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Abstract. In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative,
free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence,
and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define
(generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants.
We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem
and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-
cumulant formula with the use of “monotone partitions.”

Résumé. Dans cet article, nous définissons une notion de cumulants généralisés qui fournit un cadre commun pour les théories de
probabilités commutatives, libres, booléennes et monotones. L’unicité des cumulants généralisés est vérifiée pour chacune de ces
notions d’indépendance, qui par conséquent coincident avec les cumulants usuels dans les cadres commutatifs, libres et booléen.
La façon dont nous définissons ces cumulants ne nécessite ni partition de réseaux ni fonction génératrice et donne un nouveau point
de vue sur ces cumulants. Nous définissons des “cumulants monotones” et obtenons des preuves assez simples des théorémes de la
limite centrale et de la distribution de Poisson dans le contexte des probabilités monotones. De plus, nous clarifions une structure
combinatoire de la relation moments-cumulants à l’aide des “partitions monotones”.
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1. Introduction

In quantum probability theory, many different notions of independence are defined. Among them, commutative, free,
Boolean and monotone independence are considered as fundamental examples [10,14,20,21]. For commutative, free,
Boolean and many other notions of independence, the associated cumulants and their appropriate generating func-
tions have been introduced [7,18,20,22]. They are useful especially for the non-commutative versions of central limit
theorems and Poisson’s laws of small numbers.

In the present paper we will introduce generalized cumulants which allow us to treat monotone independence.
Since monotone independence depends on the order of random variables, the additivity of cumulants fails to hold.
Instead, we introduce a generalized condition and then prove the uniqueness of generalized cumulants in Section 3.
In Section 4, we show the existence of the monotone cumulants and obtain an explicit moment-cumulant formula for
monotone independence. In Section 5, we show the central limit theorem and Poisson’s law of small numbers in terms
of the monotone cumulants.

The merit of the approach in this paper is that we do not need a partition lattice structure and generating functions
to define cumulants. In addition, this approach to cumulants is also applicable to the theory of mixed cumulants for
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classical, free, Boolean and other notions of independence, which will be presented in another paper [6]. We prove
a combinatorial moment-cumulant formula in Section 6. This formula is expected to become a basis of combinatorics
in monotone probability theory.

2. Four notions of independence

Let A be a unital ∗-algebra over C. A linear functional ϕ : A → C is called a state on A if ϕ(a∗a) ≥ 0 and ϕ(1A) = 1.

Definition 2.1. (1) An algebraic probability space is a pair (A, ϕ), where A is a unital ∗-algebra and ϕ is a state
on A.

(2) If the algebra A is a C∗-algebra, we call the pair (A, ϕ) a C∗-algebraic probability space.

An element a in A is called an algebraic random variable. Quantities ϕ(a1a2 · · ·an) are called mixed moments.
The notion of independence in classical probability can be understood as a universal structure which gives a rule

for calculating mixed moments, at least from the algebraic point of view. In quantum probability, lots of different
notions of independence have been introduced. Among them, four notions mentioned below are known as fundamental
examples [14]. These four notions are important since they are “universal products” or “natural products” [3,12,13,
19].

Let (A, ϕ) be an algebraic probability space and {Aλ;λ ∈ Λ} be a family of ∗-subalgebras of A. In the following,
four notions of independence are defined as the rules for calculating mixed moments ϕ(a1a2 · · ·an), where

ai ∈ Aλi
, ai /∈ C1, λi �= λi+1,1 ≤ i ≤ n − 1, n ≥ 2.

Definition 2.2 (Commutative independence). {Aλ} is commutative independent if

ϕ(a1a2 · · ·an) = ϕ(a1)ϕ(a2 · · ·an)

holds when λ1 �= λr for all 2 ≤ r ≤ n, and otherwise, letting r be the least number such that λ1 = λr ,

ϕ(a1a2 · · ·an) = ϕ
(
a2 · · ·ar−1(a1ar)ar+1 · · ·an

)
.

Definition 2.3 (Free independence [21]). {Aλ} is free independent if

ϕ(a1a2 · · ·an) = 0

holds whenever ϕ(a1) = · · · = ϕ(an) = 0.

Definition 2.4 (Boolean independence [20]). {Aλ} is Boolean independent if

ϕ(a1a2 · · ·an) = ϕ(a1)ϕ(a2 · · ·an).

