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Abstract. The integrated Brownian motion is sometimes known as the Langevin process. Lachal studied several excursion laws
induced by the latter. Here we follow a different point of view developed by Pitman for general stationary processes. We first
construct a stationary Langevin process and then determine explicitly its stationary excursion measure. This is then used to provide
new descriptions of Itô’s excursion measure of the Langevin process reflected at a completely inelastic boundary, which has been
introduced recently by Bertoin.

Résumé. L’intégrale du mouvement Brownien est parfois appelée processus de Langevin. Lachal a étudié plusieurs lois
d’excursions qui lui sont associées. Nous suivons ici un point de vue différent, développé par Pitman, pour les processus station-
naires. Nous construisons d’abord un processus de Langevin stationnaire avant d’en déterminer explicitement la mesure d’excursion
stationnaire. Ce travail permet alors de fournir une nouvelle description de la mesure d’excursion d’Itô du processus de Langevin
réfléchi sur une barrière inélastique, introduit récemment par Bertoin.
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1. Introduction

The Langevin process in a non-viscous fluid is simply defined as the integrated Brownian motion, that is

Yt = Y0 +
∫ t

0
Ws ds,

where W is a Brownian motion started an arbitrary v ∈ R (so v is the initial velocity of Y ). The Langevin process is not
Markovian, but the pair Z = (Y,W), which is sometimes known as the Kolmogorov process, enjoys the Markovian
property. We refer to Lachal [7] for a rich source of information on this subject.

Lachal [7] has studied in depth both the “vertical” and “horizontal” excursions of the Brownian integral. The pur-
pose of this work is to follow a different (though clearly related) point of view, which has been developed in a very
general setting by Pitman [11]. Specifically, we start from the basic observation that the Lebesgue measure on R

2

is invariant for the Kolmogorov process, so one can work with a stationary version of the latter. The set of times at
which the stationary Kolmogorov process visits {0} × R forms a random homogeneous set in the sense of Pitman,
and we are interested in the excursion measure Qex that arises naturally in this setting. We shall show that Qex has a
remarkably simple description and fulfills a useful invariance property under time-reversal. We then study the law of
the excursions of the Langevin process away from 0 conditionally on its initial and final velocity, in the framework
of Doob’s h-transform. Finally, we apply our results to investigate the Langevin process reflected at a completely
inelastic boundary, an intriguing process which has been studied recently by Bertoin [2,3]. In particular we obtain
new expressions for the Itô measure of its excursions away from 0.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/09-AIHP322
mailto:emmanuel.jacob@normalesup.org


870 E. Jacob

2. Preliminaries

In this section we introduce some general or intuitive notations and recall some known results that we will use later
on. We write Y for the Langevin process, W for its derivative, and Z for the Kolmogorov process (Y,W), which,
unlike Y , is Markovian.

The law of the Kolmogorov process with initial condition (x,u) will be written P
+
x,u, and the expectation under

this measure E
+
x,u. Here, the exponent + refers to the fact that the time parameter t is nonnegative. We denote by

pt (x,u;dy,dv) the probability transitions of Z, and by pt (x,u;y, v) their density. For x,u, y, v ∈ R, we have

pt (x,u;y, v)dudv := pt(x,u;dy,dv) := P
+
x,u(Zt ∈ dy dv).

These densities are known explicitly and given by

pt (x,u;y, v) =
√

3

πt2
exp

[
− 6

t3
(y − x − tu)2 + 6

t2
(y − x − tu)(v − u) − 2

t
(v − u)2

]
. (2.1)

One can check from the formula that the following identities are satisfied

pt (x,u;y, v) = pt (0,0;y − x − ut, v − u), (2.2)

pt (x,u;y, v) = pt (−x,−u;−y,−v), (2.3)

pt (x,u;y, v) = pt (x, v;y,u). (2.4)

A combination of these formulas gives

pt (x,u;y, v) = pt (y,−v;x,−u), (2.5)

that we will use later on. See, for example, the Eqs (1.1), p. 122, and (2.3), p. 128, in [7], for references.
The semigroup of the Kolmogorov process will be written Pt . If f is a nonnegative measurable function, we have

Ptf (x,u) := E
+
x,u

(
f (Yt ,Wt )

) =
∫

R2
dy dv pt (x,u;y, v)f (y, v).

The law of the Kolmogorov process with initial distribution given by the Lebesgue measure λ on R
2 will be

written P
+
λ . It is given by the expression

P
+
λ =

∫
R2

λ(dx,du)P+
x,u.

Although λ is only a σ -finite measure, the expression above still defines what we call a stochastic process in a
generalized sense (this is a common generalization, though). We still use all the usual vocabulary, such as the law
of the process, the law of the process at the instant t , even though this laws are now σ -finite measures and not
probabilities.

Finally, we recall the scaling property of the Langevin process

E
+
x,u

(
F

(
(Yt )t≥0

)) = E
+
k3x,ku

(
F

((
k−3Yk2t

)
t≥0

))
, (2.6)

where F is any nonnegative measurable functional.

3. Stationary Kolmogorov process

The stationary Kolmogorov process is certainly not something new for the specialists, as it is known that λ is an
invariant measure for the Kolmogorov process. This section still gives, for the interested reader, a rigorous introduction
to the stationary Kolmogorov process, including a duality property that allows us to consider the effect of time-
reversal, which will be a central point of this paper.
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3.1. Stationarity and duality lemmas

We write λ for the Lebesgue measure on R
2.

Lemma 1. For any nonnegative measurable functions f,g on R
2 and every t ≥ 0, we have

E
+
λ

(
f (Yt ,Wt )

) = E
+
λ

(
f (Y0,W0)

)
and

E
+
λ

(
f (Y0,W0)g(Yt ,Wt )

) = E
+
λ

(
f (Yt ,−Wt)g(Y0,−W0)

)
.

This lemma states the (weak) stationarity of the measure λ and a duality property of the process under this measure.

Proof. Let f be a nonnegative measurable function on R
2, and t be a positive real number.

E
+
λ

(
f (Yt ,Wt )

) :=
∫

dx duE
+
x,u

(
f (Yt ,Wt )

)
=

∫
dx du

∫
dy dv pt (x,u;y, v)f (y, v)

=
∫ ∫

dx dudy dv pt (y,−v;x,−u)f (y, v) by (2.5)

=
∫

dy dv f (y, v)

∫
dx dupt (y,−v;x,u)

=
∫

dy dv f (y, v)

= E
+
λ

(
f (Y0,W0)

)
,

where in the fourth line we made the simple change of variables u → −u.
For the second part, let f and g be two nonnegative measurable functions, and t a positive real number.

