞∑
k=1

Eω,ζ

(
f (θS

�

k
ω); k ≤ T

�

�1�

)
= 1

E′Eω,ζ T
�

�1�

∞∑
k=1

∑
x∈Z

∫
dP′f (θxω)Pω,ζ

[
S

�

k = x, k ≤ T
�

�1�

]
= 1

E′Eω,ζ T
�

�1�

∞∑
k=1

∑
x∈Z

∫
dP′f (ω)Pθ−xω�,ζ

[
S

�

k = x, k ≤ T
�

�1�

]
=

∫
dP′f (ω)

1

E′Eω,ζ T
�

�1�

∑
x∈Z

Eθ−xω�,ζ N
�

T
�

�1�

(x)

=
∫

dPf (ω)
1

E′Eω,ζ T
�

�1�

∑
x∈Z

EEθ−xω�,ζ N
�

T
�

�1�

(x),

which proves (28).
Let us prove (29). Write

dQ�

dP
(ω) = 1

E′Eω,ζ T
�

�1�

E

(∑
x<0

Eθ−xω�,ζ N
�

T
�

�1�

(x) +
∑
x≥0

Eθ−xω�,ζ N
�

T
�

�1�

(x)

)

≤ 1

E′Eω,ζ T
�

�1�

E
∑
x<0

Eθ−xω�,ζ N
�∞(x)

+ 1

E′Eω,ζ T
�

�1�

E
∑

0<x≤(�1+1)�

Eθ−xω�,ζ N
�∞(x)

=: A1 + A2. (30)

Next, we need to obtain upper bounds on the terms A1,A2; for that, let us write first

N
�∞(x) = N

�

[0,T
�
� )

(x) + N
�

[T �
� ,T

�

2�)
(x) + N

�

[T �

2�,T
�

3�)
(x) + · · · . (31)

Analogously to (21) and (22), for any ζ we obtain

Eω,ζ N
�

[0,T
�
� )

(x) ≤ 1

ε1(1 − ε1)
EωN

�

[0,T
�
� )

(x), (32)
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and for all j ≥ 1 and all y ∈ [j�, (j + 1)� − 1]

Ey
ω,ζ N

�

[T �
j�,T

�

(j+1)�
)
(x) ≤ 1

ε1(1 − ε1)
Ey

ωN
�

[T �
j�,T

�

(j+1)�
)
(x). (33)

Consider the term A1 of (30). Applying (32) and (33) to (31) and using Condition D, we obtain for P-almost every
ω (and so the following holds also with θ−xω

� on the place of ω�) and all x < 0 that

Eω,ζ N
�∞(x) ≤ 1

ε1(1 − ε1)

(
g1

(|x|) + g1
(
� + |x|) + g1

(
2� + |x|) + · · ·)

≤ 1

ε1(1 − ε1)

∞∑
j=0

g1
(|x| + j

)
. (34)

So, we write

A1 ≤ 1

ε1(1 − ε1)E′Eω,ζ T
�

�1�

∑
x<0

∞∑
j=0

g1
(|x| + j

)

≤ 1

ε1(1 − ε1)E′Eω,ζ T
�

�1�

∞∑
k=1

kg1(k)

≤ C5 (35)

for some C5 > 0.
Let us deal now with the term A2. Suppose that x ≥ 0 is such that x ∈ [k�, (k + 1)�). Then, we have

N
�

[T �

j�,T
�

(j+1)�
)
(x) = 0 for all j < k. So, by (33), we obtain for P-almost every ω (again, this means that it holds also

with θ−xω
� on the place of ω�) that

Eω,ζ N
�

[T �

j�,T
�

(j+1)�
)
(x) ≤ g1(0)

ε1(1 − ε1)
(36)

for j ∈ {k, k + 1} , and

Eω,ζ N
�

[T �

j�,T
�

(j+1)�
)
(x) ≤ 1

ε1(1 − ε1)
g1

(
(j − k − 1)�

)
(37)

for j > k + 1. Using (31), we obtain

Eω,ζ N
�∞(x) ≤ 2g1(0)

ε1(1 − ε1)
+ 1

ε1(1 − ε1)

