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Abstract. We consider the parabolic Anderson model, the Cauchy problem for the heat equation with random potential in Z
d . We

use i.i.d. potentials ξ : Zd → R in the third universality class, namely the class of almost bounded potentials, in the classification

of van der Hofstad, König and Mörters [Commun. Math. Phys. 267 (2006) 307–353]. This class consists of potentials whose
logarithmic moment generating function is regularly varying with parameter γ = 1, but do not belong to the class of so-called

double-exponentially distributed potentials studied by Gärtner and Molchanov [Probab. Theory Related Fields 111 (1998) 17–55].

In [Commun. Math. Phys. 267 (2006) 307–353] the asymptotics of the expected total mass was identified in terms of a variational

problem that is closely connected to the well-known logarithmic Sobolev inequality and whose solution, unique up to spatial shifts,

is a perfect parabola. In the present paper we show that those potentials whose shape (after appropriate vertical shifting and spatial

rescaling) is away from that parabola contribute only negligibly to the total mass. The topology used is the strong L1-topology on

compacts for the exponentials of the potential. In the course of the proof, we show that any sequence of approximate minimisers

of the above variational formula approaches some spatial shift of the minimiser, the parabola.

Résumé. Nous considérons le modèle Anderson parabolique donné par le problème de Cauchy pour l’équation de la chaleur avec

un potentiel aléatoire dans Z
d . Nous utilisons des potentiels i.i.d. ξ : Zd → R qui sont dans la troisième classe d’universalité de

la classification de van der Hofstad, König and Mörters [Commun. Math. Phys. 267 (2006) 307–353]. Cette classe, les potentiels

presque bornés, contient les potentiels dont le logarithme de la transformée de Laplace est de variation régulière avec paramètre

γ = 1, mais qui n’appartiennent pas à la classe des potentiels “double-exponentially distributed” étudiée par Gärtner et Molchanov

dans [Probab. Theory Related Fields 111 (1998) 17–55].

Dans [Commun. Math. Phys. 267 (2006) 307–353], le comportement asymptotique de l’espérance de la masse totale est décrit
par un problème variationnel qui est lié à l’inégalité de Sobolev logarithmique. La solution de ce problème, qui est unique à des

translations spatiales près, est une parabole. Dans cet article, nous montrons que la contribution à la masse totale des potentiels qui

ont (après un changement d’échelle) une forme différente est négligeable. Nous utilisons la topologie L1 sur les compacts pour

l’exponentielle du potentiel. Au cours de la preuve, nous montrons que n’importe quelle suite des solutions approximatives du

problème variationnel converge vers une translation spatiale de la solution qui est une parabole.
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1. Introduction and results

1.1. The parabolic Anderson model

We consider the continuous solution v : [0,∞) × Z
d → [0,∞) to the Cauchy problem for the heat equation with

random coefficients and localised initial datum,

∂

∂t
v(t, z) = �dv(t, z) + ξ(z)v(t, z), for (t, z) ∈ (0,∞) × Z

d, (1.1)

v(0, z) = 10(z), for z ∈ Z
d . (1.2)

Here ξ = (ξ(z) : z ∈ Z
d) is an i.i.d. random potential with values in [−∞,∞), and �d is the discrete Laplacian,

�df (z) =
∑
y∼z

[
f (y) − f (z)

]
, for z ∈ Z

d, f : Zd → R.

The parabolic problem (1.1) is called the parabolic Anderson model. The operator �d + ξ appearing on the right
is called the Anderson Hamiltonian; its spectral properties are well-studied in mathematical physics. Equation (1.1)
describes a random mass transport through a random field of sinks and sources, corresponding to lattice points z with
ξ(z) < 0, respectively, > 0. There is an interpretation in terms of the expected number of particles at time t in the site
x for a branching process with random space-dependent branching rates. We refer the reader to [10,14] and [5] for
more background and to [8] for a survey on mathematical results.

The long-time behaviour of the parabolic Anderson problem is well-studied in the mathematics and mathematical
physics literature because it is an important example of a model exhibiting an intermittency effect. This means, loosely
speaking, that most of the total mass of the solution,

U(t) =
∑
z∈Zd

v(t, z), for t > 0, (1.3)

is concentrated on a small number of remote islands, called the intermittent islands. A manifestation of intermittency
in terms of the moments of U(t) is as follows. For 0 < p < q , the main contribution to the qth moment of U(t)

comes from islands that contribute only negligibly to the pth moments. Therefore, intermittency can be defined by the
requirement,

lim sup
t→∞

〈U(t)p〉1/p

〈U(t)q〉1/q
= 0, for 0 < p < q, (1.4)

where 〈 · 〉 denotes expectation with respect to ξ . Whenever ξ is truly random, the parabolic Anderson model is
intermittent in this sense, see [10], Theorem 3.2.

We work under the assumption that all positive exponential moments of ξ(0) are finite and that the upper tails of
ξ(0) possess some mild regularity property. One of the main results of [12] is that four different universality classes
of long-time behaviours of the parabolic Anderson model can be distinguished: the so-called double-exponential
distribution and some degenerate version of it studied by Gärtner, Molchanov and König [9,11], bounded from above
potentials studied by Biskup and König [2], and so-called almost bounded potentials studied by van der Hofstad,
König and Mörters [12].

In the present paper, we only consider the class of almost bounded potentials, which we will recall in Section 1.3.
It is our main purpose to determine those shapes of the random potential ξ that contribute most to the expectation
of the total mass, asymptotically as t → ∞. In other words, we will find a shifted, rescaled version, ξ t , of ξ and an
explicit deterministic function ψ̂ : Rd → R such that the main contribution to 〈U(t)〉 comes from the event {ξ t ≈ ψ̂},
in a sense that will be specified below. This is what we call a potential confinement property; it is a specification of
the intermittency phenomenon for the moments of U(t).
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1.2. Remarks on the literature

To the best of our knowledge, the only potential confinement property that has been proved for the parabolic Anderson
model in the literature is in [9] for the universality class of the double-exponential distribution, including its degenerate
version. That paper works in the almost-sure setting and proves that the main contribution to the total mass U(t) comes
from islands in which the potential looks like the maximisers of the relevant variational formula, but from no other
island else. That formula is the discrete variant of the formula for χ appearing in the present paper in (1.11) below,
i.e., for the discrete Laplace operator on Z

d instead of the continuous one on R
d .

There is a “dual” confinement property in the parabolic Anderson model, the confinement of the path of the random
walk in the Feynman–Kac formula, see (2.2) below. This property says that the maximal contribution to the expected
total mass U(t) comes from those random walk paths whose shape, after appropriate rescaling, resembles the min-
imisers of the “dual” version of the characteristic variational problem, but from no other paths else. See Lemma 3.1
for the dual representation of χ in the case handled in the present paper, see (1.11) below. This property is proved
in d = 2 by Bolthausen [3] in an important special case of the universality class of potentials that are bounded from
above: they assume only the two values 0 and −∞ in [3]. A similar result, also in d = 2, was independently derived
by Sznitman [16] for the spatially continuous variant for Brownian motion in a Poisson trap field. The characteristic
variational problem is in that case

χ = inf
{‖∇g‖2

2 + ρ
∣∣supp(g)

∣∣: g ∈ H 1(
R

d
)
,‖g‖2 = 1, supp(g) compact

};
the function g2 plays the role of the normalised rescaled occupation measures of the walk, respectively of the Brownian
motion. The restriction to d = 2 was removed by Povel [15], after suitable isoperimetric inequalities derived in the
analysis literature had become known.

1.3. Almost bounded potentials

The class of potentials we will be working with is determined by the following. We need to introduce the logarithmic
moment generating function of ξ(0) given by

H(t) = log
〈
etξ(0)

〉
, t ∈ R. (1.5)

Assumption (AB). There is a parameter ρ ∈ (0,∞) and a continuous function κ : (0,∞) → (0,∞) with
limt→∞ κ(t)/t = 0 such that, for all y ≥ 0,

lim
t→∞

H(yt) − yH(t)

κ(t)
= ρ · y logy. (1.6)

This is class (iii) of [12], the class of almost bounded potentials. The convergence in (1.6) is uniform in y ∈ [0,M]
for any M > 0. Both H and κ are regularly varying with index γ = 1. According to [1], Theorem 3.7.3, (1.6) is
satisfied for κ(t) = H(t) − ∫ t

1 H(s)/s ds. If ξ satisfies (1.6), then Cξ satisfies (1.6) with ρ replaced by Cρ, for any
C > 0. The class of almost bounded potentials comprises both potentials that are unbounded and bounded to ∞; in the
latter case we assume, without loss of generality, that esssup ξ(0) = 0. Examples are found by putting log Prob(ξ(0) >

r) = −ef (r) for some positive increasing smooth function f and considering the limit as r ↑ ∞ in the unbounded case
and r ↑ 0 in the bounded case. Then H(t) = supr∈R[tr − ef (r)] = tf (t) − ef (r(t)) for some r(t) → ∞ resp. r(t) → 0
as t → ∞. If one now assumes that the function f ′(r(·)) is slowly varying at infinity, then the potential turns out to be
almost bounded. Specific examples are f (r) = r2 for an unbounded potential and f (r) = −1/r for a bounded one,
see [12], Section 1.4.3.