Definition 2.5 (Monotone independence [10]). Assume that the index set Λ is equipped with a linear order <. {Aλ}
is monotone independent if

ϕ(a1 · · ·ai · · ·an) = ϕ(ai)ϕ(a1 · · ·ai−1ai+1 · · ·an)

holds when i satisfies λi−1 < λi and λi > λi+1 (one of the inequalities is eliminated when i = 1 or i = n).

A system of algebraic random variables {xλ} are called commutative/free/Boolean/monotone independent if {Aλ}
are commutative/free/Boolean/monotone independent, where Aλ denotes the algebra generated by xλ.
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3. Generalized cumulants

Let (A, ϕ) be an algebraic probability space. We define Mn(X) := ϕ(Xn). Important properties of cumulants {Kn}n≥1

for any one of commutative, free and Boolean independence are summarized as follows [7]:

(K1) Additivity: If X, Y ∈ A are (commutative, free or Boolean) independent,

Kn(X + Y) = Kn(X) + Kn(Y ) (3.1)

for any n ≥ 1.
(K2) Homogeneity: for any λ > 0 and any n,

Kn(λX) = λnKn(X). (3.2)

(K3) For any n, there exists a polynomial Qn of n − 1 variables such that

Mn(X) = Kn(X) + Qn

(
K1(X), . . . ,Kn−1(X)

)
, (3.3)

where Mn(X) is the nth moment of X.

We introduce generalized cumulants which allow us to treat monotone independence. Since monotone independence
depends on the order of random variables, the additivity of cumulants fails to hold. Instead, we introduce a generalized
condition:

(K1′) If X(1),X(2), . . . ,X(N) are independent, identically distributed to X in the sense of moments (i.e., Mn(X) =
Mn(X

(i)) for all n), we have

Kn(N.X) := Kn

(
X(1) + · · · + X(N)

) = NKn(X). (3.4)

Here we understand that Kn(0.X) := δn0. We note that the notation N.X is inspired by the “dot product” or “random
sum” operation in the theory of the classical umbral calculus [4,15]. (Probably the notion above will be used as a
foundation for “the non-commutative umbral calculus.”)

We show the uniqueness of generalized cumulants w.r.t. the notion of each independence.

Theorem 3.1. Generalized cumulants satisfying (K1′), (K2) and (K3) are unique and the nth cumulant is given by
the coefficient of N in Mn(N.X).

Proof. By (K3) and (K1), we obtain

Mn(N.X) = Kn(N.X) + Qn

(
K1(N.X), . . . ,Mn−1(N.X)

)
= NKn(X) + Qn

(
NK1(X), . . . ,NKn−1(X)

)
. (3.5)

Therefore, Mn(N.X) is a polynomial of N and Mk(X) (1 ≤ k ≤ n). By condition (K2), the polynomial Qn does
not contain linear terms and a constant for any n; hence the coefficient of the linear term N is nothing but Kn(X).
Uniqueness of cumulants also follows from the above observation. More precisely, if another cumulants K ′

n are given,
there exist polynomials Q′

n in the condition (K3) for K ′
n. Then we have

Mn(N.X) = NKn(X) + Qn

(
NK1(X), . . . ,NKn−1(X)

)
= NK ′

n(X) + Q′
n

(
NK ′

1(X), . . . ,NK ′
n−1(X)

)
.

This is an identity of polynomials of N ; therefore, the coefficients of N coincide and Kn(X) = K ′
n(X) holds. �

From now on, we use the word “cumulants” instead of “generalized cumulants” to label Kn above.
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4. The monotone cumulants

The Cauchy transformation of a random variable X is defined by

GX(z) :=
∞∑

n=0

Mn(X)

zn+1
.

We consider this in the sense of a formal power series if the series is not absolutely convergent. Muraki proved in [10]
that GX+Y (z) = GX( 1

GY (z)
) holds if X and Y are monotone independent. We give a simple derivation of the formula.

Proposition 4.1. For monotone independent random variables X and Y , it holds that

Mn(X + Y) =
n∑

k=0

∑
j0+j1+···+jk=n−k,

0≤jl ,0≤l≤k

Mk(X)Mj0(Y ) · · ·Mjk
(Y )

= Mn(X) + Mn(Y ) +
n−1∑
k=1

∑
j0+j1+···+jk=n−k,

0≤jl ,0≤l≤k

Mk(X)Mj0(Y ) · · ·Mjk
(Y ). (4.1)

Proof. (X + Y)n can be expanded as

(X + Y)n = Xn + Yn +
n−1∑
k=1

∑
j0+j1+···+jk=n−k,

0≤jl ,0≤l≤k

Y j0XYj1X · · ·XYjk . (4.2)

Taking the expectation of the above equality, we obtain (4.1). �

Corollary 4.2. There exists a polynomial P M
n of 2n − 2 variables for any n ≥ 1 such that

Mn(X + Y) = Mn(X) + Mn(Y ) + P M
n

(
M1(X), . . . ,Mn−1(X),M1(Y ), . . . ,Mn−1(Y )

)
(4.3)

holds if X and Y are monotone independent.

