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Abstract. In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a
surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko–Pastur
law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and
multiplicative convolutions are given.

Résumé. Dans cet article, on prouve un résultat reliant les versions carré et rectangulaire de la R-transformée, qui a pour consé-
quence une relation surprenante entre les versions carré et rectangulaire de la convolution libre additive, impliquant la loi de
Marchenko–Pastur. On donne des conséquences de ce résultat portant sur les matrices aléatoires, sur l’infinie divisibilité et sur
l’arithmétique des versions carré des convolutions additives et multiplicatives.
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Introduction

Free convolutions are operations on probability measures on the real line which allow to compute the empirical spec-
tral1 or singular2 measures of large random matrices which are expressed as sums or products of independent random
matrices, the spectral measures of which are known. More specifically, the operations �,�, called respectively free
additive and multiplicative convolutions are defined in the following way [19]. Let, for each n, Mn, Nn be n by n

independent random hermitian matrices, one of them having a distribution which is invariant under the action of the
unitary group by conjugation, the empirical spectral measures of which converge, as n tends to infinity, to non random
probability measures denoted respectively by τ1, τ2. Then τ1 � τ2 is the limit of the empirical spectral law of Mn +Nn

and, in the case where the matrices are positive, τ1 � τ2 is the limit of the empirical spectral law of MnNn. In the same
way, for any λ ∈ [0,1], the rectangular free convolution �λ is defined in [7], in the following way. Let Mn,p,Nn,p be
n by p independent random matrices, one of them having a distribution which is invariant by multiplication by any
unitary matrix on any side, the symmetrized3 empirical singular measures of which tend, as n,p tend to infinity in

1The empirical spectral measure of a matrix is the uniform law on its eigenvalues with multiplicity.
2The empirical singular measure of a matrix M with size n by p (n ≤ p) is the empirical spectral measure of |M| := √

MM∗ .
3The symmetrization of a law μ on [0,+∞) is the law ν defined by ν(A) = μ(A)+μ(−A)

2 for all Borel set A. Dealing with laws on [0,+∞) or
with their symmetrizations is equivalent, but for historical reasons, the rectangular free convolutions have been defined with symmetric laws. In all
this paper, we shall often pass from symmetric laws to laws on [0,+∞) and vice-versa. Thus in order to avoid confusion, we shall mainly use the
letter μ for laws on [0,∞) and ν for symmetric ones.
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such a way that n/p tends to λ, to nonrandom probability measures ν1, ν2. Then the symmetrized empirical singular
law of Mn,p +Nn,p tends to ν1 �λ ν2. These operations can also, equivalently, be defined in reference to free elements
of a noncommutative probability space, but in this paper, we have chosen to use the random matrix point of view.

In the cases λ = 0 or λ = 1, i.e. where the rectangular random matrices considered in the previous definition are
either “almost flat” or “almost square”, the rectangular free convolution with ratio λ can be expressed with the additive
free convolution: �1 = � and for all symmetric laws ν1, ν2, ν1 �0 ν2 is the symmetric law the push-forward by the
map t �→ t2 of which is the free additive convolution of the push forwards of ν1 and ν2 by the same map. These
surprising relations have no simple explanations, but they allow to hope a general relation between the operations �λ

and �, which would be true for any λ. Up to now, despite many efforts, no such relation had been found, until a paper
of Debbah and Ryan [13], where a relation between �λ,� and � is proved in a particular case. In the present paper,
we give a shorter proof of a wide generalization4 of their result: for any λ ∈ (0,1], we define μλ to be the law of λ

times a random variable with law the Marchenko–Pastur law with mean 1/λ, and we prove that for any pair μ,μ′ of
probability measures on [0,+∞), we have

√
μ � μλ �λ

√
μ′ � μλ =

√(
μ � μ′) � μλ, (1)

where for any probability measure ρ on [0,+∞),
√

ρ denotes the symmetrization of the push-forward of ρ by the
map t �→ √

t . Our proof is based on the following relation between the R-transform5 Rμ of a probability measure μ

on [0,+∞) and the rectangular R-transform C√
μ�μλ

with ratio λ of
√

μ � μλ: we prove that for all z,

Rμ(z) = C√
μ�μλ

(z).