Another important object is the function α : (0,∞) → (0,∞) defined by

κ

(
t

α(t)d

)
= t

α(t)d+2
, t � 1. (1.7)

We also will write αt instead of α(t). Informally, α(t) is the order of the diameter of the intermittent islands for the
moments. That is, the expected total mass 〈U(t)〉 is well-approximated by the sub-sum 〈∑|x|≤Rαt

v(t, x)〉 in a certain
sense, after the limits t → ∞ and afterwards R → ∞ are taken.
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Lemma 1.1. The function α is well defined, up to asymptotic equivalence. Furthermore, limt→∞ α(t) = ∞, and α is
slowly varying. In particular, limt→∞ tα−d

t = ∞. Furthermore, for any M > 0,

H

(
t

αd
t

· y
)

− y · H
(

t

αd
t

)
= t

αd+2
t

· ρ · y logy · (1 + o(1)
)

uniformly in y ∈ [0,M]. (1.8)

Proof. All assertions besides the last one follow directly from [12], Proposition 1.2. The last one follows from (1.7)
by substituting t with tα−d

t . �

1.4. Asymptotics for the expected total mass

One of the main results of [12], see Theorem 1.4, is the description of the asymptotic behavior of the expected total
mass of the parabolic Anderson model for almost bounded potentials:

Theorem 1.2. Assume that the potential distribution satisfies Assumption (AB). Then there is a number χ ∈ R, de-
pending only on the dimension d and the parameter ρ appearing in Assumption (AB), such that

lim
t→∞

α(t)2

t
log

(〈
U(t)

〉
e−H(tα(t)−d )α(t)d

) = −χ. (1.9)

The description of χ is highly interesting and shows a rich structure, some of which we want to explore in the
present paper. The following objects will play a crucial role in the following. By C(Rd) we denote the set of continuous
functions R

d → R. For ψ ∈ C(Rd) define

L(ψ) = ρ

e

∫
Rd

eψ(x)/ρ dx and λ(ψ) = sup
g∈H 1(Rd )

‖g‖2=1

{〈
ψ,g2〉 − ‖∇g‖2

2

}
, (1.10)

where H 1(Rd) is the usual Sobolev space, ∇ the usual (distributional) gradient and 〈·, ·〉 and ‖ · ‖2 are the inner
product and the norm on L2(Rd). Then λ(ψ) is the top of the spectrum of the operator �+ψ in H 1(Rd). If ψ decays
at infinity sufficiently fast towards −∞, then L(ψ) is finite and λ(ψ) is the principal L2-eigenvalue of � + ψ in R

d .
Now we can identify χ explicitly, see [12], Proposition 1.11.

Lemma 1.3. The limit χ in (1.9) is identified as

χ = inf
ψ∈C(Rd ):L(ψ)<∞

[
L(ψ) − λ(ψ)

]
. (1.11)

Furthermore, the infimum is uniquely, up to spatial shifts, attained at the parabola

ψ̂(x) = ρ + ρ
d

2
log

ρ

π
− ρ2|x|2, x ∈ R

d .

In particular, χ = ρd(1 − 1
2 log ρ

π
).

1.5. Heuristic explanation

The content of Theorem 1.2, in combination with Lemma 1.3, can heuristically be explained in terms of a large-
deviation statement as follows. Introduce the vertically shifted and rescaled version of the potential ξ ,

ξt (z) = ξ(z) − α(t)d

t
H

(
t

α(t)d

)
, z ∈ Z

d , (1.12)

ξ t (x) = α(t)2ξt

(⌊
α(t)x

⌋)
, x ∈ R

d . (1.13)



844 G. Grüninger and W. König

Then ξ t is a random step function R
d → R. Using a Fourier expansion with respect to the eigenfunctions of �d + ξ

in large, t -dependent boxes, one can show that the total mass U(t) is asymptotically equal to exp{tλd
t log t (ξ )}, where

λd
t log t (V ) denotes the principal eigenvalue of the operator �d + V in the centred box with radius t log t with zero

boundary condition, for any potential V : Zd → R. Some technical work is done to show that λd
t log t (ξ ) may asymptot-

ically be replaced by the eigenvalue λd
Rαt

(ξ) in the much smaller box of radius Rαt . More precisely, the replacement

error is exponential on the scale t/α2
t , and its rate vanishes if the limit R → ∞ is eventually taken. Using (1.13) and

asymptotic scaling properties of λd
Rαt

(·), we see that

U(t)e−H(tα(t)−d )α(t)d ≈ exp
{
tλd

Rαt
(ξt )

} ≈ exp

{
t

α(t)2
λR(ξ t )

}
,

where λR(ψ) denotes the principal eigenvalue of � + ψ in the box QR = [−R,R]d with zero boundary condition;
note that the term −H(tα(t)−d)α(t)d is absorbed in the vertically shifted potential, ξt .

Now we take expectations with respect to the potential and find that the expected total mass is given in terms of
an exponential moment of λR(ξ t ) on the scale tα−2

t . The following lemma is one key property of the shifted and
rescaled potential ξ t and gives to the functional L defined in (1.10) the meaning of a large-deviation rate function. We
introduce the set F (QR) of all measurable functions ψ :QR → R that are bounded from above.

Lemma 1.4 (LDP for ξ t ). Fix R > 0. Then the restriction of (ξ t )t>0 to QR satisfies a large-deviation principle with
speed tα−2

t and rate function

LR : F (QR) → R, LR(ψ) = ρ

e

∫
QR

eψ(x)/ρ dx, (1.14)

with respect to the topology that is induced by test integrals against all nonnegative continuous functions QR →
[0,∞).

Sketch of proof. We identify the limiting cumulant generating function,

ΛR(f ) = lim
t→∞

α(t)2

t
log

〈
exp

{
t

α(t)2

∫
QR

ξ t (x)f (x)dx

}〉
,

for any continuous nonnegative f :QR → [0,∞). Indeed, we shall show that ΛR(f ) exists and is equal to HR(f ) =
ρ

∫
QR

f (x) logf (x)dx. Then the well-known Gärtner–Ellis theorem ([6], Section 4.5.3), yields the result, since HR

is the Legendre transform of LR , see also Lemma 3.1 below.
An explicit calculation using (1.12), Assumption (AB) and (1.7) shows that

α(t)2

t
log

〈
exp

{
t

α(t)2

∫
QR

ξ t (x)f (x)dx

}〉
= ρ

(
1 + o(1)

)∫
QR

dx f (x) log

(∫
�xαt �/α(t)+Q1/α(t)

f (y)dy α(t)d
)

= ρ
(
1 + o(1)

)∫
QR

f (x) logf (x)dx.

Obviously, this implies that ΛR(f ) exists and equals HR(f ). �

We kept this proof short since we are not going to use Lemma 1.4 in our proofs. Loosely speaking, this principle
says that

lim
t→∞

α(t)2

t
log Prob(ξ t ≈ ψ in QR) = −LR(ψ), (1.15)
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for sufficiently regular functions ψ . Using this principle in combination with Varadhan’s lemma ([6], Section 4.3) and
making R very large, we arrive at

〈
U(t)

〉
e−H(tα(t)−d )α(t)d ≈

〈
exp

{
t

α(t)2
λR(ξ t )

}〉
≈ exp

{
t

α(t)2
sup

ψ∈F (QR)

[
λR(ψ) − LR(ψ)

]}

≈ exp

{
−χ

t

α(t)2

}
.

This ends the heuristic derivation of Theorem 1.2. Hence, we see that there is a competition between two forces for
large R: the potential tries to keep the value of the eigenvalue λR(ξ t ) as high as possible, but has to pay an amount of
LR(ξ t ) for doing that. The best contribution comes from potentials ξ t that make an optimal compromise, i.e., optimize
the difference of the two contributions. This is precisely what is expressed in (1.11).

