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Abstract. We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that
is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our
estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a
given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide
a short illustration of the way the estimator works in the context of conditional hazard estimation.

Résumé. Dans ce travail, nous proposons un estimateur original de l’intensité conditionnelle d’un processus de comptage marqué,
c’est-à-dire d’un processus de comptage dépendant de covariables. Nous utilisons une méthode de sélection de modèle et nous
obtenons pour notre estimateur, une borne non asymptotique du risque quadratique sur un compact. Nous vérifions ensuite que
l’estimateur atteint automatiquement une vitesse de convergence sur des classes fonctionnelles de régularité anisotropique fixée
mais inconnue. Enfin, nous démontrons une borne inférieure qui garantit l’optimalité de la vitesse obtenue. Une brève illustration
de la façon dont fonctionne l’estimateur dans le contexte de l’estimation du taux de risque instantané conditionnel est fournie pour
conclure.
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1. Introduction

As counting processes can model a great diversity of observations, especially in medicine, actuarial science or eco-
nomics, their statistical inference has received a continuous attention since half a century – see [1] for the most detailed
presentation on the subject. In this paper, we propose a new strategy, based on model selection, for the inference for
counting processes in presence of covariates. The model considered can be described as follows.

Let (Ω, F ,P) be a probability space and (Ft )t≥0 a filtration satisfying the usual conditions. Let N be a marker-
dependent counting process, with compensator Λ with respect to (Ft )t≥0, such that N − Λ = M , where M is a
(Ft )t≥0-martingale. We assume that N is a marker-dependent counting process satisfying the Aalen multiplicative
intensity model in the sense that

Λ(t) =
∫ t

0
α(X, z)Y (z)dz for all t ≥ 0, (1)

where X is a vector of covariates in R
d which is F0-measurable, the process Y is nonnegative and predictable and α

is an unknown deterministic function called intensity.
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The purpose of this paper is to estimate the intensity function α on the basis of the observation of a n-sample
(Xi,N

i(z), Y i(z), z ≤ τ) for i = 1, . . . , n, where τ < +∞.
There are many examples, crucial in practice, which fulfill this model. For the seek of conciseness, we restrict our

presentation to the three following ones.

Example 1 (Regression model for right-censored data). Let T be a nonnegative random variable (r.v.) with cu-
mulative distribution function (c.d.f.) FT , and X a vector of covariates in R

d . We consider in addition that T can be
censored. We introduce the nonnegative r.v. C, with c.d.f. G, such that the observable r.v. are Z = T ∧C, δ = 1(T ≤ C)

and X. We assume that

(C): T and C are independent conditionally to X.

In this case, the processes to consider (see, e.g., [1]) are given, for i = 1, . . . , n and z ≥ 0, by

Ni(z) = 1(Zi ≤ z, δi = 1) and Y i(z) = 1(Zi ≥ z).

The unknown intensity function α to be estimated is the conditional hazard rate of the r.v. T given X = x defined, for
all z > 0 by

α(x, z) = αT |X(x, z) = fT |X(x, z)

1 − FT |X(x, z)
,

where fT |X and FT |X are respectively the conditional probability density function (p.d.f.) and the conditional c.d.f.
of T given X.

Nonparametric estimation of the hazard rate in presence of covariates was initiated by Beran [5]. Stute [37],
Dabrowska [13], McKeague and Utikal [30] and Li and Doss [26] extended his results. Many authors have considered
semiparametric estimation of the hazard rate, beginning with [12], see [1] for a review of the enormous literature on
semiparametric models. We refer to [20,27] for some recent developments.

Adaptive nonparametric estimation for censored data in presence of covariates has been considered by LeBlanc
and Crowley [25] or Castellan and Letué [8] for particular functional Cox models: in these works, α(x, z) =
exp(f (x))α0(z), only f is estimated. On the other hand, Brunel et al. [7] constructed an optimal adaptive estimator
of the conditional density in a general model.

Example 2 (Cox processes). Let ηi , for i = 1, . . . , n, be a Cox process (see [22]) on R+ with random mean-measure
Λi given by

Λi(t) =
∫ t

0
α(Xi, z)dz,

where Xi is a vector of covariates in R
d . In this context the predictable process Y of Eq. (1) constantly equals 1.

As a consequence, these processes can be seen as generalizations of nonhomogeneous Poisson processes on R+ with
random intensities. This is a particular case of longitudinal data, see, e.g., Example VII.2.15 in [1]. The nonparametric
estimation of the intensity of Poisson processes without covariates has been considered in several papers. We refer to
[3,34] for the adaptive estimation of the intensity of nonhomogeneous Poisson processes in general spaces.

Example 3 (Regression model for transition intensities of Markov processes). Consider a n-sample of nonhomoge-
neous time-continuous Markov processes P 1, . . . ,P n with finite state space {1, . . . , k} and denote by αjl the transition
intensity from state j to state l. For individual i with covariate Xi , let Ni

jl(t) be the number of observed direct tran-
sitions from j to l before time t (we allow the possibility of right-censoring, for example). Conditionally on the initial
state, the counting process Ni

jl verifies the following Aalen multiplicative intensity model:

Ni
jl(t) =

∫ t

0
αjl(Xi, z)Y

i
j (z)dz + Mi(t) for all t ≥ 0,
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where Y i
j (t) = 1{P i(t−) = j} for all t ≥ 0, see [1] or [21]. This setting is discussed in [1], see Example VII.11 on

mortality and nephropathy for insulin dependent diabetics.

We finally cite three papers, where different strategies for the estimation of the intensity of counting processes is
considered, gathering as a consequence all the previous examples, but in none of them the presence of covariates was
considered. Ramlau-Hansen [33] proposed a kernel-type estimator, Grégoire [17] studied cross-validation for these
estimators. More recently, Reynaud-Bouret [35] considered adaptive estimation by model selection.

Our aim in this work is to provide an optimal adaptive nonparametric estimator of the conditional intensity. Our
estimation procedure involves the minimization of a so-called contrast. To achieve that purpose, we proceed as follows.
In Section 2, we describe the estimation procedure: we explain how the contrast is built, on which collections of spaces
the estimators are defined and how the relevant space is selected via a data driven penalized criterion. In Section 3,
we state oracle inequalities for our estimator (see Theorems 1 and 2), a resulting upper bound (see Corollary 1) and
a lower bound (see Theorem 3), the latter asserts the optimality in the minimax sense. The examples of Section 4 are
taken in the setting of Example 1, in order to provide a short illustration of the practical properties of our estimator.
Lastly, proofs are gathered in Sections 5 and 6. Some technical proofs are to be found in a longer version of this paper,
see [11].

Remark 1. An inherent remark about this model is that there is no reason for the conditional intensity α(x, z) to have
the same behavior with respect to the z (time) and x (covariates) variables. This is the reason why it is mandatory in
our purely nonparametric setting to consider anisotropic regularity for α. Think for instance of the very popular case
of proportional hazards Cox model, see [12], it is assumed that α(x, z) = α0(z) exp(β�x) for some unknown function
α0 and unknown vector β ∈ R

d . Of course, in this model, the smoothness in the x direction is higher than in the z

direction.

For the sake of simplicity, we will assume in the following that the covariate X is one-dimensional.

2. Description of the procedure

Our estimation procedure involves the minimization of a contrast. This contrast is tuned to the problem considered in
this paper, as explained in the next section.

2.1. Definition of the contrast

Let A = A1 ×[0, τ ] be a compact set of R×R+ on which the function α will be estimated. Without loss of generality,
we set A = [0,1] × [0, τ ]. Let h be a function in (L2 ∩ L∞)(A). Define the contrast function:

γn(h) = 1

n

n∑
i=1

∫ τ

0
h2(Xi, z)Y

i(z)dz − 2

n

n∑
i=1

∫ τ

0
h(Xi, z)dNi(z). (2)

This contrast is of least-squares type adapted to the problem considered here. Since each Ni admits a Doob–Meyer
decomposition (Ni = Λi + Mi ), we have

γn(h) = 1

n

n∑
i=1

∫ τ

0
h2(Xi, z)Y

i(z)dz − 2

n

n∑
i=1

∫ τ

0
h(Xi, z)dΛi(z) − 2

n

n∑
i=1

∫ τ

0
h(Xi, z)dMi(z),

so that

E
(
γn(h)

)= E

(∫ τ

0
h2(X, z)Y (z)dz

)
− E

(
2
∫ τ

0
h(X, z)dΛ(z)

)
.

Let FX denote the c.d.f. of the covariate X and ‖ · ‖μ the norm defined by

‖h‖2
μ := E

(∫ τ

0
h2(X, z)Y (z)dz

)
=
∫ ∫

A

h2(x, z)dμ(x, z),
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where dμ(x, z) := E(Y (z)|X = x)FX(dx)dz. For the Aalen multiplicative intensity model, see Eq. (1), we get

E
(
γn(h)

)= ‖h‖2
μ − 2

∫ ∫
h(x, z)α(x, z)E

(
Y(z)|X = x

)
FX(dx)dz = ‖h − α‖2

μ − ‖α‖2
μ.

This explains why minimizing γn(·) over an appropriate set of functions, see below, is a relevant strategy to estimate α.

Example 1 (Continued). In the particular case of regression for right-censored data, the conditional hazard function
is estimated and the contrast function has the following form:

γn(h) = 1

n

n∑
i=1

∫ τ

0
h2(Xi, z)1(Zi ≥ z)dz − 2

n

n∑
i=1

δih(Xi,Zi).

We have in addition an explicit formula for dμ(x, z):

dμ(x, z) = (1 − LZ|X(z, x)
)
FX(dx)dz, (3)

where

1 − LZ|X(z, x) := P(Z ≥ z|X = x) = (1 − FT |X(x, z)
)(

1 − GC|X(x, z)
)

and GC|X is the conditional c.d.f. of C given X.