This relation also allows us to prove precise relations between �-infinitely divisible laws and �λ-infinitely divisible
laws.

We would like to observe that formula (1) has some consequences which are far from obvious. It means that for
n,p large integers such that n/p 
 λ, for A,B,M,M ′ independent random matrices with respective sizes n × n,
n × n, n × p and n × p such that A,B are invariant in law under left and right multiplication by unitary matrices and
M,M ′ have independent Gaussian entries, then as far as the spectral measure is concerned,

(
AM + BM ′)(AM + BM ′)∗ 
 AM(AM)∗ + BM ′(BM ′)∗

. (2)

It also means, if 1 � n � p, that for X,Y independent n × p random matrices, as far as the spectrums are concerned,

(X + Y)(X + Y)∗ 
 XX∗ + YY ∗. (3)

The relation (1) has also consequences on the arithmetics of free additive and multiplicative convolutions � and
� (Corollaries 7 and 12) which was not known yet, despite the many papers written the last years about questions
related to this subject, e.g. [1,3,4,8,10–12].

1. A relation between the Marchenko–Pastur law, the square and the rectangular free convolutions

1.1. Prerequisites on square and rectangular analytic transforms of probability measures

1.1.1. The square case: The R- and S-transforms
These are analytic transforms of probability measures which allow to compute the operations � and �, like the Fourier
transform for the classical convolution. The R-transform can be defined for any probability measure on the real line,

4See Remark 5.
5Note that there are two conventions regarding the R-transform. The one we use is the one used in the combinatorial approach to freeness [17],

which is not exactly the one used in the analytic approach [16]: Rcombinatorics
μ (z) = zR

analysis
μ (z).
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but we shall only define it for probability measures on [0,+∞). Consider such a probability measure μ. It μ = δ0,
then Rμ = Sμ = 0. Now, let us suppose that μ �= δ0. Let us define the function

Mμ(z) =
∫

t∈R

tz

1 − tz
dμ(t).

Then the R- and S-transforms6 of μ, denoted respectively by Rμ and Sμ are the analytic functions defined as follows

Rμ(z) = [
(1 + z)M−1

μ (z)
]−1

, Sμ(z) = 1 + z

z
M−1

μ (z), (4)

where the exponent −1 refers to the inversion of functions with respect to the operation of composition ◦. Note
that Mμ is an analytic function defined in {z ∈ C;1/z /∈ support(μ)}. Hence in the case where μ is compactly sup-
ported, the functions Mμ and (1 + z)M−1

μ (z) can be inverted in a neighborhood of zero as analytic functions in a
neighborhood of zero vanishing at zero, with non null derivative at zero. In the case where μ is not compactly sup-
ported, these functions are inverted as functions on intervals (−ε,0) which are equivalent to (positive constant)× z at
zero [9].

Note that putting together both equations of (4), one gets

Sμ(z) = 1

z
R−1

μ (z) = 1 + z

z
M−1

μ (z). (5)

The main properties of the R- and S-transforms are the fact that they characterize measures and their weak conver-
gence and that they allow to compute free convolutions: for all μ,ν,

Rμ�ν = Rμ + Rν and Sμ�ν = SμSν. (6)

1.1.2. The rectangular case: The rectangular R-transform with ratio λ

In the same way, for λ ∈ [0,1], the rectangular free convolution with ratio λ can be computed with an analytic
transform of probability measures. Let ν be a symmetric probability measure on the real line. Let us define Hν(z) =
z(λMν2(z) + 1)(Mν2(z) + 1), where ν2 denotes the push forward of ν by the map t �→ t2. Then with the same
conventions about inverses of functions than in the previous section, the rectangular R-transform with ratio λ of ν is
defined to be