∑
i≥1

g1(i) ≤ C6

for some C6 > 0. Then, using also Lemma 3.3, we have

A2 ≤ 1

E′Eω,ζ T
�

�1�

C6�E(�1 + 1)

≤ C6

C4

(
ε−1

1 + 1
)
. (38)

Using (35) and (38), we obtain the second inequality in (29).
As for the first inequality in (29), let us note that, analogously to (24), on the event {ζ1 = 0} we have for any

nonnegative random variable Y which is measurable with respect to the sigma-algebra generated by (S
�

1 , . . . , S
�

T
�
�
)

Eω,ζ Y ≥ ε1

1 − ε1
EωY. (39)
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By Lemma 3.1, we obtain

E
∑
x∈Z

Eθ−xω�,ζ N
�

T
�

�1�

(x) ≥ (1 − ε1)E
∑

x∈[1,�]
Eθ−xω�,ζ N

�

T
�

�1�

(x)

≥ (1 − ε1) × ε1

1 − ε1
E

∑
x∈[1,�]

Eθ−xω�N
�

T
�

�1�

(x)

≥ 2ε2
1�,

and this concludes the proof of Proposition 3.4. �

Now, we pass to the limit as � → ∞, proving the existence of v∞,Q := Q∞, and the fact that v� → v∞.
From Proposition 3.4 we obtain that the family of measures (Q�, � ∈ [�0,+∞)) is tight. By Prohorov’s theorem,

there exists a sequence �k → ∞ and a probability measure Q∞ such that Q�k → Q∞ weakly as k → ∞. Let us prove
that Q∞ is in fact a stationary measure for the environment of the random walk without truncation S∞. For this, take
a bounded continuous function f and, recalling that E� is the expectation corresponding to Q� , write by stationarity∣∣E∞f (ω) − E∞f (θS∞

1
ω)

∣∣ ≤ ∣∣E∞f (ω) − E�k
f (ω)

∣∣
+ ∣∣E�k

f (θ
S

�k
1

ω) − E∞f (θ
S

�k
1

ω)
∣∣

+ E∞
∣∣f (θ

S
�k
1

ω) − f (θS∞
1

ω)
∣∣

=: B1 + B2 + B3. (40)

First, we deal with terms B2 and B1. By Condition C, for any ε > 0 there exists h0 such that for any � we have

Pω

[∣∣S�

1

∣∣ > h0
]
< ε P-a.s.

Then, supposing without restriction of generality that |f | ≤ 1, we write

B2 ≤
∣∣∣∣E�k

∑
|m|≤h0

ω
�k

0mf (θmω) − E∞
∑

|m|≤h0

ω0mf (θmω)

∣∣∣∣ + 2ε

≤
∣∣∣∣E�k

∑
|m|≤h0

ω0mf (θmω) − E∞
∑

|m|≤h0

ω0mf (θmω)

∣∣∣∣ + E�k

∑
|m|>�k

ω0m + 2ε.

Since Q�k converges to Q∞ as k → ∞ and using also Condition C, we can choose k large enough in such a way
that B1 + B2 ≤ 5ε. As for the term B3, again using Condition C we note that, for the natural coupling of S

�k

1 and S∞
1

(described in Section 2.2), we have

Pω

[
S

�k

1 �= S∞
1

]
< ε P-a.s.

for large enough k. Then, for such k’s, we have B3 < ε (recall that we assumed that |f | ≤ 1). Then, since ε is arbitrary,
(40) implies that Q∞ is stationary for S∞.

Now, let us prove that Q� is ergodic for all � ∈ [�0,+∞]. First, we note that (29) holds for � = ∞ as well. Then,
we argue by contradiction: suppose that Q� is not ergodic and let A ⊂ Ω be a nontrivial invariant event. Then, (29)
implies that 0 < P[A] < 1. Since P is stationary ergodic under space shift, the random set

G(ω) = {k > 0: θkω ∈ A}
is such that

|G| = |Gc| = ∞ P-a.s.,
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which means by absolute continuity that

|G| = |Gc| = ∞ Q�-a.s.