E
+
λ

(
f (Y0,W0)g(Yt ,Wt )

)
=

∫
dx duf (x,u)

∫
dy dv pt (x,u;y, v)g(y, v)

=
∫ ∫

dx dudy dv f (x,−u)g(y,−v)pt (x,−u;y,−v)

=
∫

dy dv g(y,−v)

∫
dx duf (x,−u)pt (y, v;x,u) by (2.5) again

= E
+
λ

(
g(Y0,−W0)f (Yt ,−Wt)

)
.

The lemma is proved. �

We immediately deduce the following corollary.

Corollary 1. For any t > 0, we have:

(1) Stationarity: The law of the process (Yt+s ,Wt+s)s≥0 under P
+
λ is P

+
λ .

(2) Duality: the laws of the processes (Yt−s ,−Wt−s)0≤s≤t and (Ys,Ws)0≤s≤t under P
+
λ are the same.
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This corollary provides a probabilistic interpretation of the stationarity and the duality property, here stated in a
strong sense. Strong sense means that we consider here the whole trajectory and not merely the two-dimensional
time-marginals. We thus see that the stationarity is a property of invariance of the process by time-translation, and that
the duality is a property of symmetry of the process by time-reversal.

Proof. As the processes we consider are continuous, their laws are determined by their finite-dimensional marginals.
The strong stationarity is a simple consequence from the weak stationarity and the Markov property, while the strong
duality needs a bit more work. Let n ∈ N, let 0 = t0 ≤ t1 ≤ · · · ≤ tn be real numbers and let f0, f1, . . . , fn be n + 1
nonnegative measurable functions. We have to prove that the following equality is satisfied (recall Z = (Y,W))

E
+
λ

[
f0(Z0)f1(Zt1) · · ·fn(Ztn)

] = E
+
λ

[
fn(Z0)fn−1(Ztn−tn−1) · · ·f1(Ztn−t1)f0(Ztn)

]
. (3.1)

This is checked by induction on n. For n = 1, this is nothing else than the weak duality. We suppose now that the
identity (3.1) is true for any integer strictly smaller than n. We have

E
+
λ

[
f0(Z0)f1(Zt1) · · ·fn(Ztn)

]
= E

+
λ

[
f0(Z0) · · ·fn−1(Ztn−1)E

+
Ztn−1

[
fn(Ztn−tn−1)

]]
= E

+
λ

[
E

+
Z0

[
fn(Ztn−tn−1)

]
fn−1(Z0)fn−2(Ztn−1−tn−2) · · ·f0(Ztn−1)

]
= E

+
λ

[
fn(Ztn−tn−1)E

+
Z0

[
fn−1(Z0)fn−2(Ztn−1−tn−2) · · ·f0(Ztn−1)

]]
= E

+
λ

[
fn(Z0)E

+
Ztn−tn−1

[
fn−1(Z0)fn−2(Ztn−1−tn−2) · · ·f0(Ztn−1)

]]
= E

+
λ

[
fn(Z0)fn−1(Ztn−1) · · ·f0(Ztn)

]
.

To get the second equality, we used (3.1) with the functions f0, . . . , fn−2 and f̃n−1 : (x,u) → fn−1(x,u) ×
E

+
x,u[fn(Ztn−tn−1)]. To get the fourth equality, we use the weak duality with times 0 and tn − tn−1.

This completes our proof. �

3.2. Construction of the stationary Kolmogorov process

We are ready to construct the stationary Kolmogorov process with time parameter t ∈ R. First, we construct a process
indexed by R with a position (x,u) at time 0. The process (Zt )t∈R = (Yt ,Wt )t∈R is such that (Yt ,Wt )t∈R+ has the
law P

+
x,u and (Y−t ,−W−t )t∈R+ is an independent process and of law P

+
x,−u. The law of the process (Zt )t∈R will be

denoted by Px,u.

Definition 1. The stationary Kolmogorov process is the generalized process of law Pλ given by

Pλ =
∫

dx duPx,u. (3.2)

Lemma 1 and Corollary 1 still hold if we drop the superscript +. We stress that the stationary Kolmogorov process
has a natural filtration given by Ft = σ({Zs}−∞<s≤t ) = σ({Ys}−∞<s≤t ). If (Zt )t∈R = (Yt ,Wt )t∈R, we call conjugate
of Z and write Z for the process (Zt )t∈R = (Yt ,−Wt)t∈R.

Lemma 2. The stationary Kolmogorov process has the following properties:

1. Under Pλ, The processes Z and (Z−t )t∈R have the same law. That is, the law Pλ is invariant by time-reversal and
conjugation.

2. Under Pλ, the processes (Yt ,Wt )t∈R and (Yt0+t ,Wt0+t )t∈R have the same law for any t0 ∈ R. That is, the law Pλ

is invariant by time-translation.
3. The process Z is a stationary Markov process under Pλ.
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Proof. (1) Let us consider Z a process of law Px,u. It is immediate from the definition that the conjugate of the
time-reversed process, that is (Z−t )t∈R, is a process of law Px,−u. The result follows.

(2) Let us write P
t0
λ for the law of the process (Yt0+t ,Wt0+t )t∈R under Pλ, and let us suppose in this proof that t0 is

positive. We want to prove that P
t0
λ and Pλ are equal. It is enough to prove that for any suitable functional f , g and h,

the expectations of the variable

f
(
(Yt )t≤−t0

)
g
(
(Yt )−t0≤t≤0

)
h
(
(Yt )0≤t

)
under these two measures are equal1. On the one hand, we have

E
t0
λ

[
f

(
(Yt )t≤−t0

)
g
(
(Yt )−t0≤t≤0

)
h
(
(Yt )0≤t

)]
= Eλ

[
f

(
(Yt )t≤0

)
g
(
(Yt )0≤t≤t0

)
h
(
(Yt )t0≤t

)]
= Eλ

[
EY0,W0

[
f

(
(Yt )t≤0

)]
EY0,W0

[
g
(
(Yt )0≤t≤t0

)
EYt0 ,Wt0

[
h
(
(Yt )t0≤t

)]]]
= Eλ

[
EY0,W0

[
f

(
(Yt )t≤0

)]
g
(
(Yt )0≤t≤t0

)
EYt0 ,Wt0

[
h
(
(Yt )t0≤t

)]]
= Eλ

[
F(Y0,W0)g

(
(Yt )0≤t≤t0

)
H(Yt0 ,Wt0)

]
,

where we wrote F(x,u) = Ex,u[f ((Yt )t≤0)] and H(x,u) = Ex,u[h((Yt )t0≤t )]. To get the third line we use the inde-
pendence of (Yt )t≤0 and (Yt )t≥0 conditionally on (Y0,W0) and the Markov property of (Yt )t≥0 at time t0.