Remark 2. In our setting, it is possible to let the censoring depend on the covariates, as in [14] or, more recently [18].
Assumption (C) above is weaker than the assumption: T and C are independent and P(T ≤ C|X,T ) = P(T ≤ C|T )

in [38]. See [16], p. 249, for further discussions on this matter.

2.2. Assumptions and notations

Before defining the estimation procedure, we need to introduce some assumptions and notations. Define the norms

‖h‖2
A :=

∫ ∫
A

h2(x, z)dx dz and ‖h‖∞,A := sup
(x,z)∈A

∣∣h(x, z)∣∣,
and assume that the following condition holds:

(A1) The covariates Xi admit a p.d.f. fX such that supA1
|fX| ≤ f1 < +∞.

Assumption (A1) implies that μ admits a density w.r.t. the Lebesgue measure. We denote by f this density:

dμ(x, z) = f (x, z)dx dz, where f (x, z) = E
(
Y(z)|X = x

)
fX(x). (4)

We also assume:

(A2) There exists f0 > 0, such that ∀(x, z) ∈ A1 × [0, τ ], f (x, z) ≥ f0.
(A3) ∀(x, z) ∈ A1 × [0, τ ], α(x, z) ≤ ‖α‖∞,A < +∞.
(A4) ∀i,∀t, Y i(t) ≤ CY where CY is a known fixed constant.

Remark 3. Assumption (A2) is fulfilled if Y is bounded from below in expectation and if fX is bounded from
below. The requirement that the density of the design is bounded away from zero is standard in regression mod-
els, in particular. Assumption (A2) reduces to such a condition in Example 2 (Cox processes), where we have
f (z, x) = I (z ∈ [0, τ ])fX(x). In the general setting of counting processes, a lower bound on the expectation of Y

is classical, see [35], p. 648. In the censored case (Example 1), we can write:

E
(
Y(z)|X = x

)= E
(
1(T ∧ C ≥ z)|X = x

)= (1 − FT |X(x, z)
)(

1 − GC|X(x, z−)
)
.
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It is a well-known fact (see, e.g., [1], p. 193–194) that the Kaplan–Meier estimator is consistent, for each x (with no
further assumption) only on intervals of the form [0, τx], where τx < sup{s ≥ 0, (1−FT |X(x, s))(1−GC|X(x, s)) > 0}.
We can take τ = infx∈[0,1] τx . In view of (3), this justifies our assumption (A2) in this case.

Lastly, in the examples described in Section 1, assumption (A4) is clearly fulfilled with CY = 1. We will set CY = 1
in the following for simplicity. This implies together with (A1) that ∀(x, z) ∈ A, |f (x, z)| ≤ f1.

2.3. Definition of the estimator

We follow the usual model selection paradigm (see, e.g., [29]): first minimize the contrast γn(·) over a finite-
dimensional function space Sm, then select the appropriate space by penalization. We introduce a collection {Sm: m ∈
Mn} of projection spaces: Sm is called a model and Mn is a set of multi-indexes (see the examples in Section 2.4).
For each m = (m1,m2), the space Sm of functions with support in A = [0,1] × [0, τ ] is defined by

Sm = Fm1 ⊗ Hm2 =
{
h: h(x, z) =

∑
j∈Jm

∑
k∈Km

am
j,kϕ

m
j (x)ψm

k (z), am
j,k ∈ R

}
,

where Fm1 and Hm2 are subspaces of (L2 ∩L∞)(A1) and (L2 ∩L∞)([0, τ ]), respectively, spanned by two orthonormal
bases (ϕm

j )j∈Jm with |Jm| = Dm1 and (ψm
k )k∈Km with |Km| = Dm2 . For all j and all k, the supports of ϕm

j and ψm
k

are, respectively, included in A1 and [0, τ ]. Here j and k are not necessarily integers, they can be pairs of integers, as
in the piecewise polynomial or the wavelet cases, see Section 2.4.

Remark 4. From a theoretical point of view, we could consider that the covariates X are in R
d . For this end, we

would have to consider models of the form Sm = Fm1 ⊗ · · · ⊗ Fmd
⊗ Hmd+1 . However, this would make the proofs

more intricate. Note also that the convergence rate would be slower because of the curse of dimensionality. For the
sake of clarity, we restrict ourselves to X ∈ R.

The first step would be to define α̂m = arg minh∈Sm
γn(h). To that end, let

h(x, y) =
∑
j∈Jm

∑
k∈Km

aj,kϕ
m
j (x)ψm

k (y)

be a function in Sm. To compute α̂m, we have to solve:

∀j0, ∀k0
∂γn(h)

∂aj0,k0

= 0 ⇐⇒ GmAm = Υm,

where Am denotes the matrix (aj,k)j∈Jm,k∈Km ,

Gm :=
(

1

n

n∑
i=1

ϕm
j (Xi)ϕ

m
l (Xi)

∫ τ

0
ψm

k (z)ψm
p (z)Y i(z)dz

)
(j,k),(l,p)∈Jm×Km

and

Υm :=
(

1

n

n∑
i=1

ϕm
j (Xi)

∫ τ

0
ψm

k (z)dNi(z)

)
j∈Jm,k∈Km

.

Unfortunately Gm may not be invertible. To overcome this problem, we modify the definition of α̂m in the following
way:

α̂m :=
{

arg minh∈Sm
γn(h) on Γ̂m,

0 on Γ̂ �
m,

(5)
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where

Γ̂m := {min Sp(Gm) ≥ max
(
f̂0/3, n−1/2)},

where Sp(Gm) denotes the spectrum of Gm, i.e., the set of the eigenvalues of the matrix Gm (it is easy to see that they
are nonnegative). The estimator f̂0 of f0 (the minimum of the density f , see (A2)) is required to fulfill the following
assumption:

(A5) For any integer k ≥ 1, there are positive constants C0 and n0 such that

P
(|f̂0 − f0| > f0/2

)≤ C0/n
k for any n ≥ n0.

An estimator satisfying (A5) is defined in Section 3.5, where the constants C0 and n0 depend on k above, on f0, f1, τ

defined in Sections 2.1 and 2.2, and on φ1, φ2 defined below in Section 2.4. In fact, k = 7 is enough for the proofs. We
refer the reader to the proof of Lemma 1, see Section 6, for an explanation of the presence of n1/2 in the definition of
Γ̂m. In practice, this constraint is generally not used (the matrix is invertible, otherwise another model is considered).

The final step is to select the relevant space via the penalized criterion:

m̂ = arg min
m∈Mn

(
γn(α̂m) + pen(m)

)
, (6)

where pen(m) is defined in Theorem 1 below, see Section 3. Our estimator of α on A is then α̂m̂.

2.4. Assumptions on the models and examples

Let us introduce the following set of assumptions on the models {Sm: m ∈ Mn}, which are usual in model selection
techniques:

• (M1) For i = 1,2, D(i)
n := maxm∈Mn

Dmi
≤ n1/4/

√
logn. We shall denote by Fn (resp. Hn) the space with di-

mension D(1)
n (resp. D(2)

n ).
• (M2) There exist φ1 > 0, φ2 > 0 such that, for all u in Fm1 and for all v in Hm2 , we have

sup
x∈A1

∣∣u(x)∣∣2 ≤ φ1Dm1

∫
A1

u2 and sup
x∈[0,τ ]

∣∣v(x)∣∣2 ≤ φ2Dm2

∫
[0,τ ]

v2.

By letting φ0 = √
φ1φ2, that leads to

∀h ∈ Sm ‖h‖∞,A ≤ φ0
√
Dm1Dm2‖h‖A. (7)

• (M3) Nesting condition:

Dm1 ≤ Dm′
1

⇒ Fm1 ⊂ Fm′
1

and Dm2 ≤ Dm′
2

⇒ Hm2 ⊂ Hm′
2
.

Moreover, there exists a global nesting space Sn = Fn ⊗ Hn in the collection, such that ∀m ∈ Mn, Sm ⊂ Sn and
dim(Sn) := Nn ≤ √

n/ logn.

Remark 5. We emphasize that φ2 depends on τ and is in most examples proportional to 1/τ .

Assumptions (M1)–(M3) are not too restrictive. Indeed, they are verified for the spaces Fm1 (and Hm2 ) on A1 =
[0,1] spanned by the following bases (see [4]):

• [T ] Trigonometric basis: span(ϕ0, . . . , ϕm1−1) with ϕ0 = 1([0,1]), ϕ2j (x) = √
2 cos(2πjx) 1([0,1])(x),

ϕ2j−1(x) = √
2 sin(2πjx)1([0,1])(x) for j ≥ 1. For this model Dm1 = m1 and φ1 = 2 hold.

• [DP ] Regular piecewise polynomial basis: polynomials of degree 0, . . . , r (where r is fixed) on each interval
[(l − 1)/2D, l/2D[ with l = 1, . . . ,2D . In this case, we have m1 = (D, r), Jm = {j = (l, d),1 ≤ l ≤ 2D,0 ≤ d ≤ r},
Dm1 = (r + 1)2D and φ1 = √

r + 1.
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• [W ] Wavelet basis on an interval: span(Ψj,k: j = l − 1, . . . ,m1, k ∈ Λ(j)), where l and m1 are integers (l corre-
sponds to the number of vanishing moments of the basis). The Ψj,k are, depending on the localization parameter
k, either translations and dilatations of a pair {φ,ψ} of scaling function and wavelet with a compact support, or
so-called edge scaling functions and wavelets. We give more details in Appendix A.1. By construction, the elements
of this basis have their supports included in A1, and they have as many vanishing moments as ψ .