Since they are infinite, it follows from Lemma 3.1 that both sets G and Gc are visited by S� infinitely many times
almost surely. This contradicts the invariance of A for the environment dynamics, which asserts that θSk

ω ∈ A holds
Q� ⊗ Pω-a.s. on {ω ∈ A} and that θSk

ω ∈ Ac holds Q� ⊗ Pω-a.s. on {ω ∈ Ac}.
Now, we claim that the ergodicity of Q∞ implies that Q� → Q∞ weakly as � → ∞: indeed, any possible limit Q̃

has also to be ergodic by the above argument, and thus singular with respect to Q∞ or equal to it; in view of (29), the
first case cannot hold, so the second one does hold.

Finally, let us deal with the proof of (9) and the fact that v� → v∞ as � → ∞. The existence of v� (which has been
previously established for finite �) and formula (9) follow from the ergodic theorem. To prove the convergence, note
that, by (9),

v� = E�

∑
m∈Z

mω0m,

and, by Condition C, for any ε > 0 there exists h1 such that∑
|m|>h1

|m|ω0m < ε P-a.s. (41)

Since ε is arbitrary, the fact that v� → v∞ follows from (41) and from

E�

∑
|m|≤h1

mω0m → E∞
∑

|m|≤h1

mω0m as � → ∞.

This concludes the proof of Theorems 2.3 and 2.4.

4. Proofs for the random billiard

Let us define h0 := (ε−1γd)1/(d−1), with ε from Condition P and γd from (2). From (2) it directly follows that

K(x,y) ≤ γd

‖x − y‖d−1
. (42)

So, if Condition P holds, for all pairs of points z, z′ involved in Condition P it holds that ‖z − z′‖d−1 ≤ ε−1γd , so that∣∣(z − z′) · e
∣∣ ≤ ∥∥z − z′∥∥ ≤ h0.

Thus, we obtain that Condition P holds for K̂ on the place of K with ε′ = εe−λh0 on the place of ε.
Let us consider a sequence of i.i.d. random variables η1, η2, η3, . . . with uniform distribution on {1,2, . . . ,N}

(where N is from Condition P), independent of everything else. Also, define J (0) = 0, J (n) = η1 + · · · + ηn. Then,
analogously to the proof of Lemma 3.6 in [6], using Condition P one can obtain that, for any x ∈ ∂ω and B ⊂ {y ∈
∂ω: −1 ≤ (y − x) · e ≤ 1}, we have

Px
ω[ξη1 ∈ B] ≥ 1

N
δN−1(εe−λh0

)N
νω(B). (43)

Here, and below, we still use, for simplicity, the notations Px
ω,Ex

ω for the enlarged model, meaning that ω is fixed
but ξ· and η· are integrated out.

Let us define for an arbitrary a, b ∈ R, a < b,

F̃ ω(a, b) = {
x ∈ ∂ω: x · e ∈ [a, b]}.
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Then, consider the moment when the particle steps out from F̃ ω(a, b):

τ(a, b) = min
{
n ≥ 0: |ξn · e| /∈ [a, b]} = min

{
n ≥ 0: ξn /∈ F̃ ω(a, b)

}
.

Next, we prove the following fact:

Lemma 4.1. There exist γ̃1, γ̃
′
1 > 0 such that for P-almost all ω, for any a ≤ b − 1 we have

Px
ω

[
τ(a, b) > (b − a)3t

] ≤ γ̃1e−γ̃ ′
1t (44)

for all x ∈ F̃ ω(a, b) and all t ≥ 1.

Proof. Observe that, from Condition L we obtain that for some positive constants γ̃2, γ̃3 we have

γ̃2 ≤ νω
(
x: x · e ∈ [s, s + 1]) ≤ γ̃3 P-a.s. (45)

for all s ∈ R (without restriction of generality one may assume that γ̃2 ≤ 1, γ̃3 ≥ 1).
Now, suppose without restriction of generality that a = 0, and b is a positive integer. Denote

τ̃ = min
{
n ≥ 0: ξJ (n) /∈ F̃ ω(a, b)

}
.