1.6. Our result: potential confinement

The purpose of the present paper is to give rigorous substance to the heuristics of Section 1.5. We prove that there
is a one-to-one correspondence between approximate minimisers ψ of the variational formula in (1.11) and the con-
tribution to the expected total mass coming from the event {ξ t ≈ ψ}. More precisely, we prove that the contribution
to the expected total mass that comes from potential shapes outside a neighborhood of any shift of the parabola ψ̂ is
asymptotically negligible with respect to the full expectation.

Let us first introduce the topology of potentials we are working with. We write QR = [−R,R]d for the centred
cube of sidelength 2R. Introduce the distance

dist(f1, f2) =
∞∑

r=1

2−rφ

(∫
Qr

∣∣f1(x) − f2(x)
∣∣dx

)
, f1, f2 ∈ L1(

R
d
)
, (1.16)

where φ(s) = s
1+s

for s > 0. The metric dist induces the topology of L1-convergence on every compact subset of R
d .

For describing general potential realisations, we enlarge the space of continuous functions to a much larger function
set, the set F of all measurable functions ψ : Rd → R that are bounded from above. Now we can formulate our main
result, a law of large numbers for ξ t defined in (1.12) and (1.13) towards the set of minimizers of the formula in (1.11).

Theorem 1.5 (Potential confinement). Suppose that Assumption (AB) holds. Then

lim
t→∞

〈U(t)1Γ̂t,ε
(ξ t )〉

〈U(t)〉 = 0, (1.17)

where

Γ̂t,ε =
⋂

M∈(0,∞)

⋂
x∈Qt log t

{
ψ ∈ F : dist

(
e(ψ(x+·)∧M)/ρ, eψ̂(·)/ρ)

> ε
}
. (1.18)

Theorem 1.5 says that the totality of all potential realisations ξ such that every shift of e(ξ t∧M)/ρ is, for any M > 0,
away from the Gaussian density eψ̂/ρ by some positive amount gives a negligible contribution to the expected total
mass. It is sufficient to consider only shifts by amounts ≤ t log t since the mass coming from farther away contributes
negligibly at time t anyway. It will turn out in the proof that the quotient on the left-hand side of (1.17) decays
exponentially on the scale tα(t)−2. The appearance of the parameter M is necessary since distances between eξ t∧M/ρ

and eξ t /ρ cannot be controlled on that exponential scale.
A similar confinement property can also be formulated for the moments of U(t) instead of U(t) itself; the proof

will be not much different, but some additional technical steps will have to be added.
With much more work, it should be possible to derive a large-deviations principle for ξ t under the measure with

density U(t)/〈U(t)〉 with an explicit rate function; then Theorem 1.5 would be a corollary of this principle.
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An interesting open task is to formulate and prove a “dual” confinement property or even a large-deviations prin-
ciple, for the appropriately rescaled random walk local times in the Feynman–Kac representation in (2.2) below. The
characteristic variational problem is introduced in Lemma 3.1 below, and its minimiser, ĝ2, will play the same role
for the local times as the minimiser ψ̂ in (1.11) for the potential. The main point will be to determine an appropriate
topology for both the probabilistic and the functional analytic arguments. Presumably, our Lemma 3.2 will be crucial
in that proof.

1.7. Comments on the proof

The proof of Theorem 1.5 has a functional analytic side and a probabilistic side. On one hand, we show that any
sequence of functions that asymptotically minimise L − λ in (1.11) converge, after an appropriate spatial translation,
to the minimiser ψ̂ in the topology used in Theorem 1.5, and on the other hand we derive effective estimates for the
expectation of the total mass on the event that ξ t is bounded away from ψ̂ in the same sense. The main point is that
these two properties have to be proved in the same topology, which is a nontrivial issue. Note that the topology we
work with is much stronger than the one in which we have a large-deviation principle, see Lemma 1.4. In the literature,
other topologies are considered in which the variational formula in (1.11) has a related approximation property (see
the remarks at the beginning of Section 3); however these topologies turned out to be not suitable for our probabilistic
approach.

The analysis part of the proof will be handled in Section 3 by more or less standard methods from analysis. The
probabilistic part is treated in Section 2. The large-deviations principle of Lemma 1.4 can serve as a guidance only
since the topology used in that principle is too weak. Our proof indeed follows another route, which we informally
describe now.

Similarly to the heuristics of Section 1.5, we have

e−H(tα(t)−d )α(t)d
〈
U(t)1Γ̂t,ε

(ξ t )
〉 ≈ 〈

exp

{
t

α(t)2
λR(ξ t )

}
1ΓR,ε

(ξ t )

〉
,

where ΓR,ε is some finite-box approximation of Γ̂t,ε . Now we add und subtract the term tα(t)−2ρ log( e
ρ

LR(ξ t )) in
the exponent. The difference term is estimated against the variational formula

−χR(ε) = sup
ψ∈ΓR,ε

(
λR(ψ) − ρ log

(
e

ρ
LR(ψ)

))
,

such that we have

e−H(tα(t)−d )α(t)d
〈
U(t)1Γ̂t,ε

(ξ t )
〉 ≤ e−tα(t)−2χR(ε)

〈
exp

{
t

α(t)2
ρ log

(
e

ρ
LR(ξ t )

)}〉
.

With the help of the principle in Lemma 1.4 and Varadhan’s lemma one can convince oneself that the exponential rate
(on the scale tα(t)−2) of the last expectation should be equal to

sup
ψ

(
ρ log

(
e

ρ
LR(ψ)

)
− LR(ψ)

)
= sup

l∈(0,∞)

(
ρ log

el

ρ
− l

)
.

(However, the proof of that fact cannot be done with the help of Lemma 1.4, since the functional ψ �→ ρ log(
ρ
e LR(ψ))

is not bounded and continuous in the topology used in that lemma.) The right-hand side is easily seen to be zero with
unique minimiser LR(ψ) = l = ρ. Hence, the only task that is left to do is to prove that lim infR→∞ χR(ε) > χ . This
is indeed true; it relies on the representation

−χ = sup
ψ

(
λR(ψ) − ρ log

(
e

ρ
LR(ψ)

))
;

see [12]. From this estimate, Theorem 1.5 follows since the denominator of (1.17) has the strictly larger exponential
rate −χ by Theorem 1.2.
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2. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. Recall that we suppose that Assumption (AB) holds, and recall the para-
meter ρ ∈ (0,∞) from that assumption. Comparing to Theorem 1.2, it is easy to see that the following proposition
immediately implies Theorem 1.5.

Proposition 2.1. For any ε > 0,

lim sup
t→∞

α2
t

t
log

(
e−αd

t H(t/αd
t )

〈
U(t)1Γ̂t,ε

(ξ t )
〉)

< −χ. (2.1)

Indeed, Theorem 1.2 says that the denominator of (1.17), after inserting the factor e−αd
t H(t/αd

t ) both in numerator
and denominator, has the exponential rate −χ , while the rate of the numerator is strictly smaller, according to Proposi-
tion 2.1 (both on the scale tα−2

t ). Hence, Proposition 2.1 implies that the quotient in (1.17) even decays exponentially
on the scale tα−2

t .
One of the most important tools in the study of the parabolic Anderson model is the Feynman–Kac formula, which

represents the solution of (1.1) and its total mass in terms of an exponential expectation of a functional of simple
random walk (X(s): s ∈ [0, t]) on Z

d with generator �d. We denote by Pz and Ez probability and expectation with
respect to the random walk, when started at z ∈ Z

d . The walker’s local times are denoted by �t (z) = ∫ t

0 δz(X(s))ds,
the amount of time the walker spends at z ∈ Z

d by time t > 0. Note that
∫ t

0 V (X(s))ds = 〈V,�t 〉 for functions
V : Zd → R, where 〈f,g〉 = ∑

z∈Zd f (z)g(z) for any f , g. Then, also using (1.12), the Feynman–Kac formula may
be formulated by saying

e−αd
t H(t/αd

t )U(t) = E0

[
exp

{∫ t

0
ξt

(
X(s)

)
ds

}]
= E0

[
e〈�t ,ξt 〉]. (2.2)

We divide the proof of Proposition 2.1 into a sequence of steps. In Section 2.1 we show how we reduce the infinite
state space Z

d to some finite large box. In Section 2.2 we replace the shifted and rescaled potential, ξ t , by a truncated
version ξ t ∧ M and show that the replacement error vanishes as M → ∞. This technical step turns out to be crucial
in Section 2.3 since our proof of Lemma 2.6 would fail for ξ t in place of ξ t ∧ M . After the two preparatory steps in
Sections 2.1 and 2.2, the main strategy of the proof of Proposition 2.1 is carried out in Section 2.3.