Remark 4.3. A similar result is valid for any other independence: there exists a polynomial P C
n (resp., P F

n ,P B
n ) such

that (4.3) holds, with P M
n replaced by another polynomial P C

n (resp., P F
n ,P B

n ), if X and Y are commutative (resp.,
free and Boolean) independent.

By this corollary, we obtain the proposition below.

Proposition 4.4. Mn(N.X) is a polynomial of N (without a constant term) for any n ≥ 0.

Proof. We use induction w.r.t. n. For n = 1, it is obvious from linearity of expectation. Suppose the proposition holds
for n ≤ l. From (4.3), we obtain

�Ml+1(N.X) = Ml+1(X) + P M
n

(
M1(X), . . . ,Ml(X),M1

(
(N − 1).X

)
, . . . ,Ml

(
(N − 1).X

))
.

Here, �Ml+1(N.X) := Ml+1(N.X) − Ml+1((N − 1).X). By the assumption of induction, P M
l+1(M1(X), . . . ,Ml(X),

M1((N −1).X), . . . ,Ml((N −1).X)) is a polynomial of N . Then Ml+1(N.X) is a polynomial of N (without a constant
term) because �Ml+1(N.X) is a polynomial of N and Ml+1(0.X) = 0. �
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As the proposition above holds, we may define mn(t) = Mn(t.X) by replacing N with t ∈ R. Note that this is a
polynomial w.r.t. t and that mn(1) = Mn(X). Moreover, we easily obtain

mn(t + s) = mn(t) + mn(s) +
n−1∑
k=1

∑
j0+j1+···+jk=n−k,

0≤jl ,0≤l≤k

mk(t)mj0(s) · · ·mjk
(s) (4.4)

from the definition of mn(t) and (4.1).
Now we come to define the main notion.

Definition 4.5. Let rn = rn(X) be the coefficient of N in Mn(N.X) (or the coefficient of t in mn(t)). We call rn the nth
monotone cumulant of X.

Remark 4.6. (1) A result analogous to Corollary 4.2 is also valid for any one of commutative, free and Boolean inde-
pendence as mentioned in Remark 4.3, and therefore, we can prove Proposition 4.4 for any independence. This enables
us to define cumulants as the coefficient of N in Mn(N.X) also for commutative, free and Boolean independence. This
is a simple definition of cumulants for each independence without use of generating functions.

(2) There is an interesting formula called Good’s formula in commutative, free and Boolean cases [7]. Lehner de-
fined mixed cumulants for the three notions of independence in terms of Good’s formula. The monotone independence
is, however, non-commutative and Lehner’s approach cannot be directly applied to monotone cumulants.

The monotone cumulants satisfy the axioms (K1′) and (K2) because Mn(N.(M.X)) = Mn((NM).X) and
Mn(N.(λX)) = Mn(λ(N.X)). The former equality is a consequence of the associativity of monotone independence
or monotone convolution. We prepare the following proposition for the moment-cumulant formula.

Proposition 4.7. The equations below hold:

dm0(t)

dt
= 0,

(4.5)
dmn(t)

dt
=

n∑
k=1

krn−k+1mk−1(t) for n ≥ 1,

with initial conditions m0(0) = 1 and mn(0) = 0 for n ≥ 1.

Proof. From (4.4), we obtain

mn(t + s) − mn(t) = mn(s) +
n−1∑
k=1

∑
j0+j1+···+jk=n−k,

0≤jl ,0≤l≤k

mk(t)mj0(s) · · ·mjk
(s). (4.6)

By definition,

mi(s) = ris + s2(· · ·) (4.7)

holds. Comparing the coefficients of s in (4.6), we obtain the conclusion. �

We show that {Mn(X)}n≥0 and {rn(X)}n≥1 are connected with each other by a formula.

Theorem 4.8. The following formula holds:

Mn(X) =
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

1

k!
k∏

l=1

il−1ril−il−1(X). (4.8)



The monotone cumulants 1165

Proof. This formula is obtained directly by (4.5). We shall use the equations in the integrated forms

m0(t) = 1,
(4.9)

mn(t) =
n∑

k=1

krn−k+1

∫ t

0
mk−1(s)ds for n ≥ 1.