Clearly, by definition of the random variables (ηi), we have {τ(a, b) > b3t} ⊂ {τ̃ > N−1b3t}. Now, let us consider a
sub-Markov kernel Qω := Q1

ω , which acts on functions f : ∂ω → R in the following way:(
Qn

ωf
)
(x) = Ex

ω

(
f (ξJ (n))1{τ̃ > n}). (46)

Let

K̃(x, y) = 1

N

N∑
j=1

K̂j (x, y)

be the transition density of the process (ξJ (n), n ≥ 0). Observe that this process is reversible with the reversible
measure νω

λ , so that π(x)K̃(x, y) = π(y)K̃(y, x) for all x, y ∈ ∂ω. Let

E (f, g) =
∫

(∂ω)2
π(x)K̃(x, y)

(
f (x) − f (y)

)(
g(x) − g(y)

)
dνω(x)dνω(y),

and define

Λ̃ = inf

{ E (f,f )

2
∫
∂ω

f 2(x)dνω
λ (x)

: f �≡ 0, f |
(F̃ ω(0,b))c

= 0, f ∈ L2(νω
λ

)}
. (47)

From the variational formula for the top of the spectrum of symmetric operators, ‖Qω‖L2(νω
λ ) = 1 − Λ̃, so we look for

a lower bound for Λ̃. Denote

Uj = {
x ∈ ∂ω: x · e ∈ (j, j + 1]}, j ∈ Z,

so that F̃ ω(j, j + 1) = Uj . Observe that, by (43), for any j ∈ Z we have

K̃(x, y) ≥ 1

N
δN−1(εe−λh0

)N

for all x ∈ Uj , y ∈ Uj+1. Also, it is clear that

νω
({x ∈ ∂ω: x · e = 0}) = 0 P-a.s.,
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and

eλn ≤ π(x) ≤ eλ(n+1) for all x ∈ Un. (48)

So, using also (45), the Cauchy–Schwarz inequality, and the fact that f (y) = 0 for all y ∈ Ub , we can write∫
∂ω

f 2(x)dνω
λ (x)

=
∫

∂ω

π(x)f 2(x)dνω(x)

=
b−1∑
i=0

∫
Ui

π(x)f 2(x)dνω(x)

=
b−1∑
i=0

1

νω(Ui+1) · · ·νω(Ub)

∫
Ui

π(xi)dνω(xi)

∫
Ui+1

dνω(xi+1)

× · · · ×
∫

Ub

dνω(xb)

(
b−1∑
j=i

(
f (xj ) − f (xj+1)

))2

≤ b

b−1∑
i=0

1

νω(Ui+1) · · ·νω(Ub)

∫
Ui

π(xi)dνω(xi)

∫
Ui+1

dνω(xi+1)

× · · · ×
∫

Ub

dνω(xb)

(
b−1∑
j=i

(
f (xj ) − f (xj+1)

)2

)

≤ b

b−1∑
i=0

eλ(i+1)

(
1

νω(Ui+1)

∫
Ui

dνω(xi)

∫
Ui+1

dνω(xi+1)
(
f (xi) − f (xi+1)

)2

+
b−1∑

j=i+1

νω(Ui)

νω(Uj )νω(Uj+1)

∫
Uj

dνω(xj )

∫
Uj+1

dνω(xj+1)
(
f (xj ) − f (xj+1)

)2
)

≤ bγ̃3

γ̃ 2
2

b−1∑
i=0

eλ(i+1)

b−1∑
j=i

∫
Uj

dνω(xj )

∫
Uj+1

dνω(xj+1)
(
f (xj ) − f (xj+1)

)2 (
by (45)

)

≤ bγ̃3

γ̃ 2
2

(
1

N
δN−1(εe−λh0

)N
)−1 b−1∑

j=0

(
j∑

i=0

eλ(i+1)

)
e−λj

×
∫

Uj

dνω(xj )

∫
Uj+1

dνω(xj+1)π(xj )K̃(xj , xj+1)
(
f (xj ) − f (xj+1)

)2

≤ bγ̃3N

γ̃ 2
2 δN−1(εe−λh0)N

(
0∑

i=−∞
eλ(i+1)

)
E (f,f ),

and so, for some positive constant C1 it holds that

Λ̃ ≥ C1

b
. (49)
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Then, since Λ̃ = 1 − ‖Qω‖L2(νω
λ ) from the spectral variational formula we have

∥∥Qn
ω

∥∥
L2(νω

λ )
≤

(
1 − C1

b

)n

. (50)