Cν(z) = U

(
z

H−1
ν (z)

− 1

)
,

where U(z) = −λ−1+[(λ+1)2+4λz]1/2

2λ
for λ > 0 and U(z) = z for λ = 0. By Theorems 3.8, 3.11 and 3.12 of [7], the

rectangular R-transform characterizes measures and their weak convergence, and for all pair ν1, ν2 of symmetric
probability measures, ν1 �λ ν2 is characterized by the fact that

Cν1�λν2 = Cν1 + Cν2 . (7)

1.2. A relation between the square and the rectangular R-transforms

Let us fix λ ∈ [0,1]. We recall that for any probability measure ρ on [0,+∞),
√

ρ denotes the symmetrization of
the push-forward of ρ by the map t �→ √

t and that for λ > 0, we have defined μλ to be the law of λ times a random
variable with law the Marchenko–Pastur law with mean 1/λ, i.e. μλ is the law with support [(1 − √

λ)2, (1 + √
λ)2]

and density

x �→
√

4λ − (x − 1 − λ)2

2πλx
.

6See footnote 5.
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For λ = 0, we let μλ denote the Dirac mass at 1.

Theorem 1. Let μ be a probability measure on [0,+∞). Then we have

Rμ(z) = C√
μ�μλ

(z).

Remark 2 (The cumulants point of view). Suppose μ to be compactly supported. Let us denote the free cumulants
[17] of μ by (kn(μ))n≥1 and the rectangular free cumulants with ratio λ [7,6] of

√
μ � μλ by (c2n(

√
μ � μλ))n≥1.

Then the previous theorem means that for all n ≥ 1, one has

kn(μ) = c2n

(√
μ � μλ

)
. (8)

Proof of Theorem 1. • First of all, note that by continuity of the applications μ �→ μ � μλ, ρ �→ Rρ and
ν �→ Cν with respect to weak convergence [7,9], it suffices to prove the result in the case where μ is com-
pactly supported. In this case, the functions Mμ,Rμ,Sμ,Mμ�μλ

,H√
μ�μλ

,C√
μ�μλ

are analytic in a neighbor-

hood of zero and the operations of inversion on these functions or related ones can be used without precau-
tion.

• If λ > 0, the free cumulants of the Marchenko–Pastur law with mean 1/λ are all equal to 1/λ, thus the ones
of μλ are given by the formula kn(μλ) = λn−1 for all n ≥ 1 and Rμλ(z) = ∑

n≥1 λn−1zn. From (5), it follows that

Sμλ(z) = 1
1+λz

. Hence by (6), we have Sμ�μλ
(z) = Sμ(z)

1+λz
, and by (5),

Mμ�μλ
(z) =

(
M−1

μ (z)

1 + λz

)−1

. (9)

Note that since μ0 = δ1, (9) stays true if λ = 0. Now, let us define the function T (x) = (λx + 1)(x + 1). Note that
T (U(x − 1)) = x for x in a neighborhood of zero. We have

H√
μ�μλ

(z) = z × T ◦ Mμ�μλ
(z) = z × T ◦

(
M−1

μ (z)

1 + λz

)−1

and

C√
μ�μλ

(z) = U

(
z

(z × T ◦ (M−1
μ (z)/(1 + λz))−1)−1

− 1

)
. (10)

• Hence by (4) and (10), we have the following equivalence

Rμ = C√
μ�μλ

⇐⇒ (
(z + 1)M−1

μ (z)
)−1 = U

(
z

(z × T ◦ (M−1
μ (z)/(1 + λz))−1)−1

− 1

)

⇐⇒ T ◦ (
(z + 1)M−1

μ (z)
)−1 = z

(z × T ◦ (M−1
μ (z)/(1 + λz))−1)−1

⇐⇒
(

z × T ◦
(

M−1
μ (z)

1 + λz

)−1)−1

× T ◦ (
(z + 1)M−1

μ (z)
)−1 = z.