2.1. Reduction to a large box

Our first main step is to estimate the expectation on the left-hand side of (2.1) in terms of a finite-box version. In other
words, we argue that we may replace the full state space, Z

d , by a box with a radius of order αt . We will also insert
an appropriate scaling, which will turn the discrete box of order αt into continuous cubes of finite-order radius. By
BR = [−R,R]d ∩Z

d and QR = [−R,R]d we denote the discrete box and the continuous cube of radius �R�, resp. R.
A finite-cube version of the distance dist defined in (1.16), appropriate for our purposes, is

dR(ψ1,ψ2) =
∫

QR

∣∣eψ1(x)/ρ − eψ2(x)/ρ
∣∣dx, ψ1,ψ2 ∈ F , (2.3)

where we recall that F denotes the set of all measurable functions R
d → R that are bounded from above.

Lemma 2.2 (Reduction to a large box). Fix ε > 0. Then there is C > 0 such that for all R ≥ 2 − log ε
2 and t � 1,

e−αd
t H(t/αd

t )
〈
U(t)1Γ̂t,ε

(ξ t )
〉

≤ eH(2t)/2−αd
t H(t/αd

t )e−(t log t)/2 + eCt/(R2α2
t )

〈
E

t,R
[
e〈�t ,ξt 〉]1{∀M>0 : ξ t∧M∈ΓR,ε/2}

〉
, (2.4)
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where we abbreviate E
t,R[· · ·] = E0[· · · · 1{supp �t⊂B3Rαt }], and we put

ΓR,ε =
⋂

x∈Q2R

{
ψ ∈ F : dR

(
ψ(x + ·), ψ̂(·)) > ε

}
, ε > 0. (2.5)

Lemma 2.2 reduces the ξ t -expectation to an expectation of the restriction to the cube Q3R ; the constraint that any
shift is away from ψ̂ on any compact subset of R

d is replaced by the requirement that the shift by any amount ≤2R is
away from the QR-restriction of ψ̂ in L1(QR)-sense.

Proof of Lemma 2.2. This is a refinement of the proofs of [2], Proposition 4.4 and [12], Lemma 3.2. Indeed, we
use the Feynman–Kac formula for U(t) and distinguish the contributions from those paths that leave, or do not leave,
respectively, the box Bt log t up to time t . The first contribution can be estimated against the first term on the right
of (2.4), as is seen in [12], Lemma 3.2, together with the subsequent text (see the display above (3.18) there). In order
to see that the second contribution can be estimated against the second term on the right-hand side of (2.4), we have
to repeat parts of the proof of [2], Proposition. 4.4; we shall replace the R there by 2Rα(t).

As a first step, we estimate, with the help of a Fourier expansion, against the principal eigenvalue. For V : Zd → R,
let λd

t log t (V ) be the principal eigenvalue of �d + V in the box Bt log t with zero boundary condition. Then a Fourier
expansion shows in a standard way that

E0
[
e〈�t ,V 〉1{supp(�t )⊂Bt log t }

] ≤ eo(t/α2
t )etλd

t log t (V )
,

where o(tα−2
t ) does not depend on the potential V . Now [2], Proposition 4.4, says that the eigenvalue in the box Bt log t

may be estimated from above against a small error plus the maximal eigenvalue in certain, mutually overlapping boxes:

λd
t log t (V ) ≤ max

k∈Bt log t

λd
4kRα(t)+B3Rα(t)

(V ) + C

R2α(t)2
,

where C > 0 does not depend on V nor on R nor on t . (Here λd
B(V ) denotes the eigenvalue of �d + V in a bounded

set B ⊂ Z
d with zero boundary condition.) Hence, we may estimate

〈
etλd

t log t (ξ)1Γ̂t,ε
(ξ t )

〉 ≤ eCt/(R2α2
t )

∑
k∈Bt log t

〈
e
tλd

4kRα(t)+B3Rα(t)
(ξ)

1Γ̂t,ε
(ξ t )

〉
. (2.6)

Now we estimate 1Γ̂t,ε
(ξ t ). Observe that

Γ̂t,ε ⊂
⋂

M∈(0,∞)

⋂
k∈Bt log t

⋂
x∈Q2R

{
ψ ∈ F : dR

(
ψ(4kR + x + ·) ∧ M,ψ̂(·)) >

ε

2

}
. (2.7)

In order to show this, we show that the complement of the right side is contained in the complement of the left side.
Pick k ∈ Bt log t and x ∈ Q2R and ψ ∈ F such that

ε

2
≥ dR

(
ψ(4kR + x + ·) ∧ M,ψ̂(·)) =

∫
QR

∣∣e(ψ(4kR+x+y)∧M)/ρ − eψ̂(y)/ρ
∣∣dy.

Then, for x̃ = 4kR + x, we have (recalling that φ(s) = s
1+s

is increasing in s), for any M > 0,

dist
(
e(ψ(̃x+·)∧M)/ρ, eψ̂(·)/ρ) ≤

R∑
r=1

2−rφ

(∫
Qr

∣∣e(ψ(̃x+y)∧M)/ρ − eψ̂(y)/ρ
∣∣dy

)
+

∑
r>R

2−r

≤ φ

(∫
QR

∣∣e(ψ(̃x+y)∧M)/ρ − eψ̂(y)/ρ
∣∣dy

)
+ 2−R ≤ ε

2
+ 2−R < ε,
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by our assumption that R > 2 − log ε
2 . Hence, ψ lies in Γ̂ c

t,ε , which shows that (2.7) holds.
Now we use (2.7) on the right-hand side of (2.6) and obtain that〈

etλd
t log t (ξ)1Γ̂t,ε

(ξ t )
〉

≤ eCt/(R2α2
t )

∑
k∈Bt log t

〈
e
tλd

4kRα(t)+B3Rα(t)
(ξ) ∏

k̃∈Bt log t

1{∀M>0 ∀x∈Q2R :dR(ξ t (4̃kR+x+·)∧M,ψ̂(·))>ε/2}
〉

≤ eCt/(R2α2
t )3d(t log t)d

〈
etλd

3Rα(t)
(ξ)1{∀M>0 : ξ t∧M∈ΓR,ε/2}

〉
, (2.8)

where we have estimated the product of indicators against the kth factor, and we have used the shift-invariance of the
potential. Now enlarge C in order to absorb the term 3d(t log t)d . �

2.2. Truncating the potential

In the next lemma, we replace the random potential by a truncated version. In the proof of Lemma 2.6 below it will
turn out to be crucial that the random potential under interest is bounded from above, hence Lemma 2.3 is a necessary
preparation for that.

Lemma 2.3 (Truncating the potential). Fix R > 0 and ε > 0. Then

lim sup
t→∞

α2
t

t
log

〈
E

t,R
[
e〈�t ,ξt 〉]1{∀M>0:ξ t∧M∈ΓR,ε}

〉

≤ lim sup
M→∞

lim sup
t→∞

α2
t

t
log

〈
E

t,R
[
e〈�t ,ξt∧(M/α2

t )〉]1ΓR,ε
(ξ t ∧ M)

〉
. (2.9)

Proof. It is clear that we may estimate, for any M > 0,

1{∀M̃>0:ξ t∧M̃∈ΓR,ε} ≤ 1ΓR,ε
(ξ t ∧ M).

Fix some small parameter η > 0. In the expectation on the left-hand side of (2.9) we insert the sum of the indicators
on the event {〈�t , ξt − ξt ∧ (M/α2

t )〉 ≤ ηt/α2
t } and on the opposite event. On the first event, we estimate 〈�t , ξt 〉 ≤

ηt/α2
t + 〈�t , ξt ∧ (M/α2

t )〉 in the exponent. The second indicator is estimated as follows:

1{〈�t ,ξt−ξt∧(M/α2
t )〉>ηt/α2

t } ≤ e−Kηt/α2
t eK〈�t ,ξt−ξt∧(M/α2

t )〉,

where K ∈ (0,∞) is some large auxiliary parameter. This gives that〈
E

t,R
[
e〈�t ,ξt 〉]1{∀M̃>0:ξ t∧M̃∈ΓR,ε}

〉
≤ eηt/α2

t
〈
E

t,R
[
e〈�t ,ξt∧(M/α2

t )〉]1ΓR,ε
(ξ t ∧ M)

〉 + e−Kηt/α2
t
〈
E

t,R
[
e〈�t ,ξt 〉eK〈�t ,ξt−ξt∧(M/α2

t )〉]〉. (2.10)

The last expectation is estimated with the help of the Cauchy–Schwarz inequality:〈
E

t,R
[
e〈�t ,ξt 〉eK〈�t ,ξt−ξt∧(M/α2

t )〉]〉 ≤ 〈
E

t,R
[
e2〈�t ,ξt 〉]〉1/2〈

E
t,R

[
e2K〈�t ,ξt−ξt∧(M/α2

t )〉]〉1/2
. (2.11)

We are going to show that, for any K ∈ (0,∞),

lim sup
M→∞

lim sup
t→∞

α2
t

t
log

〈
E

t,R
[
eK〈�t ,ξt−(ξt∧(M/α2

t ))〉]〉 ≤ 0, (2.12)

i.e., the exponential rate (on the scale t/α2
t ) of the second term on the right-hand side of (2.11) vanishes as M → ∞.