Now, using the notation 1B for the indicator function of B ⊂ ∂ω, observe that Px
ω[τ̃ > n] = (Qn

ω1
F̃ ω(0,b)

)(x). For
j ∈ [0, b − 1] we can write using (45), (50), and Cauchy–Schwarz inequality∫

Uj

Px
ω[τ̃ > n]dνω

λ (x) = (
1Uj

,Qn
ω1

F̃ ω(0,b)

)
L2(νω

λ )

≤ ‖1Uj
‖L2(νω

λ )‖1
F̃ ω(0,b)

‖L2(νω
λ )

∥∥Qn
ω

∥∥
L2(νω

λ )

≤ C2eλj/2eλb/2
(

1 − C1

b

)n

for some C2 > 0. So, again using (48), we have for j ≤ b − 1,∫
Uj

Px
ω[τ̃ > n]dνω(x) ≤ C2eλ(b−j)/2

(
1 − C1

b

)n

. (51)

Now, (51) implies that, if b is large enough, then∫
Uj

Px
ω

[
τ̃ ≤ b3 − 1

]
dνω(x) ≥ C3 > 0.

So, with C4 := C3N
−1δN−1(εe−λh0)N > 0, for any x ∈ Uj we can write (using also (43)) that

Px
ω

[
τ̃ ≤ b3] =

∫
∂ω

K̃(x, y)Py
ω

[
τ̃ ≤ b3 − 1

]
dνω(y)

≥ 1

N
δN−1(εe−λh0

)N
∫

Uj

Py
ω

[
τ̃ ≤ b3 − 1

]
dνω(y)

≥ C4.

This implies that Px
ω[τ̃ > b3t] ≤ e−C6t for any x ∈ F̃ ω(0, b), and this (as discussed in the beginning of the proof of

this lemma) by its turn implies (44), thus concluding the proof of Lemma 4.1. �

Consider B ⊂ ∂ω with positive (d − 1)-dimensional Hausdorff measure and such that sup{x · e: x ∈ B} < +∞.
By definition, the stationary distribution πB conditioned on B is the distribution with the density π(x)

π(B)
1B(x) (recall

that π(B) := νω
λ (B)). We use the notation PB

ω , EB
ω for the KRWD starting from the stationary distribution conditioned

on B .
Now, we construct the connection with RWRE. Recall that η1, η2, η3, . . . are i.i.d. random variables with uniform

distribution on {1, . . . ,N}, and J (0) = 0, J (n) = η1 + · · · + ηn = J (n − 1) + ηn. We now focus on the process
(ξJ (n), n ≥ 0). In view of (43) and (45), we couple this process with a Bernoulli process ζ ′ = (ζ ′

n, n ≥ 1) (independent
of ω) of parameter r1 = (Neλ)−1γ̃2δ

N−1(εe−λh0)N ,

P
[
ζ ′
n = 1

] = 1 − P
[
ζ ′
n = 0

] = r1,

in such a way that on the event {ζ ′
n = 1}, ξJ (n) has the stationary distribution on U[ξJ (n−1)·e]. (The choice of the station-

ary distribution is arbitrary, and the whole construction could be implemented with another distribution, absolutely
continuous to the uniform on U[ξJ (n−1)·e] with density bounded from above and below.) We denote by Eζ ′

be the ex-
pectation with respect to ζ ′, and Pω,ζ ′ , Eω,ζ ′ the probability and expectation with fixed ω and ζ ′, which is defined as
follows: Px

ω,ζ ′(ξ0 = x) = 1, and recursively for n = 1,2, . . . ,

Px
ω,ζ ′ [ξJ (n) ∈ ·|ξJ (k), k < n] = π

U[ξJ (n−1) ·e](·) if ζ ′
n = 1,
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and, for ζ ′
n = 0,

Px
ω,ζ ′ [ξJ (n) ∈ ·|ξJ (k), k < n] = P

ξJ (n−1)
ω [ξηn ∈ ·] − r1π

U[ξJ (n−1) ·e](·)
1 − r1

.