Composing both terms on the right by (z + 1)M−1
μ (z), it gives

Rμ = C√
μ�μλ

⇐⇒
(

z × T ◦
(

M−1
μ (z)

1 + λz

)−1)−1

◦ (
(z + 1)M−1

μ (z)
) × T (z) = (z + 1)M−1

μ (z).
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Dividing by T (z), it gives

Rμ = C√
μ�μλ

⇐⇒
(

z × T ◦
(

M−1
μ (z)

1 + λz

)−1)−1

◦ (
(z + 1)M−1

μ (z)
) = M−1

μ (z)

1 + λz

⇐⇒ (z + 1)M−1
μ (z) =

(
z × T ◦

(
M−1

μ (z)

1 + λz

)−1)
◦ M−1

μ (z)

1 + λz

⇐⇒ (z + 1)M−1
μ (z) = M−1

μ (z)

1 + λz
T (z),

which is obviously true by definition of T (z). �

1.3. Main result of the paper

The main theorem of this paper is the following one. λ ∈ [0,1] is still fixed.

Theorem 3. For any pair μ,μ′ of probability measures on [0,+∞), we have

√
μ � μλ �λ

√
μ′ � μλ =

√(
μ � μ′) � μλ. (11)

Remark 4. Note that in the case where λ = 0, this theorem expresses what we already knew about �0 (and which is
explained in the second paragraph of the Introduction), but that the case λ = 1 is not a consequence of the already
known formula �1 = �.

Remark 5. Part of this theorem could have been deduced from Theorem 6 of [13]. However, (11) could be deduced
from the theorem of Debbah and Ryan only for laws μ,μ′ which can be expressed as limit singular laws of n by p (for
n/p 
 λ) corners of large p × p bi-unitarily invariant random matrices, but it follows from Theorem 14.10 of [17]
that not every law has this form. Moreover, even though the idea which led us to our result was picked in the pioneer
work of Debbah and Ryan, our proof is much shorter and shows the connection with the rectangular machinery in a
more clear way (via Theorem 1 and Remark 2).

Proof of Theorem 3. Define ν := √
μ � μλ �λ

√
μ′ � μλ. By (7), we have

Cν = C√
μ�μλ

+ C√
μ′�μλ

.

Thus, by Theorem 1 and (6), we have

Cν = Rμ + Rμ′ = Rμ�μ′ = C√
(μ�μ′)�μλ

.

Hence by injectivity of the rectangular R-transform (Theorem 3.8 of [7]), (11) is valid. �

The formula (11) gives us a new insight on rectangular free convolutions: it allows to express it, in certain cases, in
terms of the free convolutions “of square type” � and �. However, only laws which can be expressed under the form

√
μ � μλ

(
μ probability measure on [0,+∞)

)
(12)

can have their rectangular convolution computed via formula (11). Thus it seems natural to ask whether all symmetric
laws can be expressed like in (12). Note that it is equivalent to the fact that any law on [0,+∞) can be expressed
under the form μ � μλ, which is equivalent to the fact that the Dirac mass at one δ1 can be expressed under the form
μ � μλ. Indeed, if δ1 = μ � μλ, then any law τ on [0,+∞) satisfies τ = τ � δ1 = (τ � μ) � μλ. The following
proposition shows that it is not the case. However, Theorem 11 will show that many symmetric laws can be expressed
like in (12).
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Proposition 6. Unless λ = 0, the law δ1+δ−1
2 cannot be expressed under the form

√
μ � μλ for μ probability measure

on [0,+∞).