In the course of the proof, it will become obvious that the first term on the right-hand side of (2.11) has a bounded
exponential rate. Hence, the assertion of the lemma follows from considering the large-t rate in (2.10) and making
M → ∞, K → ∞ and η ↓ 0.
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We now prove (2.12). We first sum on all subsets S of B = B3Rαt in which the potential ξt is larger than M/α2
t and

distinguish large and small such sets. This distinction is made with the help of a small auxiliary parameter τ ∈ (0,∞):

〈
E

t,R
[
eK〈�t ,ξt−(ξt∧M/α2

t )〉]〉 ≤
〈
E

t,R

[
exp

{
K

∑
z∈B

�t (z) · ξt (z) · 1{ξt (z)>M/α2
t }

}]〉

≤
∑

S⊂B : |S|≥ταd
t

〈
E

t,R
[
eK

∑
z∈S �t (z)ξt (z)

]
1{S={z∈B:ξt (z)>M/α2

t }}
〉

+
∑

S⊂B : |S|<ταd
t

〈
E

t,R
[
eK

∑
z∈S �t (z)·ξt (z)

]〉
. (2.13)

In the following, we show that the exponential rate of the first term tends to −∞ as M → ∞ for any τ > 0, and the
rate of the second vanishes as τ ↓ 0.

We first consider a summand of the first sum, where |S| ≥ ταd
t . By using the Cauchy–Schwarz inequality we obtain

〈
E

t,R
[
eK

∑
z∈S �t (z)·ξt (z)

]
1{S={z∈B : ξt (z)>M/α2

t }}
〉

≤ 〈
E

t,R
[
e2K

∑
z∈S �t (z)·ξt (z)

]〉1/2 · Prob
(
S = {

z ∈ B: ξt (z) > M/α2
t

})1/2
. (2.14)

We first estimate the probability. We use the definition of ξt (z) in (1.12), the independence of the ξ(z) for different z,
the Markov inequality and the definition of H(·) in (1.5), to obtain

Prob
(
S = {

z: ξt (z) > M/α2
t

})1/2 ≤ Prob

(
ξ(0) >

H(t/αd
t )

t/αd
t

+ M

α2
t

)|S|/2

= Prob
(
eξ(0)t/αd

t > eH(t/αd
t )eMt/αd+2

t
)|S|/2

≤ (
e−Mt/αd+2

t e−H(t/αd
t )

〈
eξ(0)t/αd

t
〉)|S|/2 ≤ e−tα−2

t Mτ/2. (2.15)

The exponential rate of this tends to −∞ as M → ∞. Hence, it suffices to show that the exponential rate of the
expectation on the right-hand side of (2.14) is finite on the scale tα−2

t . This is surprisingly difficult and cannot be
handled with rough arguments. We do this by extending some results of [12], Section 3.2, the only additional issue
being that the set B is replaced by some subset S of B . This is some technical issue since ξt can assume also negative
values, such that we have to repeat some of the steps from [12]. We use the definition of ξt in (1.12), apply Fubini’s
theorem, execute the expectation with respect to ξ , recall the definition of H(·) in (1.5) and use the abbreviation

ht (z) = H(2K�t (z)) − 2K�t (z)
H(t/αd

t )

t/αd
t

. This gives

〈
E

t,R
[
e2K

∑
z∈S �t (z)·ξt (z)

]〉 = E
t,R

[
e
∑

z∈S ht (z)
]
. (2.16)

We split the sum on z ∈ S into the subsums where �t (z) ≤ t/αd
t and the remainder. For �t (z) ≤ t/αd

t we may apply
the asymptotics for H from Lemma 1.1. This gives, as t → ∞, also using the relation between αt and κ(t) in (1.7),

∑
z∈S:�t (z)≤t/αd

t

ht (z) ≤ (
ρ + o(1)

)
κ
(
t/αd

t

) ∑
z∈S:�t (z)≤t/αd

t

2K�t (z)
αd

t

t
log

(
2K�t (z)

αd
t

t

)

≤ 2ρ2K log(2K)
t

αd+2
t

|S| ≤ C
|S|
|B|

t

α2
t

, (2.17)

where C ∈ (0,∞) depends on ρ and K (and R) only.
Now we handle the subsum on z ∈ S satisfying �t (z) > t/αd

t . For this purpose, we need the following estimate for
differences of H -terms, which follows from [1], Theorem 3.8.6(a). For any δ ∈ (0, 1

2 ], there are A, t0 ∈ (1,∞) such
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that

H(ty) − yH(t)

κ(t)
≤ Ay1+δ, y ∈ [1,∞), t ∈ [t0,∞). (2.18)

We pick a small δ > 0 and apply (2.18) with δ replaced by δ2/3, for y = 2K�t (z)α
d
t /t and with t/αd

t instead of t , to
get, for z satisfying �t (z) > t/αd

t ,

ht (z) = H
(
2K�t (z)

) − 2K�t (z)
αd

t

t
H

(
t/αd

t

) ≤ Aκ
(
t/αd

t

)(
2K�t (z)

αd
t

t

)1+δ2/3

= C̃
t

αd+2
t

(
αd

t

t
�t (z)

)1+δ2/3

, (2.19)

where we have used the definition of αt in (1.7), and C̃ ∈ (0,∞) depends on A and K only. Using this and (2.17)
in (2.16), we can estimate

E
t,R

[
e
∑

z∈S ht (z)
] ≤ e(C|S|t)/(|B|α2

t )
E

t,R

[
exp

{
C̃

t

α2
t

α
dδ2/3
t

∑
z∈S:�t (z)>t/αd

t

(
1

t
�t (z)

)1+δ2/3}]
. (2.20)

Now in the same way as in [12], Section 3.2, we see that, for any probability measure μ on B , for any 0 < a ≤ b < 1
and 0 < c,

∑
z∈B:μ(z)>α−d

t

μ(z)1+a ≤ α
d[(1−b)(b−a)+c(1+a−b)]
t

(∑
z∈B

μ(z)1+b+c

)1+a−b

. (2.21)

This is proved as follows, using Jensen’s inequality (we write
∑

z instead of
∑

z∈B:μ(z)>α−d
t

):

∑
z

μ(z)1+a =
(∑

z

μ(z)b
)(∑

z

μ(z)b∑
z μ(z)b

μ(z)1+a−b

)
≤

(∑
z

μ(z)b
)(∑

z

μ(z)1+b∑
z μ(z)b

)1+a−b

≤
(∑

z

μ(z)b
(
μ(z)αd

t

)1−b
)b−a(∑

z

μ(z)1+b
(
μ(z)αd

t

)c
)1+a−b

≤ α
d[(1−b)(b−a)+c(1+a−b)]
t

(∑
z∈B

μ(z)1+b+c

)1+a−b

.

Applying (2.21) for μ = 1
t
�t , a = δ2/3, b = δ2/3 + δ

1+δ
and c = δ − δ2/3 − δ

1+δ
, we obtain

t

α2
t

α
dδ2/3
t

∑
z∈B:�t (z)>t/αd

t

(
1

t
�t (z)

)1+δ2/3

≤ α
−(d+(2−d)(1+δ))/(1+δ)
t ‖�t‖1+δ, (2.22)

where ‖ · ‖1+δ denotes the (1 + δ)-norm on �1+δ(Zd). Now, picking δ > 0 so small that δ(d − 2) < 2 ([12], Proposi-
tion 2.1), states that the large-t exponential rate of the right-hand side of (2.20) on the scale t/α2

t vanishes as C̃ ↓ 0.
However, the proof shows that this rate is finite for any C̃ ∈ (0,∞). Using this fact in (2.16), and substituting this
in (2.14) we see because of (2.15) that the exponential rate of the first sum on the right-hand side of (2.13) on the scale
t/α2

t tends to −∞ as M → ∞, for any τ > 0.
Now we address the second sum on the right-hand side of (2.13). We show that its large-t exponential rate on the

scale t/α2
t vanishes as τ ↓ 0. We consider S ⊂ B = B3Rαd

t
with |S| < ταd

t . We start from (2.20), which is valid for



852 G. Grüninger and W. König

any S ⊂ B . We use Hölder’s inequality with new parameters 1
p

+ 1
q

= 1 for the last sum to obtain

∑
z∈S:�t (z)>t/αd

t

(
1

t
�t (z)