On the other hand, we have

Eλ

[
f

(
(Yt )t≤−t0

)
g
(
(Yt )−t0≤t≤0

)
h
(
(Yt )0≤t

)]
= Eλ

[
EY−t0 ,W−t0

[
f

(
(Yt )t≤0

)]
g
(
(Yt )−t0≤t≤0

)
EY0,W0

[
h
(
(Yt )0≤t

)]]
= Eλ

[
F(Y−t0 ,W−t0)g

(
(Yt )−t0≤t≤0

)
H(Y0,W0)

]
= Eλ

[
H(Y0,W0)g

(
(Yt0−t )0≤t≤t0

)
F(Yt0 ,Wt0)

]
,

where F and H are defined above and we used the time-reversal invariance property for Pλ to get the last line.
Now, the fact that the two expressions we get are equal is a direct consequence of the duality property stated in a

strong sense.
(3) In this third statement the important word is the word Markov, not the word stationary. Indeed the Markov

property for negative times is not immediate in the definition of Pλ. But the Markov property for positive times is, and
this combined with the stationarity immediately gives the Markov property for any time. �

In the following, we will speak about the stationary Kolmogorov process for the process (Y,W) under Pλ, and
about the stationary Langevin process for the process Y under Pλ.

Before speaking about excursions of these processes, let us notice that we could have constructed the stationary
Kolmogorov process starting from time −∞ with using just the stationarity (and not the duality). The way to do it
is to consider the family of measures (tP+

λ )t≤0, where t
P

+
λ is the measure of the Kolmogorov process starting from

the measure λ at time t . The stationarity gives us that these measures are compatible. We thus can use Kolmogorov
extension theorem and construct the measure starting from time −∞.

In this construction, though, the nontrivial fact is that the process is invariant by time-reversal, and we need the
duality property to prove it.

4. Excursions of the stationary Langevin process

Until now we considered the Langevin – or the Kolmogorov – process on an infinite time interval. In this section we
will deal with the same process killed at certain hitting times. For the sake of convenience, we use here the notation Y

for the canonical smooth process and W for its derivative.

1We take only functionals of Y and not of W . This is in order to make the notations simpler and has no incidence, as W can be recovered from Y

by taking derivatives.
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4.1. Stationary excursion measure

We will now study the stationary excursion measure for a stationary process given by Pitman in [11].
If t is a time such that Yt = 0 and Wt �= 0, we will write et or (et

s)0≤s≤ζ for the excursion of Y away from 0 started
at time t , and ζ for its lifetime, that is, ζ(et ) := inf{s > 0: Yt+s = 0} and et

s := Yt+s for 0 ≤ s ≤ ζ .

It belongs to the set of vertical excursions E0, that is, the set of continuous functions t → Yt , defined on R+, that
have a càdlàg right-derivative W , such that Y starts from zero (Y0 = 0), Y leaves immediately zero (Y has a strictly
positive lifetime ζ(Y )), and dies after its first return to 0. This definition is inspired by the terminology of Lachal [7],
except that he considers the set of vertical excursions for the two-dimensional process.

We write P
∂
x,u for the law of the Langevin process starting with position x and velocity u �= 0, and killed at its first

return-time to 0. So it is a law on the set of vertical excursions, and under P
+
0,u, the excursion starting at time 0 is

written e0 and has law P
∂
0,u.

Considering the stationary Langevin process and the homogeneous set {t, Yt = 0}, we define in the sense of Pit-
man [11] the stationary excursion measure.

Definition 2. We call stationary excursion measure of the stationary Langevin process, and we write Qex , the measure
given by

Qex(•) = Eλ

[
#
{
0 < t < 1, Yt = 0, et ∈ •}]

. (4.1)

We stress that this measure does not give a finite mass to the set of excursions with lifetime greater than 1, contrarily
to the Itô excursion measure of a Markov process. By a slight abuse of notation, when A is an event, we will write
Qex(1A) for Qex(A).

We stress that for convenience we focus here and thereafter on the Langevin process; clearly this induces no
loss of generality as the Kolmogorov process can be recovered from the Langevin process by taking derivatives. For
instance, the law of the two-dimensional process (Y,W) under Qex is equal to the stationary excursion measure for
the stationary Kolmogorov process and the homogeneous set {t, (Yt ,Wt ) ∈ {0} × R}.

Our main result is the following:

Theorem 1.

(1) There is the identity

Qex(Y ∈ de) =
∫ +∞

u=−∞
|u|P∂

0,u(Y ∈ de)du. (4.2)

(2) The measure Qex is invariant by time-reversal (at the lifetime): Namely, the measure of Y under Qex is the
same as that of Ŷ under Qex , where Ŷ is defined by

Ŷs = Yζ−s for 0 ≤ s ≤ ζ.

Let us adopt the notation Q̂ex for the law of Ŷ under Qex. The second part of the theorem can be written
Q̂ex = Qex .

Let a Langevin process start from location 0 and have initial velocity distributed according to |u|du. Then the
distribution of its velocity at the first instant when it returns to 0 is again |u|du.

This remarkable fact can be proved directly as follows. We use the formula found by McKean [10], which gives,
under P0,u, the joint density of ζ and Wζ , and which specifies the density of Wζ . For u > 0 and v ≥ 0, we have

P0,u(ζ ∈ ds,−Wζ− ∈ dv) = ds dv
3v

π
√

2s2
exp

(
−2

v2 − uv + u2

s

)∫ 4uv/s

0
e−3θ/2 dθ√

πθ
, (4.3)

and in particular

P0,u(−Wζ− ∈ dv) = 3

2π

u1/2v3/2

u3 + v3
dv. (4.4)
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This formulas naturally still hold when you replace P0,u by P
∂
0,u and Wζ by Wζ− .

In the calculation, we actually just need the second formula. Let v be any positive real number. We have

Qex(Wζ− ∈ dv) =
∫ 0

u=−∞
|u|P∂

0,u(Wζ− ∈ dv)du

=
∫ +∞

u=0
|u|P0,u(−Wζ− ∈ dv)du

= v dv

∫ +∞

u=0

3

2π

u3/2v1/2

u3 + v3
du

= v dv.