Proof. Suppose that λ > 0 and that there is a probability measure μ on [0,+∞) such that δ1+δ−1
2 = √

μ � μλ. Then
δ1 = μ � μλ. This is impossible, by Corollary 3.4 of [2], which states that the free multiplicative convolution of two
laws which are not Dirac masses has always a nonnull absolutely continuous part (there is another, more direct way
to see that it is impossible: by (6), such a law μ has to satisfy Sμ(z) = 1 + λz, which implies that for z small enough,

Mμ(z) = z−1+[(1−z)2+4λz]1/2

2λ
: such a function does not admit any analytic continuation to C \ [0,+∞), thus no such

probability measure μ exists). �

Theorem 3 has a consequence on the free convolutions “of square type” which was not known yet, despite the many
papers written the last years about questions related to the arithmetics of these convolutions, e.g. [1,3,4,8,10–12].

Corollary 7. For any pair μ,μ′ of probability measures on [0,+∞) we have

√
μ � μ1 �

√
μ′ � μ1 =

√(
μ � μ′) � μ1. (13)

Proof. It is an obvious consequence of Theorem 3 and of the fact that �1 = �. �

Remark 8. The referee of the paper communicated to us a proof of (13) which is not, as ours, based on computations
on the R- and S-transforms, but on the direct proof of (8) in the special case λ = 1. Let us briefly outline this proof.
When λ = 1, by [5], Eq. (4.1), (8) reduces to

kn(μ) = k2n

(√
μ � μ1

)
. (14)

Let a, s are free elements in a tracial non commutative probability space with respective distributions μ and the
standard semicircle law. By [17], Proposition 12.13, s2 has distribution μ1, hence sas has distribution μ � μ1.
It follows, by [17], Proposition 12.18, that for all n, the nth moment of μ is equal to kn(μ � μ1). But by [17],
Proposition 11.25, for all n, we have

kn(μ � μ1) =
∑

π∈NC(n)

∏
V ∈π

k2|V |
(√

μ � μ1
)
.

It follows, using the expression of the nth moment of μ in terms of its free cumulants, that for all n,
∑

π∈NC(n)

∏
V ∈π

k|V |(μ) =
∑

π∈NC(n)

∏
V ∈π

k2|V |
(√

μ � μ1
)
,

and that for all n, kn(μ) = k2n(
√

μ � μ1).

2. Consequences on square and rectangular infinite divisibility

2.1. Prerequisites on infinite divisibility and Lévy–Kinchine formulas

Infinite divisibility is a fundamental probabilistic notion, at the base of Lévy processes, and which allows to explain
deep relations between limit theorems for sums of either independent random variables, square or rectangular random
matrices. Let us briefly recall basics of this theory [5,8,9,15,18].

Let ∗ denote the classical convolution of probability measures on the real line. Firstly, recall that a probability
measure μ is said to be ∗-infinitely divisible (resp. �-, �λ-infinitely divisible) if for all integer n, there exists a
probability measure νn such that ν∗n

n = μ (resp. ν�n
n = μ, ν

�λn
n = μ). In this case, there exists a ∗- (resp. �-, �λ-)

semigroup (μt )t≥0 such that μ0 = δ0 and μ1 = μ. For all t , μt is denoted by μ∗t (resp. μ�t ,μ�λt ). Infinitely divisible
distributions have been classified: μ is ∗- (resp. �-) infinitely divisible if and only if there exists a real number γ



650 Florent Benaych-Georges

and a positive finite measure on the real line σ such that the Fourier transform is μ̂(t) = exp[iγ t + ∫
R
(eitx − 1 −

itx
x2+1

) x2+1
x2 dσ(x)] (resp. Rμ(z) = γ z + z

∫
R

z+t
1−tz

dσ(t)). Moreover, in this case, such a pair (γ, σ ) is unique, it is

called the Lévy pair of μ and we denote μ by ν
γ,σ∗ (resp. ν

γ,σ

� ). For all t ≥ 0, μt has Lévy pair (tγ, tσ ). In the same
way, a symmetric probability measure ν is �λ-infinitely divisible if and only if there exists a positive finite symmetric

measure on the real line G such that Cν(z) = z
∫

R

1+t2

1−zt2 dG(t). In this case, the measure G is unique, and ν will be

denoted by νG
�λ

. The correspondences ν
γ,σ∗ ←→ ν

γ,σ

� (for any pair (γ, σ ) as above) and ν
0,G∗ ←→ νG

�λ
(for any G as

above) are called Bercovici–Pata bijections. These bijections have many deep properties [5,8], some of which will be
mentioned in the proof of the following lemma.