• [H ] Histogram basis: for A1 = [0,1], span(ϕ1, . . . , ϕ2m1 ) with ϕj = 2m1/21([(j − 1)/2m1, j/2m1 [) for j =
1, . . . ,2m1 . Here Dm1 = 2m1 , φ1 = 1. Notice that [H ] is a particular case of both [DP ] and [W ].

Notice that τ−1/2ϕ1(·/τ), . . . , τ−1/2ϕD(·/τ) an orthonormal basis in L2([0, τ ]), whenever ϕ1, . . . , ϕD is one in
L2([0,1]).

Remark 6. The first assumption (M1) prevents the dimension from being too large compared to the number of
observations. We can relax considerably this constraint for localized basis: for histogram basis, piecewise polynomial
basis and wavelets, (M1) can be relaxed to the weaker condition: D(i)

n ≤ √
n/ logn. Analogously in (M3), we would

get Nn ≤ n/ logn. The condition (M2) implies a useful link between the L2 norm and the infinite norm. The third
assumption (M3) implies in particular that ∀m,m′ ∈ Mn, Sm + Sm′ ⊂ Sn. This condition is useful for the chaining
argument used in the proofs, see Section 6.4.

3. Main results

3.1. Oracle inequality

We define αm as the orthogonal projection of α1(A) on Sm. The estimator α̂m̂, where α̂m and m̂ are given by (5) and
(6), respectively, satisfies the following oracle inequality.

Theorem 1. Let (A1)–(A5) and (M1)–(M3) hold. Define the following penalty:

pen(m) := K0
(
1 + ‖α‖∞,A

)Dm1Dm2

n
, (8)

where K0 is a numerical constant. We have

E
(∥∥α1(A) − α̂m̂

∥∥2
μ

)≤ κ0 inf
m∈Mn

{∥∥α1(A) − αm

∥∥2
μ

+ pen(m)
}+ C

n
(9)

for any n ≥ n0, where n0 is a constant coming from assumption (A5) (see Section 2.3), where κ0 is a numerical
constant and C is a constant depending on φ1, φ2,‖α‖∞,A, f0, f1 and τ .

The proof of Theorem 1 involves a deviation inequality (see Lemma 5) for the empirical process

νn(h) := 1

n

n∑
i=1

∫ τ

0
h(Xi, z)dMi(z),

where Mi(t) = Ni(t) − ∫ t

0 α(Xi, z)Y
i(z)dz are martingales, see Section 1, and a L2 − L∞ chaining argument (see

Proposition 4 and the detailed proof in [11]).

3.2. Adaptive upper bound

From Theorem 1, we can derive the rate of convergence of α̂m̂ over anisotropic Besov spaces. We recall that anisotropy
is almost mandatory in this context, see Remark 1. For that purpose, assume that α restricted to A belongs to the
anisotropic Besov space B

β
2,∞(A) on A with regularity β = (β1, β2). Let us recall the definition of B

β
2,∞(A). Let
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{e1, e2} the canonical basis of R
2 and take Ar

h,i := {x ∈ R
2;x, x + hei, . . . , x + rhei ∈ A}, for i = 1,2. For x ∈ Ar

h,i ,
let

Δr
h,ig(x) =

r∑
k=0

(−1)r−k

(
r

k

)
g(x + khei)

be the r th difference operator with step h. For t > 0, the directional moduli of smoothness are given by

ωri,i(g, t) = sup
|h|≤t

(∫
A

ri
h,i

∣∣Δri
h,ig(x)

∣∣2 dx

)1/2

, i = 1,2.

Consider the Besov norm

‖α‖
B

β
2,∞(A)

:= ‖α‖A + |α|
B

β
2,∞(A)

= ‖α‖A + sup
t>0

2∑
i=1

t−βiωri ,i (g, t). (10)

Define the Besov space B
β
2,∞(A) as the set of functions g such that ‖g‖

B
β
2,∞(A)

< +∞, and for L > 0, consider the

ball

B
β
2,∞(A,L) = {α ∈ B

β
2,∞(A): ‖α‖

B
β
2,∞(A)

≤ L
}
.

More details concerning Besov spaces can be found in [40]. The next corollary shows that α̂m̂ adapts to the unknown
anisotropic smoothness of α.

Corollary 1. Assume that α restricted to A belongs to B
β
2,∞(A,L), with smoothness β = (β1, β2) such that β1 > 1/2

and β2 > 1/2. We consider the piecewise polynomial or wavelet spaces described in Section 2.4 (with the regularity
of the polynomials and the wavelets larger than βi − 1). Then, under the assumptions of Theorem 1, we have

E‖α − α̂m̂‖2
A ≤ Cn−2β̄/(2β̄+2),

where β̄ is the harmonic mean of β1 and β2 (i.e., 2/β̄ = 1/β1 +1/β2) and C depends on L, τ , φ0, f0, f1 and ‖α‖∞,A.

The rate of convergence achieved by α̂m̂ in Corollary 1 is optimal in the minimax sense as proved in Theorem 3
below. For trigonometric spaces, the result also holds, but for β1 > 3/2 and β2 > 3/2 (because of (M1)).

Moreover, assuming for example that β2 > β1, one can see in the proof of Corollary 1 that the estimator chooses a
space of dimension Dm̂2 = D

β1/β2
m̂1

<Dm̂1 . This shows that the estimator is adaptive with respect to the approximation
space for each directional regularity.

3.3. Random penalty

It is worth noting that the penalty defined in Eq. (8) involves the unknown quantity ‖α‖∞,A. This problem occurs
occasionally in penalization procedures, see, for instance, [10] or [23]. The solution is to replace it by an estimator:

p̂en(m) = K1
(
1 + ‖α̂m∗‖A,∞

)Dm1Dm2

n
, (11)

where K1 is a numerical constant and α̂m∗ is a rough estimator of α computed on an arbitrary space Sm∗ with dimen-
sion Dm∗ = Dm∗

1
Dm∗

2
. Let us consider

ˆ̂m = arg min
m∈Mn

(
γn(α̂m) + p̂en(m)

)
. (12)

Then we can prove the following result.
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Theorem 2. Let the assumptions of Theorem 1 be satisfied. Consider the estimator α̂ ˆ̂m defined by (5)–(12)–(11),
where the term α̂m∗ is computed with (5) on a space Sm∗ in collection [T] with dimension Dm∗ such that

Dm∗
1
= Dm∗

2
= n1/4.

If α restricted to A belongs to the anisotropic Besov space B
β
2,∞(A) with regularity β = (β1, β2) such that β1 > 2 and

β2 > 2, then, for n large enough,

E
(∥∥α1(A) − α̂ ˆ̂m

∥∥2
μ

)≤ κ1 inf
m∈Mn

{∥∥α1(A) − αm

∥∥2
μ

+ (1 + ‖α‖∞,A

)Dm1Dm2

n

}
+ C

n
, (13)

where κ1 is a numerical constant and C is a constant depending on φ1, φ2,‖α‖∞,A, f0, f1 and τ .

The rate of convergence of α̂ ˆ̂m on Besov balls can be deduced, in an obvious manner, from Theorem 2, as Corol-
lary 1 was obtained from Theorem 1.

3.4. Lower bound

In the next theorem, we prove that the rate n−2β̄/(2β̄+2) is optimal over B
β
2,∞(A) where we recall that 2/β̄ = 1/β1 +

1/β2. The Besov ball Bβ
2,∞(A,L) is defined in Section 3.2. Let us denote by Eα the integration w.r.t. the joint law Pα ,

when the intensity is α, of the n-sample (Xi,N
i(z), Y i(z); z ≤ τ, i = 1, . . . , n).

Theorem 3. Assume that assumption (A1) holds. Then there is a constant C > 0 that depends on β,L, τ and f1 such
that

inf
α̃

sup
α∈B

β
2,∞(A,L)

Eα‖α̃ − α‖2
A ≥ Cn−2β̄/(2β̄+2)

for n large enough, where the infimum is taken among all estimators.

Remark 7. There is a slight difference between the statements of Theorem 3 and Corollary 1: the upper bound in
Corollary 1 requires assumption (A2) to be fulfilled (which requires that f (x, z) = E(Y (z)|X = x)fX(x) ≥ f0) while
Theorem 3 does not. However Corollary 1 and Theorem 3 are stated on the same functional sets. This kind of difference
between the statements of upper and lower bounds is classical, and can be found in regression models as well, see the
discussion in [36], p. 1351, for a regression model.

3.5. Estimation of f0

We recall that f is the density of μ, which is defined in Eq. (4). We define

f̂m = arg min
h∈Sm

υn(h), where υn(h) = ‖h‖2 − 2

n

n∑
i=1

∫ τ

0
h(Xi, z)Y

i(z)dz. (14)

This estimator admits a simple explicit formulation:

f̂m(x, z) =
∑

(j,k)∈Jm×Km

b̂j,kϕ
m
j (x)ψm

k (y), with b̂j,k = 1

n

n∑
i=1

ϕm
j (Xi)

∫ τ

0
ψm

k (z)Y i(z)dz. (15)

As before, we consider estimation of f over the compact set A = [0,1] × [0, τ ]. We choose the space Hm2 as the

space with maximal dimension, as explained below. Let us denote it by Hn, by D(2)
n = dim(Hn) its dimension (see

(M1)) and by �n its index so that H�n = Hn. Consider, for a given m1, the estimator

f̂m1 := arg min
h∈Fm1×Hn

υn(h)
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and define an estimator of f0 by considering any inf(x,z)∈A f̂m1(x, z). It is worth noticing that an arbitrary choice is
sufficient, because only a rough estimation of the lower bound f0 of f is useful here. Therefore, the estimator f̂0 used
in (5) for the construction of α̂m can be defined, for an arbitrary m∗

1, see Proposition 1, as

f̂0 := inf
(x,z)∈A

f̂m∗
1
(x, z) with Dm∗

1
= dim(Fm∗

1
). (16)

Proposition 1. Consider f̂0 defined by (16) in the basis [T] with Dm∗
1

= D(2)
n = n1/4/

√
logn. Assume that f ∈

B(β̃1,β̃2)

2,∞ (A) with β̃1 > 2, β̃2 > 2. Then, for any k ∈ N, there are positive constants n0 and C0 such that

P
(|f̂0 − f0| > f0/2

)≤ C0/n
k

for any n ≥ n0, where C0 and n0 are constant depending on k, τ , f0, f1, φ1 and φ2. This proves that f̂0 fulfills
assumption (A5).