The integral gives one as it is the integral of the density of −Wζ under P0,v , thanks to (4.4). The case v negative is
similar and gives us Qex(Wζ− ∈ dv) = −v dv, as claimed.

Proof of Theorem 1. (1) This proof is mainly a combination of the work of Pitman [11] translated to the Langevin
process, and of known results on the Langevin process, results that we can find in [7].

We recall and adapt some of their notations.
In [7], we consider the Langevin process on positive times, and the last instant that the process crosses zero before

a fixed time T is written τ−
T . In [11], we write Gu for the last instant before u that the stationary process crosses zero.

The variable Gu can take finite strictly negative values, while the variable τ−
T cannot. If T is a positive time, then we

can write τ−
T = 1GT ≥0GT .

In [11], the part (iv) of the theorem (p. 291), rewritten with our notations, states2

Pλ

(−∞ < G0 < 0, eG0 ∈ de
) = Qex(de)ζ(e). (4.5)

In [7], the Lemma 2.5, p. 129, states an important and simple relation, that can be written

P
∂
0,v

(
(Yt ,Wt ) ∈ dx du

)|v|dv dt = Px,−u(ζ ∈ dt,−Wζ ∈ dv)dx du, (4.6)

and that is a main tool used to prove the Theorem 2.6. The points (1) and (4) of this theorem state

P
+
x,u

{
(τ−

T ,Wτ−
T
) ∈ ds dv

}
/ds dv = |v|ps(x,u,0, v)P+

0,v{ζ > T − s}, (4.7)

E
+
x,u

[
F

(
τ−
T , e

τ−
T

Z

)|(τ−
T ,Wτ−

T
) = (s, v)

] = E
+
0,v

[
F

(
s, e0

Z

)|ζ > T − s
]
, (4.8)

where F is any suitable functional, and et
Z denotes the excursion of the two-dimensional process started at a time t

such that Yt = 0.
Let us now begin. From (4.5), it is sufficient to prove the following

Pλ

(−∞ < G0 < 0, eG0 ∈ de
) = ζ(e)

∫ +∞

u=−∞
|u|P∂

0,u(Y ∈ de)du. (4.9)

We start from

Pλ

(−∞ < G0 < 0, eG0 ∈ de
) = lim

T →∞ Pλ

(−T < G0 < 0, eG0 ∈ de
)
,

= lim
T →∞ Pλ

(
0 < GT < T, eGT ∈ de

)
,

= lim
T →∞

∫
dx duPx,u

(
0 < GT < T, eGT ∈ de

)
.

2Actually, the article of Pitman states Pλ(−∞ < Gu < u, eGu ∈ de) = Qex(de)ζ(e) for any u ∈ R.
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Hence we have

Pλ

(−∞ < G0 < 0, eG0 ∈ de
) = lim

T →∞

∫
dx duPx,u

(
0 < τ−

T < T , eτ−
T ∈ de

)
.

Let us write the term in the limit∫
dx duPx,u

(
0 < τ−

T < T , eτ−
T ∈ de

)
=

∫
dx du

∫
Px,u

(
(τ−

T ,Wτ−
T
) ∈ ds dv

)
Px,u

(
eτ−

T ∈ de|(τ−
T ,Wτ−

T
) = (s, v)

)
,

=
∫

dx du

∫
P

+
x,u

(
(τ−

T ,Wτ−
T
) ∈ ds dv

)
P

+
x,u

(
eτ−

T ∈ de|(τ−
T ,Wτ−

T
) = (s, v)

)
,

=
∫

dx du

∫
ds dv |v|ps(x,u,0, v)P+

0,v{ζ > T − s}P+
0,v

(
e0 ∈ de|ζ > T − s

)
,

where the integrals cover (x,u) ∈ R
2, (s, v) ∈ [0, T ] × R. In the last line we used (4.7), and (4.8) with the simple

function F(s, (Y,W)) = 1Y∈de .
By Fubini, the last expression is also equal to∫

dv |v|
∫

ds

(∫
dx dups(x,u,0, v)

)
P

+
0,v

(
e0 ∈ de, ζ > T − s

)
=

∫
dv |v|

∫ T

0
ds P

∂
0,v

(
Y ∈ de, s > T − ζ(e)

)
=

∫
dv |v|P∂

0,v(Y ∈ de)
(
ζ(e) ∧ T

)
,

where we get the second line because∫
dx dups(x,u,0, v) =

∫
dx dups(0,−v;x,−u) = 1.

Now, letting T go to ∞ gives us (4.9) and completes our proof.
(2) We use the definition of Qex by the Eq. (4.1). The time-translation and time-reversal invariance of Eλ gives us

the time-reversal invariance of Qex . �

We point out that the measure Qex has a remarkably simple potential, given by∫
R+

Qex

(
(Yt ,Wt ) ∈ •)

dt = λ(•). (4.10)

Proof. This is a consequence of (4.2) and (4.6), that gives∫
R+

Qex

(
(Yt ,Wt ) ∈ dx du

)
dt =

∫
R+

dt

∫ +∞

−∞
|v|dv P

∂
0,v

(
(Yt ,Wt ) ∈ dx du

)
= dx du

∫
R+

∫ +∞

−∞
Px,−u(ζ ∈ dt,−Wζ ∈ dv)

= dx du. �

Finally, let us notice that we get a scaling property for the stationary excursion measure, which is a simple conse-
quence from (2.6) and (4.2),

Qex

(
F

(
(Yt )t≥0

)) = k−2Qex

(
F

((
k−3Yk2t

)
t≥0

))
, (4.11)
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where F is any nonnegative measurable functional.

4.2. Conditioning and h-transform

In the preceding section we defined the stationary excursion measure, we described it with a simple formula and we
proved its invariance by time-reversal. This is a global result for this measure. Now we would like to provide a more
specific description according to the starting and ending velocities of the excursions. That is, we would like to define
and investigate the excursion measure conditioned to start with a velocity u and end with a velocity −v, that would
be a probability measure written Qu;v .

Let us first notice that the measure Qex(W0 ∈ du,−Wζ− ∈ dv) has support {(u, v) ∈ R
2, uv ≥ 0}. It has a density

with respect to the Lebesgue measure, that we write ϕ(u, v). This density is given, for u > 0, v > 0 or u < 0, v < 0,
by

ϕ(u, v) = 1

dudv

(|u|P∂
0,u(−Wζ− ∈ dv)du

)
= 3

2π

|u|3/2|v|3/2

|u|3 + |v|3 .