Lemma 9. Let γ be a real number and σ be a positive finite measure on the real line. Then we have equivalence
between:

(i) For all t ≥ 0, ν
tγ,tσ∗ is supported on [0,+∞).

(ii) For all t ≥ 0, ν
tγ,tσ

� is supported on [0,+∞).

(iii) We have σ((−∞,0]) = 0 and the integral
∫ 1

x
dσ(x) is finite and ≤γ .

Proof. The equivalence between (i) and (iii) follows from Theorem 24.7 and Corollary 24.8 of [18]. Let us prove the
equivalence between (i) and (ii). In order to do that, let us recall a fact proved in [8]: for any Lévy pair (γ, σ ) and any
sequence (νn) of probability measures, one has

ν∗n
n converges weakly to ν

γ,σ∗ ⇐⇒ ν�n
n converges weakly to ν

γ,σ

� . (15)

Let us suppose (i) (resp. (ii)) to be true. Let us fix t ≥ 0. For all n, we have

(
ν

tγ /n,tσ/n∗
)∗n = ν

tγ,tσ∗
(
resp.

(
ν

tγ /n,tσ/n

�
)�n = ν

tγ,tσ

�
)
.

Thus by (15),

(
ν

tγ /n,tσ/n∗
)�n converges weakly to ν

tγ,tσ

�
(
resp.

(
ν

tγ /n,tσ/n

�
)∗n converges weakly to ν

tγ,tσ∗
)
.

Thus since any free (resp. classical) additive convolution and any weak limit of measures with supports on [0,+∞)

has support on [0,+∞), (ii) (resp. (i)) holds. �

Remark 10. Note that (i) is equivalent to the fact that there exists t > 0 such that ν
tγ,tσ∗ is supported on [0,+∞) [18],

Corollary 24.8. However, the same is not true for the free infinitely divisible laws. Indeed, let, for each t ≥ 0, MPt

denote the Marchenko–Pastur law with mean t [16], Example 3.3.5, and let us define, for each t , μt = MPt ∗δ−t/4.
Then since free and classical convolutions with Dirac masses are the same, (μt )t≥0 is a convolution semi-group with
respect to �. But μ4 is supported on [0,+∞), whereas for each t ∈ (0,1], the support of μt contains a negative
number (namely −t/4).

2.2. Main result of the section

The following theorem allows us to claim that even though not every symmetric law can be expressed under the form√
μ � μλ for μ law on [0,+∞) (see Proposition 6), many of them have this form. λ ∈ [0,1] is still fixed.
For G measure on the real line, we let G2 denote the push-forward of G by the function t �→ t2.

Theorem 11. (i) Let μ be a �-infinitely divisible law such that for all t ≥ 0, μ�t is supported on [0,+∞). Then the
law

√
μ � μλ is �λ-infinitely divisible, with Lévy measure the only symmetric measure G such that

G2 =
(

γ −
∫

1

x
dσ(x)

)
δ0 + 1 + x2

x(1 + x)
dσ(x), (16)

where (γ, σ ) denotes the Lévy pair of μ.
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(ii) Reciprocally, any �λ-infinitely divisible law ν has the form
√

μ � μλ for some �-infinitely divisible law μ such
that for all t ≥ 0, μ�t is supported on [0,+∞). Moreover, the Lévy pair (γ, σ ) of μ is defined by

γ =
∫

[0,+∞)

1 + x

1 + x2
dG2(x) and σ = x(1 + x)

1 + x2
dG2(x), (17)

where G denotes the Lévy measure of ν.