Set κ0 = 0, and define the times of success in the new Bernoulli process,

κm+1 = min
{
k > κm: ζ ′

k = 1
}

for m ≥ 1. It is easy to see that, under P ζ ′ ⊗ Px
ω,ζ ′ , the sequence (ξJ (κm),m ≥ 0) is a Markov chain, and ξJ (κm) for

m ≥ 1 has “piecewise stationary” law, i.e., of the form
∑

i∈Z aiπ
Ui with ai ≥ 0,

∑
i ai = 1. It follows that, starting

ξ0 from such a law, the Markov chain is weakly lumpable and can be reduced to another Markov chain on a smaller
space, see [11], or [12] for a more modern account. More precisely, we prove:

Lemma 4.2. Under P ζ ′ ⊗ PU0
ω,ζ ′ , the sequence ([ξJ (κm) · e],m ≥ 0) is a RWRE on Z, with transition probabilities

Qω(i, j) = P ζ ′ ⊗ PUi

ω,ζ ′ [ξJ (κ1) ∈ Uj ].

Proof. Under P ζ ′ ⊗ Px
ω,ζ ′ , the transition density from x to y for the Markov chain ξJ (κ·) can be written as

aj (x,ω)πUj (dy), with j such that Uj � y. Hence,

P ζ ′ ⊗ PU0
ω,ζ ′

[[ξJ (κ1) · e] = j1, . . . , [ξJ (κm) · e] = jm

]
= P ζ ′ ⊗ PU0

ω,ζ ′ [ξJ (κ1) ∈ Uj1 , . . . , ξJ (κm) ∈ Ujm]

=
∫

· · ·
∫

πU0(dx0)

m∏
k=1

ajk
(xk−1,ω)πUjk (dxk)

=
m∏

k=1

∫
ajk

(xk−1,ω)π
Ujk−1 (dxk−1) ×

∫
πUjm (dxm)

=
m∏

k=1

Qω(jk−1, jk) × 1,

which ends the proof. �

This result is the bridge between the two main processes considered in this paper: obviously, starting ξ0 from the
origin or distributed in the interval U0 will not make any difference for the law of large numbers. But it is not quite
enough to conclude the proof for the billiard. In the sequel we shall need the following two results about hitting times
of sets:

Lemma 4.3. For any m ≥ 0 and arbitrary B,F ⊂ ∂ω we have for P-almost all ω

PB
ω [there exists k ≤ m such that ξk ∈ F ] ≤ m

π(F)

π(B)
. (52)

Proof. Using reversibility, it is straightforward to obtain that π(B)PB
ω [ξk ∈ F ] = π(F)PF

ω [ξk ∈ B], so PB
ω [ξk ∈ F ] ≤

π(F )
π(B)

. Using the union bound, we obtain (52). �

Lemma 4.4. There exist γ̃4, γ̃5 > 0 such that for any m ≥ 0, H ≥ 1, and x ∈ ∂ω we have for P-almost all ω

Px
ω

[
there exists k ≤ m such that (ξk − x) · e < −H

] ≤ γ̃4me−γ̃5H
1/2

. (53)
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Proof. This fact would be a trivial consequence of Lemma 4.3 if one starts from the stationary distribution on a set
(of not too small measure) instead of starting from a single point. So, the idea is the following: we first wait for the
moment J (κ1) (when the particle has the stationary distribution on Uj for some random j ), and then note that it is
likely that the particle did not go too far to the left until this moment. Then, it is already possible to apply Lemma 4.3.

Formally, we write

Px
ω

[
there exists k ≤ m such that (ξk − x) · e < −H

]
= Eζ ′

Px
ω,ζ ′

[
there exists k ≤ m such that (ξk − x) · e < −H

]
≤ P ζ ′

[
κ1 >

H 1/2

2N

]
+ Px

ω

[
there exists k ≤ H 1/2

2N
such that (ξk − ξk−1) · e ≤ −H 1/2

]
+ Eζ ′

Px
ω,ζ ′

[
κ1 ≤ H 1/2

2N
, (ξk − ξk−1) · e > −H 1/2 for all k ≤ H 1/2

2N
,

there exists k ≤ m such that (ξk+J (κ1) − ξJ (κ1)) · e < −H/2

]
.