Definition 3. We write (Qu;v)uv>0 for a version of the conditional law of Qex given the initial speed is u and the final
speed −v. That is, for f : R2 → R and G : E0 → R nonnegative measurable functionals, we have

Qex

(
f (W0,−Wζ−)G

) =
∫

Qu;v(G)f (u, v)ϕ(u, v)dudv. (4.12)

It is clear that Q−u;−v is the image of Qu;v by the symmetry Y → −Y , for almost all (u, v), so that in the following
we will only be interested in Qu;v for u > 0, v > 0.

From the time-reversal invariance of the stationary excursion measure, i.e Q̂ex = Qex , we deduce immediately the
following time-reversal property of the conditioned measures

Q̂u;v = Qv;u for a.a. (u, v) ∈ (R+)2. (4.13)

Recall from the formula (4.2) that |u|P∂
0,u is a version of the conditional law of Qex given the initial speed u. It

follows that we have the following formula

P
∂
0,u = |u|−1

∫
Qu;vϕ(u, v)dv for almost all u > 0. (4.14)

The measure |u|−1ϕ(u, v)dv is the law of −Wζ− under P
∂
0,u. Hence Qu;v is a version of the conditional law of P

∂
0,u

given −Wζ− = −v. Before going on, we need precise informations on the variable −Wζ− and its law, under different
initial conditions. The results we need are gathered in the following lemma. We take the notations R

∗+ for R+ \ {0},
and D for the domain ((R∗+) × R)

⋃
({0} × (R∗+)).

Lemma 3. • For any (x,u) in D, the density of the law of the variable −Wζ− under P
∂
x,u with respect to the Lebesgue

measure on (0,∞) exists and is written hv(x,u) for v > 0. We have

hv(x,u) = v

[
Φ0(x,u;−v) − 3

2π

∫ ∞

0

μ3/2

μ3 + 1
Φ0(x,u;μv)dμ

]
, (4.15)

where Φ0(x,u;v) := Φ(x,u;0, v) and

Φ(x,u;y, v) :=
∫ ∞

0
pt(x,u;y, v)dt.
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For x = 0, this formula can be simplified as

hv(0, u) = 3

2π

u1/2v3/2

u3 + v3
. (4.16)

• The function (v, x,u) → hv(x,u) is continuous on E := R
∗+ × D. The function Φ0 is continuous and differen-

tiable on D × R. Moreover, we have the following equivalence for v in the neighborhood of zero

hv(x,u) ∼ h0(x,u)v3/2, (4.17)

where h0(x,u) is given by

h0(x,u) = 3

π

∫
α−1/2 ∂Φ0

∂v
(x,u;α)dα.

For x = 0, this formula can be simplified as

h0(0, u) = 3u1/2

2π
.

This is a technical lemma, with a long proof that we report in the Appendix.
The idea is now, thanks to this lemma, to prove that the law P

∂
0,u conditioned on the event −Wζ− ∈ [v, v + η], has

a limit when η goes to zero. This limit is necessarily Qu;v a.s. Hence we get an expression for Qu;v , that will happen
to be a bi-continuous version.

Let us fix u,v, t > 0, and let φt be an Ft -measurable nonnegative functional. We have

lim
η→0

E
∂
0,u

(
φt1ζ>t | − Wζ− ∈ [v, v + η]) = lim

η→0

E
∂
0,u(φt1ζ>t,−Wζ−∈[v,v+η])

P
∂
0,u(−Wζ− ∈ [v, v + η])

= E
∂
0,u

(
φt1ζ>t lim

η→0

P
∂
Yt ,Wt

(−Wζ− ∈ [v, v + η])
P

∂
0,u(−Wζ− ∈ [v, v + η])

)
.

The limit exists and is equal to the quotient of hv(Yt ,Wt ) by hv(0, u). Hence, we get

Qu;v(φt1ζ>t ) = E
∂
0,u

(
φt1ζ>t

hv(Yt ,Wt )

hv(0, u)

)
(4.18)

for any t > 0, any Ft -measurable functional φt .
From the continuity of h we deduce that Qu;v is jointly continuous in u,v, (u, v) ∈ (R∗+)2. Furthermore, thanks to

(4.17), when v goes to zero, the quotient goes to h0(Yt ,Wt )

h0(0,u)
. We deduce that the measures Qu;v have a weak limit when

v goes to zero, that we write Qu;0. We have

Qu;0(φt1ζ>t ) = E
∂
0,u

(
φt1ζ>t

h0(Yt ,Wt )

h0(0, u)

)
. (4.19)

This shows that these measures Qu;v make appear h-transforms of the usual probability transitions of the Langevin
process E0,u. The h-transforms are common when dealing with conditioned Markov process, see, for example, [1],
and in particular the Chapters 4.7 and 6.4 for the connection with time-reversal.

Informally, in the case of two processes in duality, changing the initial condition for one process corresponds
to changing the probability transitions of the second process into an h-transform of these probability transitions.
The h-transform means the measure “conditioned” with using a certain harmonic function h, that we can write ex-
plicitly.

We finish this section with giving the scaling property of the measures Qu;v , that follows for example from (2.6)
and (4.12).
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Proposition 1. For any u > 0, v ≥ 0, we have

Qu;v
(
F

(
(Yt )t≥0

)) = Qku;kv

(
F

((
k−3Yk2t

)
t≥0

))
, (4.20)

where F is any nonnegative measurable functional.

5. Reflected Kolmogorov process

We begin this section on a new basis, with introducing a process that has been studied recently. This is only in a second
part that the definitions that we developed before will be used for that process.

5.1. Preliminaries on the reflected Kolmogorov process

The question of the existence of the Langevin process reflected at a completely inelastic boundary was raised by
Maury in 2004 in [9]. The answer came in [2], where Bertoin proves the existence of that process and its uniqueness
in law. We also mention another paper [3] that studies the problem of the reflected Langevin process from the point of
view of stochastic differential equations.

Definition 4. We say that (X,V ) is a Kolmogorov process reflected at a completely inelastic boundary (or just re-
flected Kolmogorov process) if it is a càdlàg strong Markov process with values in R+ × R which starts from (0,0),
such that V is the right-derivative of X, and also∫ ∞

0
1{Xt=0} dt = 0 and (Xt = 0 ⇒ Vt = 0) a.s.,

and which “evolves as a Kolmogorov process when X > 0,” in the following sense:

For every stopping time S in the natural filtration (Ft )t≥0 of X, conditionally on XS = x > 0 and VS = v, the shifted process (XS+t )t≥0
stopped when hitting 0 is independent of FS , and has the distribution of a Langevin process started with velocity v from the location x and
stopped when hitting 0.