The proof of this result is given in Section 6.

4. Illustration

In this section, we give a numerical illustration of the adaptive estimator α̂m̂, defined in Section 2, computed with the
dyadic histogram basis [H]. We sample i.i.d. data (X1, T1), . . . , (Xn,Tn) in three particular cases of the regression
model of Example 1 from Section 1. For the sake of simplicity, we simulate the covariates Xi with the uniform
distribution on [0,1]. The size of the data set is n = 1000.

Case (NL). Non-Linear regression:

Ti = b(Xi) + σεi.

We simulate εi with a χ2(4) distribution, σ = 1/4 and b(x) = 2x + 5. Note that in this case, the hazard function
to be estimated is

αNL(x, t) = 1

σ
αε

(
t − b(x)

σ

)
,

where αε denotes the hazard function of ε.
Case (AFT). Accelerated Failure Time model:

log(Ti) = a + bXi + εi,

where the εi are standard normal and a = 5 and b = 2. The hazard function to be estimated is then:

αAFT(x, t) = αε(log(t) − (a + bx))

t
.

Case (PH). Proportional Hazards model (see [8,25]): in this case, the hazard writes

α(x, t) = exp
(
b(x)

)
α0(t).

We take b(x) = bx with b = 0.4 and α0(t) = aλta−1, which is a Weibull hazard function with a = 3 and λ = 1.

We choose to compute and plot our estimators with histogram bases for two reasons: first, it makes the estimator
much easier to compute; secondly, it shows very well how the changes are captured, and when an anisotropic choice
is performed by the estimation procedure. More sophisticated implementation is beyond the scope of the paper.
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Fig. 1. Case (NL) Estimated (top left) and true (top right) conditional hazard rates and example of cross-sections (bottom) for a fixed value of x

(left) and y (right).

Fig. 2. Case (AFT) Estimated (top left) and true (top right) conditional hazard rates and example of cross-sections (bottom) for a fixed value of x

(left) and y (right).

The penalty is taken as

p̂en(m1,m2) = κ
(
1 + ‖α̂‖∞,A

)2m1+m2

n
,

with κ = 4. Note that, for sake of simplicity, ‖α̂‖∞,A is estimated by maxj,k âj,k (the largest histogram coefficients)
instead of the trigonometric basis, which was used for technical reasons in Theorem 2: this is because it makes the
procedure faster, since all âj,k are already computed for estimation. These coefficients are computed on the largest
space considered (with dimension

√
n).

We can see from Figs 1–3 that the algorithm exploits the opportunity (Figs 1 and 3) of choosing different dimen-
sions in the two directions, and that it gives a good account of the general form of the surfaces.
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Fig. 3. Case (PH) Estimated (top left) and true (top right) conditional hazard rates and example of cross-sections (bottom) for a fixed value of x

(left) and y (right).

5. Proofs of the main results

5.1. Proof of Theorem 1

We define, for h1, h2 in L2 ∩ L∞(A), the empirical scalar product

〈h1, h2〉n = 1

n

n∑
i=1

∫ τ

0
h1(Xi, z)h2(Xi, z)Y

i(z)dz1
(
Xi ∈ [0,1]) (17)

and the associated empirical norm ‖h1‖2
n = 〈h1, h1〉n which is such that

E
(‖h1‖2

n

)= ∫ ∫
A

h2
1(x, y)dμ(x, y) =

∫ ∫
A

h2
1(x, y)f (x, y)dx dy = ‖h1‖2

μ,

where we recall that f denotes the density of μ w.r.t. the Lebesgue measure on A. We shall use the following sets:

Γ̂m = {min Sp(Gm) ≥ max
(
f̂0/3, n−1/2)}, Γ̂ :=

⋂
m∈Mn

Γ̂m,

(18)

Δ :=
{
∀h ∈ Sn:

∣∣∣∣ ‖h‖2
n

‖h‖2
μ

− 1

∣∣∣∣≤ 1

2

}
and Ω :=

{∣∣∣∣ f̂0

f0
− 1

∣∣∣∣≤ 1

2

}
.

For m ∈ Mn, we denote by αm the orthogonal projection on Sm of α restricted to A. The following decomposition
holds

E
(∥∥α̂m̂ − α1(A)

∥∥2
μ

)≤ 2
∥∥α1(A) − αm

∥∥2
μ

+ 2E
(‖α̂m̂ − αm‖2

μ1(Δ ∩ Ω)
)

+ 2E
(‖α̂m̂ − αm‖2

μ1
(
(Δ ∩ Ω)�

))
. (19)

The last term is bounded via the following proposition.

Proposition 2. Under the assumptions of Theorem 1,

E
(‖α̂m̂ − αm‖2

μ1
(
(Δ ∩ Ω)�

))≤ C1/n, (20)

where C1 is a constant depending on τ , φ1, φ2, ‖α‖∞,A, f0, f1.
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The study of the term E(‖α̂m̂ − αm‖2
μ1(Δ ∩ Ω)) involves two preliminary steps. The first one is the following

lemma.

Lemma 1. Under the assumptions of Theorem 1, the following embedding holds: for n ≥ 4/f 2
0 , we have

Δ ∩ Ω ⊂ Γ̂ ∩ Ω.

See the proof in Section 6.3. As a consequence, for all m ∈ Mn, the matrices Gm are invertible on Δ ∩ Ω . The
second step is the following useful decomposition. Let us define

νn(h) = 1

n

n∑
i=1

(∫ τ

0
h(Xi, z)dNi(z) −

∫ τ

0
h(Xi, z)α(Xi, z)Y

i(z)dz

)

= 1

n

n∑
i=1

∫ τ

0
h(Xi, z)dMi(z), (21)

where we use the Doob–Meyer decomposition. For any h1, h2 ∈ (L2 ∩ L∞)(A), we have

γn(h1) − γn(h2) = ‖h1 − h2‖2
n + 2〈h1 − h2, h2〉n − 2

n

n∑
i=1

∫ τ

0
(h1 − h2)(Xi, z)dNi(z)

= ‖h1 − h2‖2
n + 2〈h1 − h2, h2 − α〉n − 2νn(h1 − h2)

= ‖h1 − h2‖2
n + 2

〈
h1 − h2, h2 − α1(A)

〉
n
− 2νn(h1 − h2), (22)

where the indicator 1(A) can be inserted because all other functions in the scalar product are A-supported. Let us
assume that n ≥ 4/f 2

0 . Now, on Δ ∩ Ω , we have thanks to Lemma 1 and by the definition of m̂, that

γn(α̂m̂) + pen(m̂) ≤ γn(αm) + pen(m) ∀m ∈ Mn.

It follows from (22) and from the fact that 2xy ≤ x2/θ + θy2 for any x, y, θ > 0 that, on Δ ∩ Ω ,

‖α̂m̂ − αm‖2
n ≤ 2

〈
α̂m̂ − αm,α1(A) − αm

〉
n
+ pen(m) + 2νn(α̂m̂ − αm) − pen(m̂)

≤ 1

4
‖α̂m̂ − αm‖2

n + 4
∥∥α1(A) − αm

∥∥2
n
+ pen(m)

+ 1

4
‖α̂m̂ − αm‖2

μ + 4 sup
h∈B

μ

m,m̂
(0,1)

ν2
n(h) − pen(m̂),

where B
μ

m,m′(0,1) := {h ∈ Sm + Sm′ : ‖h‖μ ≤ 1}. Now, we need to introduce a centering factor denoted by p(m,m′),
related to the supremum of the empirical process νn(h).

Proposition 3. Grant the assumptions of Theorem 1. There exists a numerical constant κ > 0 such that the following
holds. If

p
(
m,m′)= κ

(
1 + ‖α‖∞,A

)Dm + Dm′

n
,

then ∑
m′∈Mn

E

(
sup

h∈B
μ

m,m′ (0,1)

(
ν2
n(h) − p

(
m,m′))

+1(Δ)
)

≤ C2

n

for n large enough, where C2 is a constant depending on f0, ‖α‖∞,A and the chosen basis (see Section 2.4).
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The proof of Proposition 3 is partly given in Section 6.4 below (see [11] for details). It yields

3

4
‖α̂m̂ − αm‖2

n ≤ 4
∥∥α1(A) − αm

∥∥2
n
+ pen(m) + 1

4
‖α̂m̂ − αm‖2

μ

+ 4
(

sup
h∈B

μ

m,m̂
(0,1)

ν2
n(h) − p(m, m̂)

)
+ + 4p(m, m̂) − pen(m̂).

Now, let fix K0 ≥ 4κ, so that

4p
(
m,m′)≤ pen(m) + pen

(
m′) ∀m,m′,

and use the definition of Δ. We obtain on Δ ∩ Ω :

3

8
‖α̂m̂ − αm‖2

μ ≤ 4
∥∥α1(A) − αm

∥∥2
n
+ 2 pen(m)

+1

4
‖α̂m̂ − αm‖2

μ + 4
∑

m′∈Mn

(
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) − p

(
m,m′))

+ (23)

and thus on Δ ∩ Ω :

1

8
‖α̂m̂ − αm‖2

μ ≤ 4
∥∥α1(A) − αm

∥∥2
n
+ 2 pen(m) + 4

∑
m′∈Mn

(
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) − p

(
m,m′))

+.