)1+δ2/3

≤ |S|1/q

( ∑
z∈B:�t (z)>t/αd

t

(
1

t
�t (z)

)p(1+δ2/3))1/p

. (2.23)

Now we apply (2.21) for μ = 1
t
�t , a = p + pδ2/3 − 1, some b ∈ (a,1) and c = p−(1+b)(1+a−b)

1+a−b
, where we assume

that δ > 0 is small enough and p > 1 close enough to one such that all the assumptions 0 < a ≤ b < 1 and c > 0 are
satisfied. This gives, using (2.23),

t

α2
t

α
dδ2/3
t

∑
z∈S:�t (z)>t/αd

t

(
1

t
�t (z)

)1+δ2/3

≤ t

α2
t

α
dδ2/3
t τ 1/qα

d/q
t α

d[(1−b)(b−a)+p−(1+b)(1+a−b)]/p
t

∥∥∥∥1

t
�t

∥∥∥∥
1+b+c

= τ 1/qα
−(d+(2−d)(1+δ̃))/(1+δ̃)
t ‖�t‖1+δ̃ ,

where δ̃ = b + c. Picking δ > 0 small enough and p > 1 close enough to one, we also have that δ̃(d − 2) < 2, and
we may again apply [12], Proposition 2.1 and see that the exponential rate of the second sum on the right-hand side
of (2.13) vanishes as τ ↓ 0. This ends the proof. �

2.3. Main part of the proof of Proposition 2.1

Using Lemmas 2.2 and 2.3, it is clear that Proposition 2.1 now follows from the following assertion.

Proposition 2.4. For any ε > 0,

lim sup
R→∞

lim sup
M→∞

lim sup
t→∞

α2
t

t
log

〈
E

t,R
[
e〈�t ,ξt∧(M/α2

t )〉]1ΓR,ε
(ξ t ∧ M)

〉
< −χ. (2.24)

Let us now prove Proposition 2.4. For any potential V :BR → R, we denote by λd
R(V ) the principal eigenvalue of

�d + V in the box BR with zero boundary condition. Introduce a rescaled version of this eigenvalue by putting, for
ψ ∈ F (QR),

λ
(t)
R (ψ) = α2

t λ
d
Rα(t)

(
1

α2
t

ψd
)

, where ψd(z) = αd
t

∫
z/αt+[0,α−1

t )d
ψ(y)dy for z ∈ Z

d . (2.25)

Observe from (1.12) and (1.13) that 1
α2

t

ξ
d
t = ξt . Recall the definition of E

t,R from Lemma 2.2. Hence, using a Fourier

expansion, one has, for any R,M > 0, as t → ∞,

E
t,R

[
e〈�t ,ξt∧(M/α2

t )〉] = eo(t/α2
t ) exp

{
tλd

3Rαt

(
ξt ∧ (

M/α2
t

))} = eo(t/α2
t ) exp

{
t

α2
t

λ
(t)
3R(ξ t ∧ M)

}
. (2.26)

Now we multiply (2.26) with 1ΓR,ε
(ξ t ∧ M) and take expectation with respect to ξ . We subtract and add the term

tα−2
t ρ log( e

ρ
L3R(ξ t ∧ M)) in the exponent. The next step is to pick some small parameter β ∈ (0,∞) and to distin-

guish the events {ξ t ∧ M ∈ Dβ,R} and its complement, where

Dβ,R = {
ψ ∈ F (Q3R):

∣∣L3R(ψ) − ρ
∣∣ ≤ β

}
. (2.27)

On the event {ξ t ∧ M ∈ ΓR,ε}, we estimate the first two terms in the exponent differently on {ξ t ∧ M ∈ Dβ,R} and on
the complement:

λ
(t)
3R(ξ t ∧ M) − ρ log

(
e

ρ
L3R(ξ t ∧ M)

)
≤

{−χR(β, ε, t) on {ξ t ∧ M ∈ Dβ,R},
−χR(t) on {ξ t ∧ M /∈ Dβ,R}, (2.28)
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where the variational formulas are defined by

−χR(β, ε, t) = sup

{
λ

(t)
3R(ψ) − ρ log

(
e

ρ
L3R(ψ)

)
: ψ ∈ ΓR,ε ∩ Dβ,R

}
, (2.29)

and we put −χR(t) = −χR(∞,0, t) = supψ∈F (Q3R)[λ(t)
3R(ψ) − ρ log( e

ρ
L3R(ψ))].

Making the above explicit and abbreviating

Ft,R(ψ) = exp

{
t

α2
t

ρ log

(
e

ρ
L3R(ψ)

)}
, (2.30)

we obtain

〈
E

t,R
[
e〈�t ,ξt∧(M/α2

t )〉]1ΓR,ε
(ξ t ∧ M)

〉
≤ eo(t/α2

t )

〈
exp

{
t

α2
t

[
λ

(t)
3R(ξ ∧ M) − ρ log

(
e

ρ
L3R(ξ t ∧ M)

)]}
Ft,R(ξ t ∧ M)1ΓR,ε

(ξ t ∧ M)

〉

≤ eo(t/α2
t )

〈[
1Dβ,R

(ξ t ∧ M)e−tα−2
t χR(β,ε,t) + 1Dc

β,R
(ξ t ∧ M)e−tα−2

t χR(t)
]
Ft,R(ξ t ∧ M)1ΓR,ε

(ξ t ∧ M)
〉

≤ eo(t/α2
t )

[
e−tα−2

t χR(β,ε,t)
〈
Ft,R(ξ t ∧ M)

〉 + e−tα−2
t χR(t)

〈
Ft,R(ξ t ∧ M)1Dc

β,R
(ξ t ∧ M)

〉]
. (2.31)

Now we need the following asymptotics for the approximate variational formulas:

Lemma 2.5.

(i) lim inf
R→∞ lim inf

t→∞ χR(t) ≥ χ.

(ii) For any ε > 0, and any β > 0 small enough,

lim inf
R→∞ lim inf

t→∞ χR(β, ε, t) > χ.

The proof of Lemma 2.5 is deferred to the end of Section 3.
The large-t exponential rate of the expectation of Ft,R(ξ t ∧ M) is nonpositive for any M > 0, as is seen from an

application of part (i) of the following lemma for K = ρ.

Lemma 2.6. (i) Fix R > 0 and M > 0. Then, for any K > 0,

lim sup
t→∞

α2
t

t
log

〈
Ft,R(ξ t ∧ M)K/ρ

〉 ≤ K log
K

ρ
. (2.32)

(ii) For any β > 0,

lim sup
R→∞

lim sup
M→∞

lim sup
t→∞

α2
t

t
log

〈
Ft,R(ξ t ∧ M)1Dc

β,R
(ξ t ∧ M)

〉
< 0. (2.33)

It is elementary to see that an application of Lemmas 2.5 and 2.6 to the terms on the right-hand side of (2.31)
implies that (2.24) holds for any ε > 0. This ends the proof of Proposition 2.4.

It remains to prove Lemma 2.6. Let us mention that our proof crucially depends on the appearance of the cut-off
potential ξ t ∧ M instead of ξ t , even though the cut-off parameter M does not appear in the asymptotics. This is the
place where Lemma 2.3 turns out to be important.
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Proof of Lemma 2.6. First we prove (i). Recall the definition of Ft,R(ψ) from (2.30). We recall that ξ t (x) =
α2

t ξt (�xαt�) and rewrite

〈
Ft,R(ξ t ∧ M)K/ρ

〉 = 〈(
α−d

t

∑
z∈B

exp

{
1

ρ

(
α2

t ξt (z) ∧ M
)})Dt

〉
, (2.34)

where we abbreviated Dt = Kt/α2
t and B = B3Rαt . (For the ease of notation, we assume that Dt and 3Rαt are

integers.)
Now we calculate the right-hand side with the help of elementary combinatorics. We denote by M(Dt )

1 (B) = {μ ∈
( 1
Dt

N0)
B :

∑
b∈B μ(b) = 1} the set of probability vectors μ on B such that Dtμ has solely integer coefficients. Then

we have

l.h.s. of (2.34) = α
−dDt
t

∑
z1,z2,...,zDt ∈B

〈∏
b∈B

exp

{(
α2

t

ρ
ξt (b) ∧ M

ρ

)
#{i: zi = b}

}〉

= α
−dDt
t

∑
μ∈M(Dt )

1 (B)

#
{
z ∈ BDt : #{i: zi = b} = Dtμ(b),∀b

} ∏
b∈B

〈
etμ(b)(ξt (0)∧(M/α2

t ))K/ρ
〉

= α
−dDt
t

∑
μ∈M(Dt )

1 (B)

Dt !∏
b∈B(Dtμ(b))!