Proof. (i) Note that by Theorem 3, the map μ �→ √
μ � μλ is a morphism from the set of laws on [0,+∞) to the

set on symmetric laws on the real line endowed respectively with the operations � and �λ. Thus if μ is �-infinitely
divisible, then

√
μ � μλ is �λ-infinitely divisible. Moreover, if the Lévy pair of μ is (γ, σ ), then its R-transform

is Rμ(z) = γ z + z
∫
t∈R

z+t
1−zt

dσ(t). By Theorem 1, it implies that C√
μ�μλ

(z) = γ z + z
∫
t∈R

z+t
1−zt

dσ(t). But by

uniqueness, the Lévy measure G of
√

μ � μλ is characterized by the fact that C√
μ�μλ

(z) = z
∫

R

1+t2

1−zt2 dG(t). Thus

to prove (16), it suffices to prove that for G given by (16), for all z, one has

γ z + z

∫
t∈R

z + t

1 − zt
dσ(t) = z

∫
R

1 + t2

1 − zt2
dG(t),

which can easily be verified.
(ii) Let ν be a �λ-infinitely divisible law with Lévy measure denoted by G. Let (γ, σ ) be the Lévy pair defined by

(17). Note that (γ, σ ) satisfies (iii) of Lemma 9, thus, for μ := ν
γ,σ

� , for all t ≥ 0, the law μ�t is actually supported
by [0,+∞). Thus by (i),

√
μ � μλ is �λ-infinitely divisible with Lévy measure the only symmetric measure H

satisfying

H 2 =
(

γ −
∫

1

x
dσ(x)

)
δ0 + 1 + x2

x(1 + x)
dσ(x).

To prove that
√

μ � μλ = ν, it suffices to prove that H = G, which can easily be verified. �

One of the consequences of this theorem is that it gives us a description of the free multiplicative convolution of two
Marchenko–Pastur laws (i.e. free Poisson laws), one of them having a mean ≥ 1. For all t > 0, the Marchenko–Pastur
law MPt with mean t has been introduced at Remark 10.

Corollary 12. Consider a, c > 0 such that a > 1. Then MPc �MPa is the push forward, by the map x �→ ax2, of the
�λ-infinitely divisible law with Lévy measure c

4 (δ1 + δ−1) for λ = 1/a.

Proof. It suffices to notice that for λ = 1/a, MPa is the push-forward, by the map x �→ ax, of the law μλ, that MPc

is the �-infinitely divisible law with Lévy pair (c/2, c/2δ1), and then to apply (i) of Theorem 11. �

This corollary can be interpreted as the coincidence of the limit laws of two different matrix models. Indeed, the
�λ-infinitely divisible law with Lévy measure c

4 (δ1 + δ−1) was already known [5], Proposition 6.1, to be the limit
symmetrized singular law of the random matrix M := ∑p

k=1 ukv
∗
k , for n,p,q tending to infinity in such a way that

p/n → c and n/q → λ and (uk)k≥1, (vk)k≥1 two independent families of independent random vectors such that for
all k, uk, vk are uniformly distributed on the unit spheres of respectively C

n,C
q . Thus, if, for large n,p,q’s such that

p/n 
 c and n/q 
 λ, one considers such a random matrix M and also two independent random matrices T ,Q with
respective dimensions n×p,n×q , the entries of which are independent real standard Gaussian random variables, then
the empirical spectral measures of the random matrices MM∗ and 1

nq
T T ∗QQ∗ are close to each other, as illustrated

by Fig. 1.
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Fig. 1. Histograms of the spectrums of MM∗ (left) and 1
nq T T ∗QQ∗ (right) for n = 2000, λ = 0.6, c = 1.3.

This work was partially supported by the Agence Nationale de la Recherche Grant ANR-08-BLAN-0311-03.