Now, Proposition 3 entails

1

8
E
(‖α̂m̂ − αm‖2

μ1(Δ ∩ Ω)
)≤ 4

∥∥α1(A) − αm

∥∥2
μ

+ 2 pen(m) + C2

n
. (24)

Gathering (19), (20) and (24), we obtain that, for n ≥ 4/f 2
0 ,

E
(∥∥α̂m̂ − α1(A)

∥∥2
μ

)≤ 2
∥∥αm − α1(A)

∥∥2
μ

+ 16

(
4
∥∥α1(A) − αm

∥∥2
μ

+ 2 pen(m) + C2

n

)
+ 2C1

n

for any m ∈ Mn. On the other hand, if n ≤ 4/f 2
0 , then 1/n ≥ f 2

0 /4 and it is easy to see that Lemma 3 (see below)
entails E(‖α̂m̂ − α1(A)‖2

μ) ≤ C/n where C is a constant depending on CB from Lemma 3, f0 and ‖α1(A)‖2
μ. This

concludes the proof of Theorem 1.

5.2. Proof of Corollary 1

To control the bias term, we use Lemma 6, see Appendix A.2, that gives the approximation result allowing to derive
the rate of convergence. If we choose Sm as one of the finite-dimensional linear span considered in Section A.2, we can
apply Lemma 6 to the function αA, the restriction of α to A. Since αm has been defined as the orthogonal projection
of αA on Sm, we get using (A1) and (A4):∥∥α1(A) − αm

∥∥
μ

≤ f1‖α − αm‖A ≤ C3
[
D−β1

m1
+ D−β2

m2

]
,

where C3 depends on the Besov norm of α and on f1. Now, according to Theorem 1 and (A2), we obtain

E‖α̂m̂ − α‖2
A ≤ f−1

0 E
(‖α̂m̂ − α‖2

μ

)≤ C4 inf
m∈Mn

{
D−2β1

m1
+ D−2β2

m2
+ Dm1Dm2

n

}
,

where C4 depends on the Besov norm of α, and on f0, f1, φ1, φ2 and τ . In particular, if m∗ = (m∗
1,m

∗
2) is such that

Dm∗
1
= ⌊nβ2/(β1+β2+2β1β2)

⌋
and Dm∗

2
= ⌊(Dm∗

1
)β1/β2

⌋
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then

E‖α̂m̂ − α‖2
A ≤ 2C4

(
D

−2β1
m∗

1
+

D
1+β1/β2
m∗

1

n

)
≤ 4n−2β1β2/(β1+β2+2β1β2) = 4C4n

−2β̄/(2β̄+2),

where we recall that the harmonic mean of β1 and β2 is β̄ = 2β1β2/(β1 + β2). The condition Dm1 ≤ √
n/ logn allows

this choice of m∗ only if β2/(β1 +β2 + 2β1β2) < 1/2, i.e., if β1 −β2 + 2β1β2 > 0. In the same manner, the condition
β2 − β1 + 2β1β2 > 0 must be satisfied. Both conditions hold if β1 > 1/2 and β2 > 1/2.

5.3. Proof of Theorem 2

The proof follows the line of the proof of Theorem 2.2 in [24], p. 67, so we only give a sketch of proof. Let us define

Λ =
{∣∣∣∣‖α̂m∗‖∞

‖α‖∞,A

− 1

∣∣∣∣< 1

2

}
,

and recall that Δ and Ω are given by (18). Then we decompose the risk of α̂ ˆ̂m as follows:

E
(∥∥α̂ ˆ̂m − α1(A)

∥∥2
μ

)= E
(∥∥α̂ ˆ̂m − α1(A)

∥∥2
μ
1(Λ ∩ Δ ∩ Ω)

)+ E
(∥∥α̂ ˆ̂m − α1(A)

∥∥2
μ
1
(
(Λ ∩ Δ ∩ Ω)�

))
.

The study of the term E(‖α̂ ˆ̂m − α1(A)‖2
μ1(Λ ∩ Δ ∩ Ω)) is very similar to the study of its analogous in the proof of

Theorem 1, by using that, on Λ,

1

2
pen(m) ≤ K0

K1
p̂en(m) ≤ 3

2
pen(m). (25)

Thus, the algebra starts with p̂en(m) instead of pen(m), and on Λ, it is proportional to pen(m) thanks to (25). At the
end, only constant multiplicative factors are changed. In other words, taking K1 = 2K0, (24) is simply replaced by

1

8
E
(‖α̂ ˆ̂m − αm‖2

μ1(Δ ∩ Ω ∩ Λ)
)≤ 4

∥∥α1(A) − αm

∥∥2
μ

+ 4 pen(m) + C2

n
. (26)

The conclusion follows from the following lemma, which is proven in a longer version of the paper, see [11].

Lemma 2. Under the assumptions of Theorem 2,

E
(∥∥α̂ ˆ̂m − α1(A)

∥∥2
μ
1
(
(Λ ∩ Δ ∩ Ω)�

))≤ CR/n,

where CR depends on φ1, φ2, τ, f0, f1 and ‖α‖∞,A.

This ends the proof of Theorem 2.

5.4. Proof of Theorem 3

In order to prove Theorem 3, we use the following theorem from [41], which is a standard tool for the proof of such a
lower bound. We say that ∂ is a semi-distance on some set � if it is symmetric and if it satisfies the triangle inequality
and ∂(θ, θ) = 0 for any θ ∈ �. We consider K(P,Q) := ∫ log(dP/dQ)dP the Kullback–Leibler divergence between
probability measures P and Q such that P � Q.

Theorem (see [41]). Let (�, ∂) be a set endowed with a semi-distance ∂ . We suppose that {Pθ : θ ∈ �} is a family
of probability measures on a measurable space (X , A) and that v > 0. If there exist {θ0, . . . , θM} ⊂ �, with M ≥ 2,
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such that

(1) ∂(θj , θk) ≥ 2v ∀0 ≤ j < k ≤ M ,
(2) Pθj � Pθ0 ∀1 ≤ j ≤ M ,

(3) 1
M

∑M
j=1 K(Pθj ,Pθ0) ≤ a log(M) for some a ∈ (0,1/8),

then

inf
θ̂

sup
θ∈�

Eθ

[(
v−1∂(θ̂ , θ)

)2]≥ √
M

1 + √
M

(
1 − 2a − 2

√
a

log(M)

)
,

where the infimum is taken among all estimators.

In this proof, we denote by Pα the distribution of (X,N(z),Y (z); z ≤ τ) when the intensity of N is α and by P
n
α

the distribution of the n-sample (Xi,N
i(z), Y i(z); z ≤ τ, i = 1, . . . , n).

We construct a family of functions {α0, . . . , αM } that satisfies points (1)–(3). We use the notation |A| for the area of
the rectangle A (or the length of an interval) and #(R) denotes the cardinality of a set R. Let α0(x, t) = |B|−11(t ∈ B)

where B is a compact set such that A = [0,1] × [0, τ ] ⊂ B × B and |B| ≥ 2|A|1/2/L. As a consequence, we have
α0(x, t) > 0 for (x, t) ∈ A and ‖α0‖B

β
2,∞(A)

= ‖α0‖A + |α0|Bβ
2,∞(A)

≤ L/2 since |α0|Bβ
2,∞(A)

= 0, see (10). We shall

denote for short a0 = |B|−1 in the following. Let ψ be a very regular wavelet with compact support (the Daubechies’s
wavelet, for instance), and for j = (j1, j2) ∈ Z

2 and k = (k1, k2) ∈ Z
2, let us consider

ψj,k(x, t) = τ−1/22(j1+j2)/2ψ
(
2j1 t/τ − k1

)
ψ
(
2j2x − k2

)
,

so that ‖ψj,k‖A = 1. Let Sj,k stands for the support of ψj,k . We consider the maximal set Rj ⊂ Z
2 such that

Sj,k ⊂ A ∀k ∈ Rj and Sj,k ∩ Sj,k′ = ∅ ∀k, k′ ∈ Rj , k �= k′. (27)

The cardinality of Rj satisfies #(Rj ) = c2j1+j2 , where c is a positive constant that depends on τ and on the support
of ψ only. Consider the set Ωj = {0,1}#(Rj ) and define for any ω = (ωk) ∈ Ωj

α(·;ω) := α0 +
√

b

n

∑
k∈Rj

ωkψj,k,

where b > 0 is some constant to be chosen below. In view of (27) we have

∥∥α(·;ω) − α
(·;ω′)∥∥2

A
= bρ(ω,ω′)

n
,

where

ρ
(
ω,ω′) := ∑

k∈Rj

1
(
ωk �= ω′

k

)
is the Hamming distance on Ωj . Using a result of Varshamov–Gilbert – see [41] – we can find a subset
{ω(0), . . . ,ω(Mj )} of Ωj such that

ω(0) = (0, . . . ,0), ρ
(
ω(p),ω(q)

)≥ #(Rj )/8

for any 0 ≤ p < q ≤ Mj , where Mj ≥ 2#(Rj )/8. We consider the family Aj = {α0, . . . , αMj
} where αp = α(·,ω(p)).