Now, the bound on the first term is straightforward (the random variable κ1 has a geometric distribution with parameter
r1). To estimate the second term, note that for any h > 0 one has

Px
ω

[
(ξ1 − x) · e < −h

] =
∫

(y−x)·e<−h

e−λ(y−x)·eK(x,y)dy ≤ e−λh. (54)

To deal with the third term, recall that the law of {ξj , j > J (κ1)} conditional on ξJ (κ1) does not depend on (ξm;m ≤
J (κ1)). Then, on the event{

κ1 ≤ H 1/2

2N
, (ξk − ξk−1) · e > −H 1/2 for all k ≤ H 1/2

2N

}
we have [ξJ (κ1) · e] ≥ −H/2. So, one can estimate the third term using Lemma 4.3, and conclude the proof of
Lemma 4.4. �

Now, to prove Theorem 2.2, the idea is to construct an “induced” RWRE, then apply the results of Section 2.2,
and then recover the LLN for the original billiard. To apply this approach, we need a few estimates on displacement
probabilities that we derive in the following lines. Consider some (large) integer L (to be chosen later) and observe
that, since κn is a sum of n i.i.d. geometric random variables, we can find some large r1 such that, for all n,

P ζ ′[
κn ≤ 2r−1

1 n
] ≥ 1 − C7e−C8n. (55)

So, by Lemma 4.3, (55), and using also the fact that J (κL4) ≤ NκL4 , we obtain for P-almost all ω that for every m ≥ 1
it holds that

Eζ ′
PU0

ω,ζ ′
[[ξJ (κ

L4 ) · e] ∈ [−(m + 1)L,−mL
]]

≤ Eζ ′
PU0

ω,ζ ′
[
there exists k ≤ 2mNr−1

1 L4 such that ξk · e ∈ [−(m + 1)L,−mL
]]

+ P ζ ′[
κL4 > 2mr−1

1 L4]
≤ C9mL4e−C10mL + C7e−C8mL4

. (56)
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Also, we use Lemma 4.1 (applied to F̃ ω(−L,2L)), (55), Lemma 4.4, and the fact that J (κL4) ≥ L4, to obtain that for
P-almost all ω

Eζ ′
PU0

ω,ζ ′
[[ξJ (κ

L4 ) · e] ≥ L
] ≥ Eζ ′

PU0
ω,ζ ′

[
κL4 ≤ 2r−1

1 L4, τ (−L,2L) < L4, ξk · e > −L,

(ξk+τ(−L,2L) − ξτ(−L,2L)) · e > −L for all k ≤ 2Nr−1
1 L4]

≥ 1 − C7e−C8L
4 − γ̃1e−γ̃ ′

1L/27 − 2Nr−1
1 L4e−λL − 2γ̃4Nr−1

1 L4e−γ̃5L
1/2

. (57)

So, from (56) and (57) we obtain

Eζ ′
EU0

ω,ζ ′ [ξJ (κ
L4 ) · e] ≥ L

(
1 − C7e−C8L

4 − γ̃1e−γ̃ ′
1L/27 − 2Nr−1

1 L4e−λL − 2γ̃4Nr−1
1 L4e−γ̃5L

1/2)
− L

(
C7e−C8L

4 + γ̃1e−γ̃ ′
1L/27 + 2Nr−1

1 L4e−λL + 2γ̃4Nr−1
1 L4e−γ̃5L

1/2)
−

∞∑
m=1

mL
(
C7e−C8mL4 + C9mL4e−C10mL

)
> 1 (58)

if L is large enough.

Proof of Theorem 2.2. Under the law Eζ ′
PU0

ω,ζ ′(·), the process S defined by

Sn := [ξJ (κ
L4n

) · e], n ≥ 0,

is a RWRE on Z in a (stationary ergodic) environment given by the tube ω. Let us choose L such that (58) holds. In
this case, (56) and (58) show that the process S has uniformly positive drift, and its jumps to the left have uniformly
exponential tail.