Then we have

mn(t) =
n∑

k1=1

k1rn−k1+1

∫ t

0
mk1−1(t1)dt1

=
n∑

k1=1

k1−1∑
k2=1

k1k2rn−k1+1rk1−k2

∫ t

0
dt1

∫ t1

0
dt2 mk2−1(t2)

=
n∑

k1=1

k1−1∑
k2=1

k2−1∑
k3=1

k1k2k3rn−k1+1rk1−k2rk2−k3

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 mk3−1(t3)

= · · · .
When this calculation ends, we obtain the formula

mn(t) =
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

tk

k!
k∏

l=1

il−1ril−il−1 ,

where il := kn−l . Putting t = 1, we have (4.8). �

Remark 4.9. This formula has been already obtained in the case of the monotone Poisson distribution [1,2].

Corollary 4.10. The monotone cumulants rn = rn(X) satisfy (K3).

Hence, we obtain the main theorem.

Theorem 4.11. rn are the unique (generalized) cumulants for monotone independence.

5. Limit theorems in monotone probability theory

As applications of monotone cumulants, we give short proofs of limit theorems which have been obtained by combi-
natorial arguments in [11].

Theorem 5.1. Let (A, φ) be a C∗-algebraic probability space. Let X(1), . . . ,X(N), . . . be identically distributed,
monotone independent self-adjoint random variables with φ(X(1)) = 0 and φ((X(1))2) = 1. Then the probability

distribution of XN := X(1)+···+X(N)√
N

converges weakly to the arcsine law with mean 0 and variance 1.

Proof. By the properties (K1′) and (K2), we immediately obtain r1(XN) = 0, r2(XN) = 1 and rn(XN) =
N−(n−2)/2rn(X

(1)) → 0 as N → ∞. By (K3), Mn(XN) converges to Mn characterized by the monotone cumu-
lants (r1, r2, r3, r4, . . .) = (0,1,0,0, . . .). Since only r2(= 1) is nonzero in (4.8), we can calculate the moments as
M2n−1 = 0 and M2n = (2n−1)!!

n! for all n ≥ 1, where the double factorial (2n−1)!! is defined by 1 ·3 · · · (2n−3)(2n−1)

for n ≥ 1. The limit measure is the arcsine law with mean 0 and variance 1:

∫ √
2

−√
2

x2n

π
√

2 − x2
dx = (2n − 1)!!

n! .
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The moment problem of the arcsine law is determinate and therefore the distribution of XN converges to the arcsine
law weakly (see Theorem 4.5.5 in [5]). �

We can show Poisson’s law of small numbers similarly in the setting of a triangular array.

Theorem 5.2. Let X
(n)
N (1 ≤ n ≤ N,1 ≤ N < ∞) be self-adjoint random variables in a C∗-algebraic probability

space such that:

(1) for each N , X(n)
N (1 ≤ n ≤ N) are identically distributed, monotone independent self-adjoint random variables;

(2) NMk(X
(1)
N ) → λ > 0 as N → ∞ for all k ≥ 1.

Then the distribution of XN := X
(1)
N + · · · + X

(N)
N converges weakly to the monotone Poisson distribution with

parameter λ.

Proof. By properties (K1′) and (K3), rn(XN) = Nrn(X
(1)
N ) = NMn(X

(1)
N ) + o(1) → λ for n ≥ 1. Here we used

the fact that the polynomial in (K3) does not contain linear terms of Mk(X) (1 ≤ k ≤ n − 1). Therefore, the limit
moment Mn is characterized by the monotone cumulants (r1, r2, r3, . . .) = (λ,λ,λ, . . .). From (4.8) we have

Mn =
n∑

k=1

λk

k!
∑

1=i0<i1<···<ik−1<ik=n+1

i0i1 · · · ik−1.

It is known that this gives a determinate moment sequence and the limit distribution is called the monotone Poisson
distribution (see [1,2,10,11]). Therefore, the distribution of XN converges weakly to the monotone Poisson distribu-
tion. �

If we formulate the the above theorems in terms of monotone convolution � of probability measures, we can
include probability measures with possibly noncompact supports. We now explain this.

Definition 5.3 ([10]). The monotone convolution μ � ν of probability measures μ and ν is define by the relation

Hμ�ν(z) = Hμ ◦ Hν(z), Im z �= 0,

where Hμ is defined by Hμ(z) = [∫
R

μ(dx)
z−x

]−1. Hμ is called the reciprocal Cauchy transform of μ.