References

[1] T. Banica, S. Belinschi, M. Capitaine and B. Collins. Free Bessel laws. Canad. J. of Math. To appear, 2009.
[2] S. Belinschi, A note on regularity for free convolutions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 635–648. MR2259979
[3] S. Belinschi, F. Benaych-Georges and A. Guionnet. Regularization by free additive convolution, square and rectangular cases. Complex Anal.

Oper. Theory. To appear, 2009. MR2496440
[4] F. Benaych-Georges. Failure of the Raikov theorem for free random variables. In Séminaire de Probabilités XXXVIII 313–320. Springer,

Berlin, 2004. MR2126982
[5] F. Benaych-Georges. Infinitely divisible distributions for rectangular free convolution: Classification and matricial interpretation. Probab.

Theory Related Fields 139 (2007) 143–189. MR2322694
[6] F. Benaych-Georges. Rectangular random matrices, related free entropy and free Fisher’s information. J. Oper. Theory. To appear, 2009.
[7] F. Benaych-Georges. Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 (2009) 471–515. MR2496440
[8] H. Bercovici and V. Pata. Stable laws and domains of attraction in free probability theory. With an appendix by P. Biane. Ann. Math. 149

(1999) 1023–1060. MR1709310
[9] H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded supports. Indiana Univ. Math. J. 42 (1993) 733–773.

MR1254116
[10] H. Bercovici and D. Voiculescu. Superconvergence to the central limit and failure of the Cramér theorem for free random variables. Probab.

Theory Related Fields 102 (1995) 215–222. MR1355057
[11] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. I. Ann. Probab. 36 (2008) 54–90. MR2370598
[12] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. II. Cent. Eur. J. Math. 6 (2008) 87–117. MR2379953
[13] M. Debbah and Ø. Ryan. Multiplicative free convolution and information-plus-noise type matrices. arXiv. (The submitted version of this

paper, more focused on applications than on the result we are interested in here, is [14].)
[14] M. Debbah and Ø. Ryan. Free deconvolution for signal processing applications. To appear, 2009.
[15] V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent Random Variables. Adisson-Wesley, Cambridge, MA,

1954.
[16] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables, and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc.,

Providence, RI, 2000. MR1746976
[17] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cam-

bridge Univ. Press, Cambridge, 2006. MR2266879
[18] K. I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press,

Cambridge, 1999. MR1739520
[19] D. V. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monographs Series 1. Amer. Math. Soc., Providence, RI, 1992.

MR1217253

http://www.ams.org/mathscinet-getitem?mr=2259979
http://www.ams.org/mathscinet-getitem?mr=2496440
http://www.ams.org/mathscinet-getitem?mr=2126982
http://www.ams.org/mathscinet-getitem?mr=2322694
http://www.ams.org/mathscinet-getitem?mr=2496440
http://www.ams.org/mathscinet-getitem?mr=1709310
http://www.ams.org/mathscinet-getitem?mr=1254116
http://www.ams.org/mathscinet-getitem?mr=1355057
http://www.ams.org/mathscinet-getitem?mr=2370598
http://www.ams.org/mathscinet-getitem?mr=2379953
http://www.ams.org/mathscinet-getitem?mr=1746976
http://www.ams.org/mathscinet-getitem?mr=2266879
http://www.ams.org/mathscinet-getitem?mr=1739520
http://www.ams.org/mathscinet-getitem?mr=1217253

	Introduction
	A relation between the Marchenko-Pastur law, the square and the rectangular free convolutions
	Prerequisites on square and rectangular analytic transforms of probability measures
	The square case: The R- and S-transforms
	The rectangular case: The rectangular R-transform with ratio lambda

	A relation between the square and the rectangular R-transforms
	Main result of the paper

	Consequences on square and rectangular infinite divisibility
	Prerequisites on infinite divisibility and Lévy-Kinchine formulas
	Main result of the section

	Acknowledgment
	References