This family satisfies for any 0 ≤ p < q ≤ Mj

‖αp − αq‖A ≥
(
b#(Rj )

8n

)1/2

= 2vj
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for vj :=√b#(Rj )/(32n). This proves point (1). Now, let us gather here some properties for this family of functions.
We have

∥∥α(·;ω)− α0
∥∥∞,A

≤
√

b2(j1+j2)

τn
‖ψ‖2∞ ≤ a0/3

and consequently α(x, t;ω) ≥ 2a0/3 > 0 for any (x, t) ∈ A and ω ∈ Ωj whenever(
b2j1+j2

τn

)1/2

≤ a0

3‖ψ‖2∞
. (28)

Using the Bernstein’s estimate from [19] (see Theorem 3.5, p. 194), we have for ψ smooth enough that∥∥∥∥∑
k∈Rj

ωkψj,k

∥∥∥∥
B

β
2,∞(A)

≤ cτ
(
2j1β1 + 2j2β2

)∥∥∥∥∑
k∈Rj

ωkψj,k

∥∥∥∥
A

≤ cτ,ψ
(
2j1β1 + 2j2β2

)(
2j1+j2

)1/2
,

where cτ,ψ is a constant that depends on τ and ψ . Note that the Bernstein’s estimate from [19] is stated on the space
L

2([0,1]2) while we consider here L
2([0,1]×[0, τ ]). An obvious (but tedious) modification of the proof of Hochmuth

(it suffices to change the scaling of the moduli of continuity ωri,i herein) allows to show that the Bernstein’s estimate
is the same as for L

2([0,1]2), up to a multiplicative constant that depends on τ . Hence, if

cτ,ψ(2j1β1 + 2j2β2)(2j1+j2)1/2

√
n

≤ L

2
√
b
, (29)

we have ‖α(·;ω)‖
B

β
2,∞(A)

≤ L, so α(·;ω) ∈ B
β
2,∞(A,L) for any ω ∈ Ωj . This proves that Aj ⊂ B

β
2,∞(A,L).

Points (2) and (3) are derived using Jacod’s formula (see [1]). Indeed, we can prove that the log-likelihood
�(α,α0) := log(dPα/dPα0) of N writes

�(α,α0) =
∫ τ

0

(
logα(X, t) − logα0(X, t)

)
dN(t) −

∫ τ

0

(
α(X, t) − α0(X, t)

)
Y(t)dt.

For any α ∈ Aj , we have ‖α−α0‖∞,A ≤ a0/3 ≤ α(x, t)/2 for any (x, t) ∈ A. The Doob–Meyer decomposition allows
to write that, under Pα0 :

�(α,α0) =
∫ τ

0

(
�1/α(X,t)

(
α(X, t) − α0(X, t)

)− (α(X, t) − α0(X, t)
))
Y(t)dt

+
∫ τ

0

(
logα(X, t) − logα0(X, t)

)
dM(t)

where �a(x) := − log(1 − ax)/a for a > 0 and x < 1/a. But since �a(x) ≤ x + ax2 for any x ≤ 1/(2a), we obtain

�(α,α0) ≤ 3

2a0

∫ τ

0

(
α(t,X) − α0(t,X)

)2
Y(t)dt +

∫ τ

0

(
logα0(t,X) − logα(t,X)

)
dM(t)

which gives by integration with respect to Pα

K(Pα,Pα0) ≤ 3‖α − α0‖2
μ

2a0
≤ 3f1‖α − α0‖2

A

2a0
≤ 3bf1#(Rj )

2na0

for any α ∈ Aj . Since the counting processes (N1, . . . ,Nn) are independent, we have K(Pn
α,P

n
α0
) = nK(Pα,Pα0) and

1

M

M∑
p=0

K
(
P
n
αp

,Pn
α0

)≤ 3bf1#(Rj )

2a0
≤ a logMj
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with

a := 12bf1/(a0 log 2).

So, we take b small enough, so that a < 1/8 (this is the only constraint on b) and point (3) is met in Tsybakov’s [41]
theorem. It only remains to choose the levels j1 and j2 so that (28) and (29) holds, and to compute the corresponding
vj . We take j = (j1, j2) such that

c1/2 ≤ 2j1n−β2/(β1+β2+2β1β2) ≤ c1 and c2/2 ≤ 2j2n−β1/(β1+β2+2β1β2) ≤ c2,

where c1 and c2 are positive constants satisfying cτ,ψ(c
β1
1 + c

β2
2 )

√
c1c2 ≤ L/(2

√
b). For this choice, 2j1+j2/n ≤

c1c2n
−2β̄/(2β̄+2) so (28) holds for n large enough and (29) holds and vj ≥ c3n

−β̄/(2β̄+2) where c3 = cτ,ψ
√
bc1c2/128.

6. Proof of the auxiliary results

6.1. Proof of Proposition 1

Let f̂m∗
1

and f̂0 be defined by (16), with m∗
1 = (Dm1 , D(2)

n ) and Dm1 = D(2)
n = n1/4/

√
logn. We remark that, for all

(x, z) ∈ R
2,

f̂m∗
1
(x, z) = f (x, z) + f̂m∗

1
(x, z) − f (x, z) ≥ f0 − ‖f̂m∗

1
− f ‖∞,A.

We deduce that ‖f̂m∗
1
− f ‖∞,A ≥ f0 − f̂0. In the same manner, ‖f̂m∗

1
− f ‖∞,A ≥ f̂0 − f0. Thus

P
(
Ω�)= P

(|f0 − f̂0| > f0/2
)≤ P

(‖f̂m∗
1
− f ‖∞,A > f0/2

)
.

Therefore, we just have to prove that P(‖f̂m∗
1
− f ‖∞,A > f0/2) ≤ C0/n

k . First, remark that

‖f̂m∗
1
− f ‖∞,A ≤ ‖f̂m∗

1
− fm∗

1
‖∞,A + ‖fm∗

1
− f ‖∞,A.

As f ∈ B
(β̃1,β̃2)

2,∞ (A) with ¯̃
β > 1, the embedding theorem proved in [32], p. 236, implies that f belongs to B

(β∗
1 ,β

∗
2 )∞,∞ (A)

with β∗
1 = β̃1(1 − 1/ ¯̃

β) and β∗
2 = β̃2(1 − 1/ ¯̃

β). Moreover, [32] proves that there exists a function Fm∗ in the space Sm∗
of trigonometric polynomials such that∥∥Fm∗ − f 1(A)

∥∥≤ C
(
D

−β̃1
m∗

1
+ D−β̃2

n

)
and

∥∥Fm∗ − f 1(A)
∥∥∞ ≤ C

(
D

−β∗
1

m∗
1

+ D−β̃∗
2

n

)
,

where C depends on the Besov norm of f on A. Then∥∥fm1∗ − f 1(A)
∥∥∞ ≤ ‖fm1∗ − Fm∗‖∞ + ∥∥Fm∗ − f 1(A)

∥∥∞

≤ φ0

√
Dm1∗D(2)

n ‖fm1∗ − Fm∗‖ + ∥∥Fm∗ − f 1(A)
∥∥∞

≤ φ0

√
Dm1∗D(2)

n

(∥∥fm1∗ − f 1(A)
∥∥+ ∥∥f 1(A) − Fm∗

∥∥)+ ∥∥Fm∗ − f 1(A)
∥∥∞

≤ C′[√Dm1∗D(2)
n

(
D

−β̃1
m∗

1
+ D−β̃2

n

)+ D
−β∗

1
m1∗ + (D(2)

n

)−β∗
2
]
,

where C′ depends on φ0 and the Besov norm of f . But since Dm∗
1
= D(2)

n = n1/4/ log(n), this proves that ‖fm1∗ −
f 1(A)‖∞ → 0 when n → +∞ as soon as β̃1 > 2 and β̃2 > 2. So, there is n0 such that for any n ≥ n0, we have
‖fm1∗ − f ‖∞,A ≤ f0/4 and

P
(‖f̂m∗

1
− f ‖∞,A > f0/2

)≤ P
(‖f̂m∗

1
− fm∗

1
‖∞,A > f0/4

)
.
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Using (M2), we get

‖f̂m∗
1
− fm∗

1
‖∞,A ≤

√
φ1φ2Dm∗

1
D(2)

n ‖f̂m∗
1
− fm∗

1
‖.

Now we define

ϑn(h) = 1

n

n∑
i=1

∫ τ

0

(
h(Xi, y)Y

i(y) − E
(
h(Xi, y)Y

i(y)
))

dy = ∥∥√h
∥∥2
n
− ∥∥√h

∥∥2
μ
. (30)

With this notation, and recalling the definition of f̂m (see Eq. (15)), we have E(b̂j,k) = bj,k and

‖f̂m∗
1
− fm∗

1
‖2 =

∑
j,k

(b̂j,k − bj,k)
2 =
∑
j,k

ϑ2
n

(
ϕ
m∗

1
j ⊗ ψ

m∗
1

k

)
,

thus

P
(‖f̂m∗

1
− f ‖∞,A > f0/2

) ≤ P

(∑
j,k

ϑ2
n

(
ϕ
m∗

1
j ⊗ ψ

m∗
1

k

)≥ f 2
0

16φ1φ2Dm∗
1

D(2)
n

)

≤
∑
j,k

P

(∣∣ϑn

(
varphi

m∗
1

j ⊗ ψ
m∗

1
k

)∣∣≥ f0

4
√
φ1φ2Dm∗

1
D(2)

n

)
.

Note that ϑn(ϕ
m∗

1
j ⊗ ψ

m∗
1

k ) = 1
n

∑n
1(U

j,k
i − E(U

j,k
i )), where U

j,k
i = ϕj (Xi)

∫ τ

0 ψk(y)Y
i(y)dy are i.i.d. random vari-

ables. We apply the Bernstein inequality to the sum of the random variables U
j,k
i . We have

∣∣Uj,k
i

∣∣≤ ‖ϕj‖∞
∫ τ

0

∣∣ψk(y)
∣∣dy ≤ ‖ϕj‖∞

(
τ

∫ τ

0
ψ2

k (y)dy

)1/2

≤
√
τφ1Dm∗

1
:= c

and E[(Uj,k
i )2] ≤ τf1 =: v2, so the Bernstein inequality gives

P
(∣∣ϑn

(
ϕ
m∗

1
j ⊗ ψ

m∗
1

k

)∣∣≥ x
)≤ 2 exp

(
− nx2

2(v2 + cx/3)

)
with x = f0/(4

√
φ1φ2Dm∗

1
D(2)

n ) and v and c defined above. This entails

P

(∣∣ϑn

(
ϕ
m∗

1
j ⊗ ψ

m∗
1

k

)∣∣≥ f0

4
√
φ1φ2Dm∗

1
D(2)

n

)
≤ 2 exp

(
− Cn

(Dm∗
1

D(2)
n )2

)
,

where C is a constant depending on f0, f1, τ,φ1, φ2, and since Dm∗
1
= D(2)

n = n1/4/
√

log(n) we obtain

P
(
Ω�)≤ 2

√
n exp

(−C(logn)2)≤ C0

nk
,

where C0 is a constant depending on k, f0, φ1, φ2, τ and f1. This concludes the proof of Proposition 1.