We say that X is a Langevin process reflected at a completely inelastic boundary (or just reflected Langevin process)
if (X,V ) is a reflected Kolmogorov process.

In the following we choose the vocabulary and the notations of the one-dimensional process, that is the Langevin
process, to state our results.

In his paper Bertoin gives an explicit construction of a reflected Langevin process: Starting from a Langevin
process Y , he first defines a process X̃ using Skorokhod’s reflection

X̃t = Yt − inf
0≤s≤t

Ys .

Let us notice that an excursion of that process does take off with zero velocity. However, that process cannot be the
right one because∫ ∞

0
1{X̃t=0} dt = ∞ a.s,

while we require∫ ∞

0
1{X̃t=0} dt = 0 a.s.

Further, it is easy to check that (X̃, Ṽ ) fails to be Markovian. But Bertoin then introduces a change of time, with
writing

Tt := inf

{
s ≥ 0:

∫ s

0
1
X̃u>0 du > t

}
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and

Xt := X̃ ◦ Tt .

This process X is a reflected Langevin process. The same paper also proves3 the uniqueness of the law of a reflected
Langevin process, so that we will speak about the reflected Langevin process. In the rest of the paper, we will concen-
trate our attention on what is one of the first steps in the study of this process, that is to say its Itô excursion measure.
We recall that it is unique up to a multiplicative constant.

5.2. Itô excursion measure of the reflected Langevin process

In this section we will thus deal with the excursions of the reflected Langevin process. For the sake of convenience,
we use here the notation X for the canonical smooth process, V for its derivative.

We consider the “set of ends of vertical excursions” E , that is the set of excursions, except that we do not require
anymore that the excursions should start from position 0. This set, endowed with the supremum norm of the process
and its derivative, is a metric space including E0. In the following, we write F : E → R for a general continuous
bounded functional which is identically 0 on some neighborhood of the path X ≡ 0.

We are ready to state a first formula, given4 by Bertoin [2].

Proposition 2. The following limit

n
(
F(X)

) := lim
x→0+x−1/6

E
∂
x,0

(
F(X)

)
,

exists and defines uniquely a measure on E with n(0) = 0, and which support is included in E0. The measure n is an
Itô excursion measure of the reflected Langevin process.

This is to say, we get an expression for the Itô excursion measure of the reflected Langevin process as a limit of
known measures.

This result resembles the classical approximation of the Itô measure of the absolute value of the Brownian motion
by x−1

P
∂
x , where P

∂
x is the law of the Brownian motion starting from x and killed when hitting 0.

As a consequence of this expression, we can give the scaling property of this measure, also mentioned in [2],
Proposition 2.

Corollary 2. We have

n
(
F

(
(Xt )t≥0

)) = k1/2n
(
F

((
k−3Xk2t

)
t≥0

))
for any nonnegative measurable functional F .

Proof. Let F be a general continuous bounded functional which is identically 0 on some neighborhood of the path
e ≡ 0. The proposition gives us

n
(
F

(
(Xt )t≥0

)) = lim
x→0+x−1/6

E
∂
x,0

(
F

(
(Xt )t≥0

))
= k1/2 lim

x→0+
(
k3x

)−1/6
E

∂
k3x,0

(
F

((
k−3Xk2t

)
t≥0

))
by (2.6)

= k1/2n
(
F

((
k−3Xk2t

)
t≥0

))
.

The result follows. �

3The idea of the above construction is still a central point of the proof.
4Actually Bertoin states this result in a slightly different form, as the set of excursions he considers is not the exactly same as the one we consider
here. Nevertheless, his argument still works in our settings.
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We give here two new expressions of the Itô excursion measure of the reflected process. The first one is similar to
the one above, expressed as a limit. But it is a limit of laws of the process starting with a zero position and a small
speed, instead of a zero speed and a small position.

Theorem 2. The following limit

n′(F(X)
) = lim

u→0+u−1/2
E

∂
0,u

(
F(X)

)
,

exists and defines uniquely a measure on E with n′(0) = 0, and which support is included in E0. We have

n′ =
(

3

2

)1/6 1√
π




(
1

3

)
n.

This formula is useful because we have more explicit densities for the law P0,u than for the law Px,0 (cf. (4.3) and
(4.4)). For example, we can easily infer the following corollaries:

Corollary 3. The joint density of ζ and Vζ− under n′ is given by

n′(ζ ∈ ds, |Vζ−| ∈ dv
) = 6

√
2v3

π3s5
exp

(
−2

v2

s

)
ds dv.

Remark. Taking the second marginal of this density, this gives the n′-density of −Vζ− ,

n′(|Vζ−| ∈ dv
) = 45

8π
v−3/2 dv.

This improves Corollary 2(ii) in [2].

Proof of Corollary 3. It is easy to check, for example, from the corresponding property for the free Langevin process,
that |Vζ−| �= 0 n′-almost surely. But X → (ζ(X), |Vζ−|) is continuous on |Vζ−| �= 0 thus we can use the limit formula
to get the density

n′(ζ ∈ ds, |Vζ−| ∈ dv
) = lim

u→0
u−1/2

P
∂
0,u

(
ζ ∈ ds, |Vζ−| ∈ dv

)
.

Now, using (4.3), we can calculate

u−1/2

ds dv
P

∂
0,u

(
ζ ∈ ds, |Vζ−| ∈ dv

)
= u−1/2 3v

π
√

2s2
exp

(
−2

u2 − vu + v2

s

)∫ 4uv/s

0
e−3θ/2 dθ√

πθ

∼ 3vu−1/2

π
√

2s2
exp

(
−2

v2

s

)∫ 4uv/s

0

dθ√
πθ

∼ 6
√

2

π3/2

√
v3

s5
exp

(
−2

v2

s

)
,

so that we have, as stated

n′(ζ ∈ ds, |Vζ−| ∈ dv
) = c

√
v3

s5
exp

(
−2

v2

s

)
ds dv. �
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Corollary 4. The measure h0(x,−u)dx du, x ≥ 0, u ∈ R, is invariant for the reflected Kolmogorov process.

Proof. It is well known that the occupation measure under the Itô’s excursion measure

μ(dx,du) = n′
(∫

[0,ζ ]
1Zt∈(dx,du) dt

)
is an invariant measure for the underlying Markov process (cf. Theorem 8.1 in [4]).

This enables us to calculate

μ(dx,du) = lim
v→0

v−1/2
E

∂
0,v

(∫
[0,ζ ]

1Zt∈(dx,du) dt

)
.