Then the definition of cumulants rn(μ) of a probability measure μ with finite moments is basically the same as
that of Definition 4.5; the nth monotone cumulant rn(μ) is defined as the coefficient of N in mn(μ

�N).
The dilation operator Dλ is defined so that

∫
R

f (x)Dλμ(dx) = ∫
R

f (λx)μ(dx) holds for all bounded continuous
function f on R.

Theorem 5.4. (1) Let μ be a probability measure on R with finite moments of all orders, mean 0 and variance 1.
Then the probability measure D1/

√
Nμ � · · · � D1/

√
Nμ (N times) converges weakly to the arcsine law with mean 0

and variance 1.
(2) Let μ(N) be probability measures on R with finite moments of all orders. We assume that NMk(μ

(N)) → λ > 0
as N → ∞ for every k ≥ 1. Then μN := μ(N) � · · · � μ(N) (N times) converges to the monotone Poisson distribution
with parameter λ.

The proof is totally identical to those of Theorems 5.1 and 5.2 if we replace respectively the moments and monotone
cumulants of random variables with those of probability measures. This is because the convergence of moments
implies the weak convergence of probability measures, if the limit moments are determinate; one need not assume
that the initial sequences of the probability measures D1/

√
Nμ and μ(N) have determinate moments (see Theorem 4.5.5

in [5]). Therefore, the proof of Theorems 5.4 is identical to those of Theorems 5.1 and 5.2.
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6. Moment-cumulant formula by monotone partitions

In the classical, free and Boolean cases, the moment-cumulant formulae are described with the use of the structures of
partitions. Let P (n) be the set of all partitions of {1, . . . , n} [17], let N C(n) be the set of all non-crossing partitions of
{1, . . . , n} [18] and let I(n) be the set of all interval partitions [20]. We denote the number of the elements in a set V

by |V |. For a sequence of real numbers {tn}n≥1 and π = {V1, . . . , Vl} ∈ P (n) we define t (π) := ∏l
j=1 t|Vj |. Then the

moment-cumulant formulae are written in the forms

mn =
∑

π∈P (n)

r(π) (classical case), (6.1)

mn =
∑

π∈N C(n)

r(π) (free case), (6.2)

mn =
∑

π∈I(n)

r(π) (Boolean case). (6.3)

These sets of partitions appear also as the highest coefficients of the decomposition rules of “universal products” in
the classification of independence [3,19]. Connections between the formulae (6.1)–(6.3) and the highest coefficients
seem to be not known yet.

Muraki has defined the notion of linearly ordered partitions and classified quasi-universal products. Let (π,λ)

be a pair which consists of π ∈ P (n) and a linear ordering λ of the blocks of π . It is useful to denote (π,λ) by
π = {V1 < V2 < · · · < Vl}. He has introduced the sets L P(n), L N C(n) and L I(n), where L denotes the structure
of linear orderings. We note that |L P (n)| = ∑n

k=1 k!|{π ∈ P (n); |π | = k}|, for instance. A linearly ordered partition
can be visualized by a diagram with blocks labeled by natural numbers. For instance, Fig. 1 describes the partition
{{2,11} < {3,8,10} < {9} < {7} < {1} < {4,5,6}}. He has defined the set of monotone partitions by

M(n) := {
(π,λ);π ∈ N C(n), if V,W ∈ π and V is in the inner side of W , then V >λ W

}
(6.4)

which appears as the highest coefficients of the decomposition rules of monotone product. Figure 1 is an example of
a monotone partition.

Later Sałapata and Lenczewski have introduced the same partitions from a different viewpoint. They have defined
the notion of m-monotone in [8] as an interpolation between monotone and free probabilities, and used a generalization
of monotone partitions to compute the moments of limit distributions of central limit theorem and Poisson’s law of
small numbers. The m = 0 case corresponds to the monotone partitions.

We have discovered that the monotone partitions play crucial role in the context of monotone cumulants as follows.

Theorem 6.1. Let rn be the monotone cumulants of a probability measure with finite moments of all orders. Then the
formula

mn =
∑

(π,λ)∈M(n)

r(π)

|π |! (6.5)

holds.