∏
b∈B

〈
etμ(b)(ξt (0)∧(M/α2

t ))K/ρ
〉
. (2.35)

Use Stirling’s formula and recall that Dt = Kt/α2
t to deduce that, uniformly in μ ∈ M(Dt )

1 (B),

α
−dDt
t

Dt !∏
b∈B(Dtμ(b))! = eo(t/α2

t ) exp

{
−K

t

α2
t

∑
b∈B

μ(b) log
(
μ(b)αd

t

)}
. (2.36)

Now we analyse the last product on the right-hand side of (2.35). We use the formula E[X] = ∫ ∞
0 P(X > s)ds for

nonnegative random variables X, introduce an auxiliary variable N > 0 (which will be chosen later) and apply the
Markov inequality with the map s �→ sN . Then we make the change of measure via s = exp{ t

αd+2
t

r}, which implies
ds
dr

= t

αd+2
t

exp{ t

αd+2
t

r}. We use the abbreviation a = K
ρ

μ(b)αd
t . Hence, we have, for any Q ≥ 0,

〈
etμ(b)(ξt (0)∧M/α2

t )K/ρ
〉 ≤ etQ/αd+2

t +
∫ exp{tMa/αd+2

t }

exp{tQ/αd+2
t }

Prob
[
e(tξt (0)a)/αd

t > s
]

ds

≤ etQ/αd+2
t +

∫ exp{tMa/αd+2
t }

exp{tQ/αd+2
t }

s−N

〈
exp

{
t

αd
t

ξt (0)aN

}〉
ds

= etQ/αd+2
t + t

αd+2
t

∫ Ma

Q

exp

{
r(1 − N)

t

αd+2
t

}〈
exp

{
t

αd
t

ξt (0)aN

}〉
dr. (2.37)

Now we use the definition ξt (z) = ξ(z) − H(t/αd
t )αd

t /t of the shifted potential (see (1.12)) and recall that H(s) =
log〈esξ(0)〉 and t/αd+2

t = κ(t/αd
t ), to proceed with

l.h.s. of (2.37) ≤ etQ/αd+2
t + t

αd+2
t

∫ Ma

Q

exp

{
−(N − 1)r

t

αd+2
t

}
exp

{
−aNH

(
t

αd
t

)}〈
exp

{
t

αd
t

ξ(0)aN

}〉
dr

= etQ/αd+2
t + t

αd+2
t

∫ Ma

Q

exp

{
− t

αd+2
t

(
(N − 1)r + aNH(t/αd

t ) − H(aNt/αd
t )

κ(t/αd
t )

)}
dr.

Now we have to distinguish the case of bounded aN , where we can use precise asymptotics in (1.6) for the last
quotient, and the case of arbitrarily large aN , where we can only bound the last quotient. Introduce a new parameter
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L > 0, which will later be chosen large enough. First we handle those a satisfying a ≤ L, and we now pick N =
er/aρ/ae. Note that aN lies then in the interval [ 1

e , eM/ρ

e ]. Hence, we may use the asymptotics in (1.6). This gives,
picking Q = 0,

l.h.s. of (2.37) ≤ 1 + eo(t/αd+2
t )

∫ Ma

0
exp

{
− t

αd+2
t

(
(N − 1)r − ρaN log(aN)

)}
dr

= 1 + eo(t/αd+2
t )

∫ Ma

0
exp

{
− t

αd+2
t

(
−r + ρ

e
er/(aρ)

)}
dr.

The term −r + ρ
e er/(aρ) is minimal for r = ρa log(ae) with value −ρa log(a). Hence, we may estimate for a ≤ L as

follows.

l.h.s. of (2.37) ≤ 2 + eo(t/αd+2
t )Ma exp

{
t

αd+2
t

ρa log(a)

}

≤ eo(t/αd+2
t ) exp

{
t

αd+2
t

ρa log(a)

}
. (2.38)

Now we turn to a satisfying a > L. This time we pick N = r1/δ(A(1 + δ))−1/δa−(1+δ)/δ , where we have picked
some small δ > 0. With A as in (2.18) we have, for every t large enough,

aNH(t/αd
t ) − H(aNt/αd

t )

κ(t/αd
t )

≥ −A · (aN)1+δ, aN ≥ 1.

This time we pick Q = A(1 + δ)L and note that aN ≥ 1 on the integration interval [A(1 + δ)L,Ma]. Hence, for
a > L, we may estimate

l.h.s. of (2.37) ≤ exp

{
A(1 + δ)L · t

αd+2
t

}
+ eo(t/αd+2

t )

∫ Ma

A(1+δ)L

exp

{
t

αd+2
t

(
r − Nr + A(Na)1+δ

)}
dr.

Note that we may estimate −Nr + A(Na)1+δ ≤ 0 in the exponent. Furthermore we extend the integration area to the
interval [0,Ma]. Hence,

l.h.s. of (2.37) ≤ exp

{
A(1 + δ)L · t

αd+2
t

}
+ eo(t/αd+2

t )

∫ Ma

0
exp

{
t

αd+2
t

r

}
dr

≤ eo(t/αd+2
t ) exp

{
t

αd+2
t

Ma

}
, (2.39)

where the last step is valid for M > A(1 + δ).
Now we go back to (2.35) and substitute (2.36), recall that a = K

ρ
μ(b)αd

t and substitute (2.38) for a ≤ L and (2.39)
for a > L. We now write Lρ/K instead of L and obtain

l.h.s. of (2.34) ≤ eo(t/α2
t )

∑
μ∈M(Dt )

1 (B)

(∏
b∈B

exp

{
− t

α2
t

Kμ(b) log
(
μ(b)αd

t

)})

×
( ∏

b∈B:μ(b)αd
t ≤L

exp

{
t

αd+2
t

Kμ(b)αd
t log

(
K

ρ
μ(b)αd

t

)})

×
( ∏

b∈B:μ(b)αd
t >L

exp

{
t

αd+2
t

M
K

ρ
μ(b)αd

t

})
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= eo(t/α2
t )

∑
μ∈M(Dt )

1 (B)

exp

{
t

α2
t

K log

(
K

ρ

) ∑
b∈B:μ(b)αd

t ≤L

μ(b)

}

× exp

{
t

α2
t

∑
b∈B:μ(b)αd

t >L

(
M

K

ρ
μ(b) − Kμ(b) log

(
μ(b)αd

t

))}
. (2.40)

Estimate the last term by

t

αd+2
t

∑
b∈B:μ(b)αd

t >L

(
M

K

ρ
μ(b)αd

t − Kμ(b)αd
t log

(
μ(b)αd

t

)) ≤ t

α2
t

∑
b∈B:μ(b)αd

t >L

μ(b)

(
M

K

ρ
− K logL

)
,

which is nonpositive for L large enough (only depending on M , K and ρ). Now observe that
∑

b∈B μ(b) = 1 and that

the cardinality of M(Dt )
1 (B) is eo(t/α2

t ). This gives that

lim
t→∞

α2
t

t
log

〈
Ft,R(ξ t ∧ M)K/ρ

〉 = lim
t→∞

α2
t

t
log

(
l.h.s. of (2.34)

) ≤ K log
K

ρ
,

and the assertion (i) is proved.
Now we prove assertion (ii). We use the exponential Chebyshev inequality and (i) as follows. We split the event

{ξ t ∧ M ∈ Dc
β,R} = {|L3R(ξ t ∧ M) − ρ| > β} into the events {L3R(ξ t ∧ M) > ρ + β} and {L3R(ξ t ∧ M) < ρ − β}.

Let us consider only the first of these events, the other is handled in the same way. On this event, we multiply both
sides of the inequality with e/ρ, take logs, multiply with βtα(t)−2 and take exp. This gives, recalling the definition
of Ft,R(ψ) in (2.30),

1{L3R(ξ t∧M)>ρ+β} = 1{Ft,R(ξ t∧M)β/ρ>exp{tα−2
t β log(e(1+β/ρ))}}

≤ Ft,R(ξ t ∧ M)β/ρ exp

{
− t

α2
t

β log

(
e

(
1 + β

ρ

))}
.

Hence, we can estimate, with the help of assertion (i),

〈
Ft,R(ξ t ∧ M)1{L3R(ξ t∧M)>ρ+β}

〉 ≤ 〈
Ft,R(ξ t ∧ M)β/ρ+1〉 exp

{
− t

α2
t

β log

(
e

(
1 + β

ρ

))}

≤ eo(t/α2
t ) exp

{
t

α2
t

ρ

[(
β

ρ
+ 1

)
log

(
β

ρ
+ 1

)
− β

ρ
− β

ρ
log

(
1 + β

ρ

)]}

= eo(t/α2
t ) exp

{
t

α2
t

ρ

[
log

(
1 + β

ρ

)
− β

ρ

]}
.