= lim
v→0

v−1/2
∫

R+
P

∂
0,v

(
Zt ∈ (dx,du)

)
dt

= dx du lim
v→0

v−3/2 Px,−u(−Vζ− ∈ dv)

dv
by (4.6)

= h0(x,−u)dx du by Lemma 3. �

Proof of Theorem 2. In order to prove n′ = c1n, it is enough to prove that n′(F (X)) = c1n(F (X)), for F a Lipschitz
bounded functional. The idea of this proof will be to compare the quantities

u−1/2
E

∂
0,u

(
F(X)

)
and u−1/2

E
∂
0,u

(
F ◦ Θτ0(X)

)
,

where Θ is the usual translation operator, defined by

Θt

(
(Xs)s≥0

) := (Xt+s)s≥0,

and τx is the hitting time of x for the velocity process.
First we will control the difference, cutting the space on two events, the event that τ0 is “small,” on which we will

use that F is Lipschitz, and the event that τ0 is “big,” that has a small probability. Next we will use a Markov property
to see that the quantity u−1/2

E
∂
0,u(F ◦ Θτ0(X)) can be compared to n(F ).

As a preliminary we prove some estimates:
• We write Pu for the law of the Brownian motion started from u. We write τx for both the hitting time of x for the

velocity process under P
∂
0,u, and the hitting time of x for the Brownian motion under Pu. Let a be a constant. A simple

calculation based on the scaling property of the Brownian motion and on the reflection principle gives

u−1/2
P

∂
0,u(τ0 ≥ au) = u−1/2Pu(τ0 ≥ au)

= u−1/2P0(τa−1/2u1/2 ≥ 1)

= u−1/2P
(

N (0,1) ∈ [−a−1/2u1/2, a−1/2u1/2])
≤ a−1/2

√
2

π
,

where N (0,1) is a Gaussian variable with mean zero and variance 1.
• Let us write h for the supremum of the absolute value of the velocity process. Let b be a constant. We have

u−1/2
P

∂
0,u(h ≥ b) ≤ u−1/2

P
∂
0,u(τb < τ0) + u−1/2

P
∂
0,u(h ◦ Θτ0 ≥ b)

≤ u−1/2
P0,u(τb < τ0) + u−1/2

∫
R+

P0,u(Yτ0 ∈ dx)P∂
x,0(h ≥ b)

≤ u1/2

b
+ u−1/2

∫
P0,u(Yτ0 ∈ dx)x1/6f (x),
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where the function f :x → x−1/6
P

∂
x,0(h ≥ b) is bounded and has limit f (0) = n(h ≥ b) at zero, thanks to Proposi-

tion 2. In the sum, the second term is thus equal to

u−1/2
E0,u

(
X1/6

τ0
f (Xτ0)

) = u−1/2
E0,1

((
u3Xτ0

)1/6
f

(
u3Xτ0

))
= E0,1

(
X1/6

τ0
f

(
u3Xτ0

))
−→
u→0

E0,1
(
X1/6

τ0

)
f (0),

where in the second line we used the usual scaling property for the Langevin process.
We write c1 = E0,1(X

1/6
τ0 ), so that we have the bound

u−1/2
P

∂
0,u(h ≥ b) ≤ u1/2

b
+ c1n(h ≥ b).

We would like to prove that c1 is finite. We can actually calculate it explicitly. Indeed, thanks to Lefebvre [8] we
know that the density of the variable Xτ0 under P0,1 is given by

P0,1(Xτ0 ∈ dξ) = 
(2/3)

31/622/3π
ξ−4/3e−2/(9ξ) dξ,

so that we can calculate

c1 =
∫

R+
ξ1/6

P0,1(Xτ0 ∈ dξ)

= 
(2/3)

22/331/6π

∫
R+

ξ−7/6e−2/(9ξ) dξ

= 
(2/3)

2π31/6

∫
R+

(
9

2

)1/6

x−5/6e−x dx

= 31/6

25/6π



(
2

3

)



(
1

6

)

=
(

3

2

)1/6 1√
π




(
1

3

)
,

Let us notice that this is the constant that appears in the theorem.
• We are ready to tackle the proof of this theorem. We write l for the Lipschitz constant of F . We have

u−1/2
E

∂
0,u

(∣∣F(e) − F ◦ Θτ0(e)
∣∣1τ0<au,h<b

) ≤ u−1/2l(au)b

≤ abu1/2l

and

u−1/2
E

∂
0,u

(∣∣F(X) − F ◦ Θτ0(X)
∣∣1τ0≥au or h≥b

)
≤ (

2 sup(F )
)(√

2

π
a−1/2 + u1/2

b
+ c1n(h ≥ b)

)
,

thus we deduce

lim sup
u→0

u−1/2
E

∂
0,u

(∣∣F(X) − F ◦ Θτ0(X)
∣∣) ≤ (

2 sup(F )
)(√

2

π
a−1/2 + c1n(h ≥ b)

)
.
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The lim sup is bounded by this expression, a and b being any positive constant. Letting a and b go to infinity shows
that

lim
u→0

u−1/2
E

∂
0,u

(∣∣F(X) − F ◦ Θτ0(X)
∣∣) = 0.

• Next, we just need to prove that u−1/2
E

∂
0,u(F ◦ Θτ0(X)) has a limit when u goes to zero, and that this limit is

c1n(F (X)), in order to get that n′ is well defined and equal to c1n.
The calculation is similar to the one above, that we did with 1h≥b instead of F . Here again, the Markov property

gives us

u−1/2
E

∂
0,u

(
F ◦ Θτ (X)

) = u−1/2
∫

P0,u(Xτ ∈ dx)x1/6fF (x),

where the function fF :x → x−1/6
E

∂
x,0(F (X)) is bounded and has limit fF (0) = n(F (X)) at zero. We thus have

u−1/2
E

∂
0,u

(
F ◦ Θτ (X)

) −→
u→0

E0,1
(
Y 1/6

τ

)
fF (0) = c1n

(
F(X)

)
,

and the theorem is proved. �

The second new expression we get is different, this time the measure is given as a mixture and not as a limit. Recall
that the probability measure Qu;0 has been defined in (4.19).

Proposition 3. The measure n′ is also given by the expression

n′(F(X)
) = 3

2π

∫
R+

u−3/2Qu;0
(
F(X̂)

)
du, (5.1)

where (X̂t )0≤t≤ζ is defined by X̂t = Xζ−t .

The price to pay is that we need to consider the time-reversed excursions and to use the laws Qu;0 instead of P
∂
0,u.

That is, the probability transitions of the excursions are no more the ones of the Langevin process, killed at zero, they
become the h0-transforms of these, as written in (4.19).