Fig. 1. An example of a monotone partition.
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Before proving this, we note that this formula can be understood naturally since the formulae (6.1)–(6.3) are
rewritten in the forms

mn =
∑

(π,λ)∈L P (n)

r(π)

|π |! (classical case), (6.6)

mn =
∑

(π,λ)∈L N C(n)

r(π)

|π |! (free case), (6.7)

mn =
∑

(π,λ)∈L I(n)

r(π)

|π |! (Boolean case). (6.8)

Proof of Theorem 6.1. Let π ∈ P (n). We call a block V ∈ π a block of interval type if V is of such a form as V =
{j, j +1, . . . , j +k} for 1 ≤ j ≤ n, k ≥ 0 (see Fig. 2). In other words, V is a block of interval type if V does not contain
other blocks in the inner side of itself. Let k ≥ 1 be an integer. For a given monotone partition π = {V1 < · · · < Vk} ∈
M(n) (with |π | = k) we can define a map Tk : {V1 < · · · < Vk} 
→ (|V1|, . . . , |Vk|). Conversely, for a given sequence of
integers (n1, . . . , nk) with n1 + · · · + nk = n and nj ≥ 1, we need to count the number |T −1

k (n1, . . . , nk)| to prove the
moment-cumulant formula. We now consider a procedure for producing all monotone partitions in T −1

k (n1, . . . , nk).
Before the definition of the procedure, we note important properties of monotone partitions. Let {V1 < · · · < Vk} be
a monotone partition. First we note that Vk is a block of interval type since Vk does not contain other blocks in the
inner side of itself. Second, for any 1 ≤ j ≤ k, Vj can be seen as a block of interval type if we forget the higher
blocks Vj+1, . . . , Vk . For instance, Fig. 3 is a diagram in Fig. 1 without the blocks {9}, {7}, {1}, {4,5,6}. Then the
block {3,8,10} can be seen as a block of interval type in Fig. 3. Taking this property into consideration, we consider
the following procedure. The key point is to choose the blocks in order from the highest one to the lowest one.

(1) Choose 1 ≤ k ≤ n and (n1, . . . , nk) with n1 + · · · + nk = n and nj ≥ 1 and fix them.
(2) Choose the position of the block Vk of interval type (with |Vk| = nk) among the n elements and remove the

block Vk . Then there remain n − nk elements.
(3) Repeat the procedure (2) similarly for the block Vk−1 of interval type. Then the remaining elements are n − nk −

nk−1.
(4) Similarly, we choose the blocks Vk−2, . . . , V1. These blocks, equipped with the linear ordering V1 < · · · < Vk ,

determine a monotone partition (π,λ).

We explain the above through an example. We put n = 8, k ≥ 3, nk = 3 and nk−1 = 2. In step (2), there are six
possibilities to choose Vk in Fig. 4. For instance, when we choose Vk = {2,3,4}, after the removal of Vk we choose
Vk−1 in step (3). Then there are four possibilities to choose Vk−1.

Fig. 2. Two examples of blocks of interval type.

Fig. 3. A diagram in Fig. 1 without the blocks {9}, {7}, {1}, {4,5,6}.
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Fig. 4. An example of the steps (2) and (3).

It is not difficult to see that every linearly ordered partition in T −1
k (n1, . . . , nk) appears just once in the above

procedures (2)–(4). Moreover, we can count the number as follows. In step (2) there are n − nk + 1 ways to choose
the position of Vk . In step (3) there are n − nk − nk−1 + 1 ways to choose the position of Vk . Similarly, we can count
the number of all possible ways to choose the blocks Vk, . . . , V1, which is equal to (n − nk + 1)(n − nk − nk−1 +
1) · · · (n − ∑k

j=1 nj + 1). Therefore, we have

∑
(π,λ)∈M(n)

r(π)

|π |! =
n∑

k=1

∑
n1+···+nk=n,

nj ≥1,1≤j≤k

1

k!

(
k∏

m=1

(
n −

k∑
j=m

nj + 1

))
rn1 · · · rnk

=
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

i1i2 · · · ik−1

k! ri1−i0 · · · rik−ik−1 , (6.9)

where we have put im := n − ∑k
j=m+1 nj + 1. The last expression is equal to mn by Theorem 4.8. �

Remark 6.2. The moment-cumulant formula includes the cases of the normalized arcsine law (r1, r2, r3, r4, . . .) =
(0,1,0,0, . . .) and the monotone Poisson distribution (r1, r2, r3, r4, . . .) = (λ,λ,λ,λ, . . .) obtained in [8,9] as m = 0
case. See Theorems 7.1 and 8.1 in [8]. The prototype of the combinatorial discussion in the proof above is in [16].
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