6.2. Proof of Proposition 2

6.2.1. Proof of Proposition 2
One can write

E
(‖α̂m̂ − αm‖2

μ1
(
(Δ ∩ Ω)�

)) ≤ E
(‖α̂m̂ − αm‖2

μ1
(
Δ�))+ E

(‖α̂m̂ − αm‖2
μ1
(
Ω�))

≤ 2f1
[
E

1/2(‖α̂m̂‖4)(
P

1/2(Δ�)+ P
1/2(Ω�))+ ‖α‖2

A

(
P
(
Ω�)+ P

(
Δ�))].
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using assumptions (A1) and (A4). Now, assumption (A5) with k = 7 ensures that P(Ω�) ≤ C0/n
7 for any n ≥ n0. It

remains to bound both E(‖α̂m̂‖4) and P(Δ�)).

Lemma 3. Under the assumptions of Theorem 1, E(‖α̂m̂‖4) ≤ CBn
5, where CB is a constant depending on φ1, φ2, τ

and ‖α‖∞,A.

Lemma 4. Under the assumptions of Theorem 1, we have P(Δ�) ≤ C
(Δ)
k /nk for any k ≥ 1, where C

(Δ)
k is a constant

depending on k, on the basis, and on f0, f1.

The proof of Lemma 3 is given below, the proof of Lemma 4 is given in a longer version of the paper, see [11].
Using Lemmas 3 and 4 and assumption (A5), we get

E
(‖α̂m̂ − αm‖2

μ1
(
(Δ ∩ Ω)�

))≤ C1/n, (31)

where C1 is a constant depending on τ , φ1, φ2, ‖α‖∞,A, f0, f1. This concludes the proof of Proposition 2.

6.2.2. Proof of Lemma 3
We present here a short proof, we refer the reader to [11] for more details. Note that α̂m̂ is either 0 or arg mint∈Sm̂

γn(t).

In the second case, min Sp(Gm̂) ≥ max(f̂0/3, n−1/2), hence

‖α̂m̂‖2 =
∑
j,k

(
âm̂
j,k

)2 = ‖Am̂‖2 = ∥∥G−1
m̂

Υm̂

∥∥2 ≤ (min Sp(Gm̂)
)−2‖Υm̂‖2

≤ min
(
9/f̂ 2

0 , n
)1

n

n∑
i=1

∑
j

ϕ2
j (Xi)

∑
k

(∫ τ

0
ψk(z)dNi(z)

)2

,

where, for short, ϕj := ϕm̂
j and ψk := ψm̂

k . So that

‖α̂m̂‖4 ≤ n2φ2
1

(
D(1)

n

)2 D(2)
n

1

n

n∑
i=1

∑
k

(
1A1(Xi)

∫ τ

0
ψk(z)dNi(z)

)4

, (32)

see assumptions (M2) and (A2). In addition, one can write

E

((
1A1(Xi)

∫ τ

0
ψk(z)dNi(z)

)4)

≤ 23
E

((
1A1(Xi)

∫ τ

0
ψk(z)α

(
Xi, z

)
Y i(z)dz

)4)
+ 23

E

((∫ τ

0
ψk(z)dMi(z)

)4)
. (33)

Using the Bürkholder inequality, see, e.g., [28], p. 75, and the fact that the quadratic variation process of each Mi is
Ni (i = 1, . . . , n), we know that there exists a universal constant κb such that

∑
k

E

((∫ τ

0
ψk(z)dMi(z)

)4)
≤ κbE

(
Ni(τ)

∑
s:ΔNi(s) �=0

∑
k

ψ4
k (s)

)
, (34)

see [11] for more details. Notice that
∑

k ψ
4
k (s) ≤ φ2

2(D(2)
n )2, by assumption (M2) and some algebra. It now remains

to bound E[(Ni(τ ))2]. By assumptions (A3) and (A4), we have

E
[
N1(τ )

]2 ≤ 2
(
M1(τ )

)2 + 2

(∫ τ

0
α(X1, z)Y

1(z)dz

)2

2τ‖α‖∞,A + 2
(
τ‖α‖∞,A

)2
. (35)
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Combining (33), (34) and (35), we get

E

(∑
k

(∫ τ

0
ψk(z)dNi(z)

)4)
≤ 8κbφ

2
2

(
D(2)

n

)2
E
[(
N1(τ )

)2]+ 8‖α‖4∞,Aτ
2
∑
k

(∫ τ

0
ψ2

k (z)dz

)2

≤ 8κbφ
2
2

(
D(2)

n

)2
E
[(
N1(τ )

)2]+ 8‖α‖4∞,Aτ
2 D(2)

n . (36)

Then we have, by inserting (36) in (32),

E
(‖α̂m̂‖4) ≤ (φ1nD(1)

n

)2 D(2)
n E

(
1

n

n∑
i=1

∑
k

(∫ τ

0
ψk(z)dNi(z)

)4
)

≤ CBn
2(D(1)

n

)2(D(2)
n

)3 ≤ CBn
4.5 ≤ CBn

5,

where CB is a constant depending on φ1, φ2, τ and ‖α‖∞,A. We use here that D(i)
n ≤ √

n/ log(n) in the case of
localized bases [DP], [W], [H]. Note that for basis [T], under (M1), the final order is smaller (namely n3.25 instead
of n4.5). This concludes the proof of Lemma 3.

6.3. Proof of Lemma 1

Let m ∈ Mn be fixed and let � be an eigenvalue of Gm. There exists Am �= 0 with coefficients (aλ)λ such that GmAm =
�Am and thus A�

mGmAm = �A�
mAm. Now, take h :=∑λ aλϕλ ∈ Sm. We have ‖h‖2

n = A�
mGmAm and ‖h‖2

A = A�
mAm.

Thus, on Δ (see (18)):

A�
mGmAm = ‖h‖2

n ≥ 1

2
‖h‖2

μ ≥ 1

2
f0‖h‖2

A = 1

2
f0A

�
mAm.

Therefore, on Δ, for all m ∈ Mn, we have min Sp(Gm) ≥ f0/2. Moreover, on Ω , we have f0 ≥ 2f̂0/3 and
max(f̂0/3, n−1/2) = f̂0/3, for n ≥ 4/f 2

0 .

6.4. Proof of Proposition 3

Usually, in model selection (see, e.g., [29]), the penalty is obtained by using the so-called Talagrand’s deviation
inequality for the maximum of empirical processes. Since the empirical process νn(·) (see Eq. (21)) considered here
is not bounded, we cannot use directly Talagrand’s inequality. Using tools from [42], we prove Bennett and Bernstein
type inequalities for νn(·), and using a L2(μ) − L∞ generic chaining type of technique (see [2,39]), we derive an
uniform deviation.

Lemma 5. For any positive δ, ε and for any function h ∈ (L2 ∩L∞)(A), we have the following Bennett-type deviation
inequality:

P
(
νn(h) ≥ ε,‖h‖n ≤ δ

)≤ exp

(
−nδ2‖α‖∞,A

‖h‖2∞,A

g

(
ε‖h‖∞,A

‖α‖∞,Aδ2

))
,

where g(x) = (1 + x) log(1 + x) − x for any x ≥ 0. As a consequence, we obtain the following Bernstein-type in-
equalities:

P
(
νn(h) ≥ ε,‖h‖n ≤ δ

)≤ exp

(
− nε2/2

‖α‖A,∞δ2 + ε‖h‖A,∞/3

)
(37)

and

P
(
νn(h) ≥ δ

√
2‖α‖∞,Ax + ‖h‖∞,Ax, ‖h‖2

n ≤ δ2)≤ exp(−nx). (38)
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Proof. Notice that the process

nν(h, t) :=
n∑

i=1

∫ t

0
h(Xi, z)dMi(z) :=

n∑
i=1

ν(h, t)i

is a locally square integrable martingale with jumps of size less than n‖h‖∞,A. As a consequence, Corollary 2.3 of [42]
applies almost directly. However to introduce the empirical norm ‖h‖n in the deviation inequality, we re-derive the
majoration of the term

Sτ :=
n∑

i=1

∑
k≥2

ak

k!
∫ τ

0

∣∣h(Xi, z)
∣∣k dV i

k (z),

where, for all i = 1, . . . , n, V i
2 (t) := 〈Mi(t)〉 and, for k ≥ 3, we define V i

k (t) as the compensator of the k-variation
process

∑
s≤t |ΔMi(t)|k of Mi(t) (see Eq. (A3) on page 1795 in [42]).