Proof. This proposition is a consequence of the material developed in Section 4.2. Indeed, we have

n′(F(X)
) = lim

u→0
u−1/2

E
∂
0,u

(
F(X)

)
= lim

u→0
u−3/2

∫
R+

Qu;v
(
F(X)

)
ϕ(u, v)dv from (4.14)

= lim
u→0

∫
R+

3

2π

v3/2

u3 + v3
Qv;u

(
F(X̂)

)
dv

=
∫

R+

3

2π
v−3/2Qv;0

(
F(X̂)

)
dv,

where in the third line, we wrote the expression of ϕ and used (4.13). �

Appendix

Proof of Lemma 3. The first part of the lemma is just a summary of known results, the case x = 0 is nothing else that
the formula (4.4) written for the killed process (as mentioned just after the formula), while the general case is given
by Gor′kov in [5] and Lachal in [6]. In this article Lachal also underlines that taking x = 0 in (4.15) does yield (4.16).
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For the second part we first prove that Φ0 and h are well defined and continuous5. For this we just give rough
bounds and use the theorem of dominated convergence and the theorem of derivation under the integral. The main
technical difficulty stems from the number of variables.

We have

pt(x,u;0, v) =
√

3

πt2
exp

(−R(x,u, v, t)
)
,

where R(x,u, v, t) is the quotient:

R(x,u, v, t) = 6

t3
(x + tu)2 + 6

t2
(x + tu)(v − u) + 2

t
(v − u)2

= 1

t3

[
1

2
(3x + tu + 2tv)2 + 3

2
(x + tu)2

]
.

The quotient R is nonnegative.
Let (x0, u0, v0) be in D × R. We search for a neighborhood of (x0, u0, v0) (in D × R) on which the integrand is

bounded by an integrable function (of t ). This will prove that Φ0 is well defined on this neighborhood and continuous
at (x0, u0, v0). We distinguish two cases:

(1) x0 �= 0: Then R(x,u, v, t) is equivalent to
6x2

0
t3 in the neighborhood of (x0, u0, v0,0), thus it is bounded below

by
5x2

0
t3 on a V ×]0, ε], where V is a neighborhood of (x0, u0, v0) and ε a strictly positive number.

On V , pt (x,u;0, v) is bounded above by the function

1]0,ε](t)
√

3

πt2
exp

(
−5x2

t3

)
+ 1]ε,∞[(t)

√
3

πt2
,

which is integrable.
(2) x0 = 0: Then u0 > 0. On a neighborhood V of (0, u0, v0) we have u >

2u0
3 , thus we have

R(x,u, v, t) ≥ 3

2t3
(x + tu)2 ≥ u2

0

t
,

and thus the function pt (x,u;0, v) is bounded above by
√

3

πt2
exp

(
−u0

t

)
,

which is integrable.
We thus proved the continuity of Φ0. A similar method proves that Φ0 is infinitely differentiable. To get a continuity

result on h, we will need some bounds for Φ0(x,u, v), but only for v > 0.

For v > 0, we have R(x,u, v, t) ≥ 3v2

2t
, thus we have

Φ0(x,u, v) ≤
∫ ∞

0

√
3

πt2
exp

(
−3v2

2t

)
dt

≤ 2
√

3

3π
v−2.

If (x0, u0, v0) is a given point in E = R
∗+ × D, then in the neighborhood of this point we have v >

v0
2 and we deduce

μ3/2

μ3 + 1
Φ0(x,u,μv) ≤ 8

√
3

3π

μ−1/2v−2

μ3 + 1
,

5Note that Φ(x,u;y, v) = Φ0(x − y,u;v).
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which, considered as a function of μ, is integrable on R+.
The function h is thus well defined and continuous.
We now study the behavior of h when v is small:

1

v
hv(x,u) = Φ0(x,u, v) − 3

2π

∫ ∞

0

μ3/2

μ3 + 1
Φ0(x,u,μv)dμ

=
[
Φ0(x,u,0) − 3

2π

∫ ∞

0

μ3/2

μ3 + 1
Φ0(x,u,μv)dμ

]
+ O(v)

= E
[
Φ0(x,u,0) − Φ0(x,u, vξ)

] + O(v),

where ξ is a random variable with law the probability measure 3
2π

μ3/2

μ3+1
dμ. We next observe that

E
[
Φ0(x,u,0) − Φ0(x,u, vξ)

] = −
∫

R+
P(vξ ≥ μ)

∂Φ0

∂v
(x,u,μ)dμ

= v1/2
∫

R+
fv(μ)dμ,

where we have written fv(μ) = −v−1/2
P(ξ ≥ μv−1)

∂Φ0
∂v

(x,u,μ).
But the probability P(ξ ≥ a) is equivalent to 3

πa−1/2 when a goes to infinity, and bounded by the same 3
πa−1/2

for any a. On the one hand we deduce that the continuous functions fv converge weakly to the function f0 :μ →
− 3

πμ−1/2 ∂Φ0
∂v

(x,u,μ) when v goes to zero, on the other hand that |fv| ≤ |f0|. We just need to prove that f0 is
integrable with respect to the Lebesgue measure. We have

−∂Φ0

∂v
(x,u, v) = −

∫
R+

∂pt

∂v
(x,u;0, v)dt

=
∫

R+

(
6x

t2
+ 2u

t
+ 4v

t

)
pt(x,u;0, v)dt

=
∫

R+

2
√

3

πt4
(3x + tu + 2tv) exp

(−R(x,u, v, t)
)

dt.

On the one hand, we have∣∣∣∣∂Φ0

∂v
(x,u, v)

∣∣∣∣ ≤ 3x

∫
R+

2
√

3

πt4
exp

(
− 3

2t3
(x + tu)2

)
|u + 2v|

∫
R+

2
√

3

πt3
exp

(
− 3

2t3
(x + tu)2

)
≤ (A + Bv),

where A and B depend only on x and u.
On the other hand, we have∣∣∣∣∂Φ0

∂v
(x,u, v)

∣∣∣∣ ≤ 6
√

3x

π

∫
R+

1

t4
exp

(
−3v2

2t

)
+ (2u + 4v)

√
3

π

∫
R+

1

t3
exp

(
−3v2

2t

)
≤ Cv−7 + D(u + 2v)v−5,

where C and D are constants.
Let us gather the results. The function |f0| is bounded by a O(μ−1/2) in the neighborhood of zero and bounded by

a O(μ−3) in the neighborhood of infinity, thus it is integrable. �
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