Now, to apply the results of Section 2.2 to the process S, we need to check that it verifies Conditions E, C, D. First,
it is straightforward to obtain that Condition E holds. To check Condition C, first recall that (cf. e.g. formula (54) of
[5]) that there exists γ̃6 > 0 (depending only on M̂) such that for all x ∈ ∂ω and all h ≥ 1

Px
ω

[∣∣(ξ1 − x) · e
∣∣ > h

] ≤ γ̃6h
−(d−1). (59)

Now, observe that

[ξJ (j) · e] = [ξJ (j−1) · e] on {j = κn for some n} (60)

and, for i such that i �= κn for all n,

Eζ ′(
PU0

ω,ζ ′
[∣∣[ξJ (i) · e] − [ξJ (i−1) · e]∣∣ ≥ h

]|κL4 = j
)

= Eζ ′(
PU0

ω,ζ ′
[∣∣[ξJ (i) · e] − [ξJ (i−1) · e]∣∣ ≥ h

]|ζ ′
i = 0

)
≤ 1

P ζ ′ [ζ ′
i = 0]P

U0
ω

[∣∣[ξJ (i) · e] − [ξJ (i−1) · e]∣∣ ≥ h
]

≤ C11h
−2 (61)

since d ≥ 3, recall (59). Then, write using (60) and (61)

Eζ ′
PU0

ω,ζ ′
[∣∣[ξJ (κ

L4 ) · e]∣∣ ≥ s
]

=
∞∑

j=1

P ζ ′ [κL4 = j ]Eζ ′(
PU0

ω,ζ ′
[∣∣[ξJ (κ

L4 ) · e]∣∣ ≥ s
]|κL4 = j

)
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≤
∞∑

j=1

P ζ ′ [κL4 = j ]Eζ ′(
PU0

ω,ζ ′
[
there exists i ≤ j such that

∣∣[ξJ (i) · e] − [ξJ (i−1) · e]∣∣ ≥ s/j
]|κL4 = j

)
≤

∞∑
j=1

P ζ ′ [κL4 = j ]jC11

(
s

j

)−2

= C11s
−2

∞∑
j=1

j3P ζ ′ [κL4 = j ]

= C12s
−2. (62)

Abbreviating P ∗[·] := Eζ ′
PU0

ω,ζ ′ [·], we see that (62) is equivalent to P ∗[|S1| ≥ s] ≤ C12s
−2. This means that Condi-

tion C holds for the process (Sn,n ≥ 0).
Now, we show that Condition D holds for the process (Sn,n ≥ 0). First, using (56) and (58) and Condition C, for

large enough �0 one obtains by a straightforward computation that there exist small enough γ̃7, γ̃8 > 0 such that for
all y ∈ Z and all � ≥ �0

E∗(e−γ̃7S
�

n+1+γ̃8(n+1) − e−γ̃7S
�
n+γ̃8n | S�

n = y
) ≤ 0,

so that (e−γ̃7S
�
n+γ̃8n, n ≥ 0) is a positive supermartingale. So, for some positive constants C13,C14 it holds that for all

k ≥ 1

P ∗[there exists n such that S
�
n ≤ −k

]
< C13e−γ̃7k

and

E∗
∞∑

n=0

1
{
S

�
n = 0

}
< C14.

So, Condition D holds with g1(k) = C13C14e−γ̃7k . This means that we can use Theorem 2.3 for the process S.
Now, it remains to deduce the LLN for the random billiard with drift from the LLN for the random walk in random

environment. It is done by a standard argument that we sketch in the following lines. First, observe that, just in the
same way as (62) one can prove a slightly more general fact: for any n

Eζ ′
PU0

ω,ζ ′
[

max
m∈[J (κ

L4n
),J (κ

L4(n+1)
))

∣∣[ξm − ξJ (κ
L4n

) · e]∣∣ ≥ s
]

≤ C15s
−2. (63)

Then, since the limit of n−1Sn exists and is finite, there exists u ∈ (0,∞) such that

u = lim
n→∞

ξJ (κ
L4n

) · e

J (κL4n)
.

We then use (63) to obtain that, for m ∈ [J (κL4n), J (κL4(n+1)))

1

n
|ξJ (κ

L4n
) − ξm| ≤ 1

n
max

m∈[J (κ
L4n

),J (κ
L4(n+1)

))

∣∣[ξm − ξJ (κ
L4n

) · e]∣∣
→ 0 a.s., as n → ∞,

and this permits us to conclude the proof of Theorem 2.2. �
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