In our case, we have, n−1∑n
i=1

∫ τ

0 h(Xi, z)
2 dV i

2 (z) ≤ ‖h‖2
n‖α‖∞,A, so that

Sτ ≤ nδ2‖α‖∞,A

‖h‖2∞,A

(
exp
(
a‖h‖∞,A

)− 1 − a‖h‖∞,A

)
,

see the proof of Corollary 2.3 of [42]. This majoration together with the proof of Lemma 2.2 in [42] yields the
Bennett-type deviation inequality in our lemma. To obtain (37) and (38), we use the fact that g(x) ≥ 3x2/(2(x + 3))
for any x ≥ 0 and g(x) ≥ g2(x) for any x ≥ 0 where g2(x) := x + 1 − √

1 + 2x and g−1
2 (y) = √

2y + y, see [6],
pp. 366–367. �

The proof of the next Proposition is given in a longer version of the paper, see [11]. It is obtained from (38) by
using a recent L2(μ)−L∞ generic chaining type of technique (see [2,39]). This method is close to other L2(μ)−L∞
chaining methods, see among others Theorem 5 in [6], Proposition 7 and Theorems 8 and 9 in [4] or Proposition 4,
pp. 282–287 in [10]. We define, for ρ > 1, the set

Δρ = {∀h ∈ Sn,
∣∣‖h‖2

n/‖h‖2
μ − 1

∣∣≤ 1 − 1/ρ
}
.

Proposition 4. Let S̄ be a D-dimensional linear subspace of L2 ∩L∞(μ), and define Bδ as the L2(μ) closed ball of
S̄ with radius δ. The L∞-index of S̄ is defined in the following way:

r̄ = 1√
D

inf
(ψλ)

sup
β �=0

‖∑λ∈Λ βλψλ‖∞,A

|β|∞ , (39)

where the infimum is taken over every orthonormal basis (ψλ)λ∈Λ of S̄, and where |β|∞ is the �∞-norm of β ∈ R
Λ.

For any x > 0 and δ > 0, we have

PΔρ

[
sup
h∈Bδ

νn(h) ≥ κ0

(
δρ

√‖α‖∞,A(D + x)

n
+ δρ r̄

D + x

n

)]
≤ e−x,

where κ0 = 11.8, and where δρ = δ(2 − 1/ρ), where ρ > 1.

Now, we can turn to the proof of Proposition 3. We denote by D(m,m′) the dimension of the linear space Sm +S′
m.

Proof of Proposition 3. In Proposition 4, take x = Dm′ +u, δ = 1, Bδ = B
μ

m,m′(0,1) = {t ∈ Sm +Sm′ : ‖t‖μ ≤ 1} and
ρ = 2 in order to get

PΔ

[
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) ≥ η2

]
≤ 2PΔ

[
sup

h∈B
μ

m,m′ (0,1)
νn(h) ≥ η

]
≤ 2e−Dm′−u,
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where

η2 = 9

4
κ2

0

(√
‖α‖∞,A

D(m,m′) + Dm′ + u

n
+ r̄m,m′

D(m,m′) + Dm′ + u

n

)2

≤ 9

2
κ2

0

(
‖α‖∞,A

D(m,m′) + Dm′ + u

n
+ 2r̄2

m,m′

(
D(m,m′) + Dm′

n

)2

+ 2r̄2
m,m′

u2

n2

)
≤ 18κ2

0

((
1 + ‖α‖∞,A

)Dm + Dm′

n
+
(‖α‖∞,Au

n
∨ r̄2

m,m′
u2

n2

))
,

where we used the fact that

r̄2
m,m′

(
D(m,m′) + Dm′

n

)2

≤ D(m,m′)
n

for n large enough (see Appendix B in [11]) and D(m,m′) ≤ Dm + Dm′ . This gives

PΔ

[
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) ≥ κ

((
1 + ‖α‖∞,A

)Dm + Dm′

n
+
(‖α‖∞,Au

n
∨ r̄2

m,m′
u2

n2

))]
≤ 2e−Dm′−u, (40)

where κ = 18κ2
0 . Now, we set p(m,m′) = κ(1 + ‖α‖∞,A)(Dm + Dm′)/n with κ = 18κ2

0 . This gives

PΔ

[
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) ≥ p

(
m,m′)+ z

]
≤
⎧⎨⎩2e−Dm′−nz/(κ‖α‖∞,A) if z ≤ κ‖α‖2∞,A/r̄

2
m,m′ ,

2e
−Dm′−n

√
z/
√
κr̄2

m,m′ if z > κ‖α‖2∞,A/r̄
2
m,m′ ,

and we obtain that

E

[(
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) − p

(
m,m′))

+1(Δ)
]

≤
∫ ∞

0
PΔ

(
sup

h∈B
μ

m,m′ (0,1)
ν2
n(h) > p

(
m,m′)+ z

)
dz

≤ 2e−Dm′
(∫ ∞

0
e−nz/(κ‖α‖∞,A) dz +

∫ +∞

0
e
−n

√
z/
√
κr̄2

m,m′ dz

)

≤ 2e−Dm′ κ

n

(
‖α‖∞,A

∫ ∞

0
e−v dv + r̄2

m,m′

n

∫ ∞

0
e−√

v dv

)

≤ 2e−Dm′ κ

n

(
‖α‖∞,A + 2r̄2

m,m′

n

)
≤ καe−Dm′

n
,

where we used the upper bounds of r̄m,m′ given in Appendix B, see [11], and where κα is a constant depending on
‖α‖∞,A, f0 and the basis. It remains to bound from above

∑
m′∈Mn

e−Dm′ . This term is at most

∑
j,k≥1

e−jk =
∞∑
j=1

∞∑
k=1

(
e−j
)k =

∞∑
j=1

e−j

1 − e−j
≤ 1

1 − e−1

∞∑
j=1

e−j = e−1

(1 − e−1)2
.

This concludes the proof of Proposition 3 when n is large enough. The statement of Proposition 3 is obvious for
small n, up to an increased constant C2. �
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Appendix A: Some useful tools from wavelet and approximation theory

A.1. The basis [W ]

Consider a pair {φ,ψ} of scaling function and wavelet, where ψ has K vanishing moments. Then φ and ψ have a
support width of at least 2K − 1, and there is a pair with minimal support, see [15]. This is the starting point of the
construction of an orthonormal wavelet basis of L

2[0,1], as proposed in [9]. Roughly, the idea is to retain the interior
scaling functions (those “far” from the edges 0 and 1), and to add adapted edge scaling functions. This is done in
[9], see Section 4 and Theorem 4.4, where the construction allows to keep the orthonormality of the system and the
number of vanishing moment unchanged, as well as the number 2j of scaling function at each resolution j (which
improves a previous construction by [31]). Indeed, if l is such that 2l ≥ 2K , consider for j ≥ l − 1:

Ψj,k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ0
j,k if j ≥ l and k = 0, . . . ,K − 1,

ψj,k if j ≥ l and k = K, . . . ,2j − K − 1,
ψ1

j,k if j ≥ l and k = 2j − K, . . . ,2j − 1,

φ0
l,k if j = l − 1 and k = 0, . . . ,K − 1,

φl,k if j = l − 1 and k = K, . . . ,2l − K − 1,
φ1
l,k if j = l − 1 and k = 2l − K, . . . ,2l − 1,

where φj,k = 2j/2φ(2j · −x) and ψj,k = 2j/2ψ(2j · −x) are the “interior” dilatations and translations of {φ,ψ}, and
φ0
j,k,ψ

0
j,k, φ

1
j,k,ψ

1
j,k are, at each resolution j , dilatations of 2K edge scaling functions and wavelets (K for each

edge). We know from [9] that the collection

W := {Ψj,k: j ≥ l − 1, k = 0, . . . ,2j − 1
}

is an orthonormal basis of L
2[0,1], and the interior and edge wavelets have K vanishing moments, which ensures that

the elements of this collection have the same smoothness as φ and ψ .

A.2. Some approximation results

An orthonormal basis of L
2[0,1]2 is simply obtained by taking tensor products of two bases [W ] for instance. If

W(1) and W(2) are two basis [W ] (we can use two different pairs {φ(1),ψ(1)} and {φ(2),ψ(2)} with possibly different
number of vanishing moments), we can simply consider

W(1) ⊗ W(2) := {Ψ (1)
j1,k1

⊗ Ψ
(2)
j2,k2

: j1 ≥ l1 − 1, j2 ≥ l2 − 1,

k1 = 0, . . . ,2j1 − 1, k2 = 0, . . . ,2j2 − 1
}
,

where Ψ
(1)
j1,k1

⊗ Ψ
(2)
j2,k2

(x1, x2) := Ψ
(1)
j1,k1

(x1)Ψ
(2)
j2,k2

(x2). We can also obtain an orthonormal basis of L
2[0,1]2 by tak-

ing tensor products of two collections among the ones considered in Section 2.4. Let us consider Sm as one of the
following:

• A space of piecewise polynomials (see Section 2.4, basis [DP]) of degrees smaller than si > βi − 1 (i = 1,2) based
on a partition with rectangles of sidelengthes 1/Dm1 and 1/Dm2 .

• A space spanned by tensors products of [W ], namely the span of the Ψ
(1)
j1,k1

⊗ Ψ
(2)
j2,k2

for j1 ∈ {l − 1, . . . ,m1},
j2 ∈ {l−1, . . . ,m2}, k1 ∈ {0, . . . ,2j1 −1}, k2 ∈ {0, . . . ,2j2 −1}, where the Ψ

(1)
j,k and Ψ

(2)
j,k have respective regularities

s1 > β1 − 1 and s2 > β2 − 1 (here Dmi
= 2mi , i = 1,2).

• The space of trigonometric polynomials with degree smaller than Dm1 in the first direction and smaller than Dm2

in the second direction.

Note that the dimension of each space is Dm1Dm2 . The following result is an easy consequence of results
by Hochmuth [19] and Nikol’skii [32] (see [23]).
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Lemma 6. Let s belong to B
β
2,∞(A) where β = (β1, β2). We consider that Sm is one of the spaces above, with

dimension Dm1Dm2 . If sm is the orthogonal projection of s on Sm, then there is a positive constant C such that

‖s − sm‖A =
(∫

A

|s − sm|2
)1/2

≤ C
[
D−β1

m1
+ D−β2

m2

]
,

where C depends on the Besov norm of s and on the basis.
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