Since the term in square brackets is negative and does not depend on R nor on M , the proof is complete. �

3. The variational formulas

In this section we identify the constant χ appearing in Theorem 1.2 in terms of a “dual” variational problem which will
be of importance. Furthermore, we prove a minimisation property of that formula: every asymptotically minimising
sequence converges, along a suitable subsequence, after appropriate spatial translation, towards the minimiser of the
formula in L2(Rd)-sense. This is one of the crucial ingredients of the subsequent proof of Lemma 2.5, the last open
step in the proof of Proposition 2.4.

Recall the parameter ρ ∈ (0,∞) from Assumption (AB). Then [12], Proposition 1.11, identifies χ as follows.
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Lemma 3.1 (Dual representation of χ ). For any g ∈ H 1(Rd),

H
(
g2) = ρ

∫
Rd

g2(x) logg2(x)dx ∈ [−∞,∞) (3.1)

is well defined. Furthermore, L and H on L2(Rd) are Legendre transform of each other, more precisely,

L(ψ) = sup
g∈H 1(Rd )

(〈
g2,ψ

〉 − H
(
g2)) and H

(
g2) = sup

ψ∈C(Rd )

(〈
g2,ψ

〉 − L(ψ)
)
. (3.2)

Furthermore,

χ = inf
g∈H 1(Rd ):‖g‖2=1

{‖∇g‖2
2 − H

(
g2)}. (3.3)

Moreover, the minimum in (3.3) is attained, uniquely up to translation, at the Gaussian density

ĝ2(x) =
(

ρ

π

)d/2

e−ρ|x|2 = 1

e
eψ̂(x)/ρ, x ∈ R

d .

The function ĝ is the unique L2-normalized positive eigenfunction of the operator � + ψ̂ with eigenvalue λ(ψ̂) =
ρ − ρd + ρ d

2 log ρ
π

. Furthermore, L(ψ̂) = ρ.

The main point in the proof of Lemma 3.1 is the well-known logarithmic Sobolev inequality,

‖∇g‖2
2 ≥ H

(
g2) + ρd

(
1 − 1

2
log

ρ

π

)
, g ∈ L2(

R
d
)
,‖g‖2 = 1, (3.4)

with equality if and only if g is equal to ĝ; see, e.g., [13], Theorem 8.14.
Now we consider the infimum in (3.3) under the additional constraint that any translation of g2 is away from the

minimizer ĝ2 introduced in Lemma 3.1 in L1(Rd)-sense, i.e.,

χ(ε) = inf
{‖∇g‖2

2 − H
(
g2): g ∈ H 1(

R
d
)
,‖g‖2 = 1,∀x ∈ R

d :
∥∥g2(x + ·) − ĝ2(·)∥∥1 ≥ ε

}
. (3.5)

The following lemma says that, given any L2-normalised sequence (gn)n of approximate minimisers of g �→
‖∇g‖2

2 − H(g2), there is some shift xn ∈ R
d such that, along some subsequence, g2

n(xn + ·) converges in L1(Rd)

towards the Gaussian density ĝ2 introduced in Lemma 3.1. Let us remark that a similar result is obtained in [4] using
a different approach. It is shown there that, for any L2-normalised g ∈ H 1(Rd),

‖∇g‖2
2 − 2π

∫
g2 logg2 ≥ χ + 2πH

(|Fg|2|2d/2e−2π|x|2), (3.6)

where Fg(x) = ∫
Rd e−2πix·yg(y)dy is the Fourier transform, and H denotes the relative entropy between probability

measures with the respective densities. Note that the latter density is equal to the Gaussian density ĝ2 with ρ = 2π;
by χ we mean our parameter with precisely that choice of ρ. Certainly, (3.6) can easily be generalised from 2π

to any value of ρ. However, the result in (3.6) is not sufficient for our purposes since we found no way to make
the entropic distance between two densities used in (3.6) compatible with our large-deviations arguments for the
normalised random walk occupation measures. Neither we were able to estimate the quotient on the left-hand side
of (1.17) in terms of anything that involves the entropy between the square of a Fourier transform of the squareroot
of a density and the Gaussian density, nor we able to apply useful probabilistic techniques to it if the distance dist
introduced in (1.16) is replaced by some entropic distance in the above spirit. Hence, we do not use (3.6) in our proof.

We also would like to mention that the discrete variant of the variational formula in (3.3) (i.e., where the Laplace
operator in R

d is replaced by its discrete version in Z
d ) has been analysed in detail in [7], Theorem 2.II and its dual

variant in [9], Proposition 1.1 and Lemma 3.2. These are the formulas that appear in the analysis of the parabolic
Anderson model in the universality class of the double-exponential distribution.
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Lemma 3.2. For any ε > 0, χ(ε) > χ .

Proof. It is sufficient to show that, for any sequence (gn)n in H 1(Rd) such that ‖gn‖2 = 1 for all n and
limn→∞(‖∇gn‖2

2 − ρ
∫

gn
2 log(g2

n)) = χ , there is a suitable shift xn ∈ R
d such that, along a suitable subsequence,

limn→∞ dist(g2
n(xn + ·), ĝ2(·)) = 0. Let (gn)n be such a sequence. Hence, for some K > 0,

‖∇gn‖2
2 − ρ

∫
gn

2 log
(
gn

2) ≤ K, n ∈ N. (3.7)

Now we show that (‖∇gn‖2)n is bounded: In the case d ≥ 3 we use Jensen’s inequality and the Sobolev inequality
([13], Theorem 8.3), to estimate

‖∇gn‖2
2 ≤ K + ρ

∫
g2

n log
(
g2

n

) = K + ρ
d − 2

2

∫
g2

n log
(
g

4/(d−2)
n

)
≤ K + ρ

d − 2

2
log

(∫
g

2d/(d−2)
n

)
≤ K + ρ

d − 2

2
log

(
C‖∇gn‖2d/(d−2)

2

)
, (3.8)

where C > 0 is a Sobolev constant that satisfies
∫

f 2d/(d−2) ≤ C‖∇f ‖2d/(d−2)

2 for any f ∈ L2d/(d−2)(Rd). Hence
(‖∇gn‖2)n is bounded and therefore (

∫
g2

n logg2
n)n as well. In a similar way, we see the boundedness of (‖∇gn‖2)n

also in d = 2, using the Sobolev inequality of [13], Theorem 8.5(ii). In dimension d = 1, we estimate, using the
Sobolev inequality of [13], Theorem 8.5(i),

‖∇gn‖2
2 ≤ K + ρ

∫
g2

n log
(
g2

n

) ≤ K + ρ

∫
g2

n log‖gn‖2∞ ≤ K + ρ log

(
1

2
‖∇gn‖2

2 + 1

2

)

and conclude as above.
Now we construct, for any n ∈ N and any small δ > 0 and any sufficiently large R = Rδ > 0, some xn(δ,R) ∈ R

d

such that∫
xn(δ,R)+QR

g2
n(y)dy ≥ 1 − δ. (3.9)

We pick a smooth auxiliary function Φ = ΦR : Rd → [0,1] satisfying supp(Φ) ⊂ QR and Φ ≡ 1 on QR−1, and we
put Φx(y) = Φ(x + y) for x, y ∈ R

d . Consider hn,x = Φx · gn. Then we have∫
Rd

‖hn,x‖2
2 dx =

∫
Rd

dy

∫
Rd

dx Φ2(x + y)g2
n(y) = ‖Φ‖2

2.

Similarly, we get∫
Rd

dx

∫
Rd

dy h2
n,x(y) log

(
h2

n,x(y)
) =

∫
Rd

dy g2
n(y)

∫
Rd

dx Φ2(x + y) log
(
Φ2(x + y)

) + ‖Φ‖2
2

∫
g2

n log
(
g2

n

)
=

∫
Φ2 log

(
Φ2) + ‖Φ‖2

2

∫
g2

n log
(
g2

n

)
.

Using the product rule of differentiation, we get∫
Rd

‖∇hn,x‖2
2 dx =

∫
Rd

dx

∫
Rd

dy
[
g2

n(y)
∣∣∇Φ(x + y)

∣∣2 + Φ2(x + y)
∣∣∇gn(y)

∣∣2

+ 2gn(y)Φ(x + y)∇Φ(x + y) · ∇gn(y)
]

= ‖∇Φ‖2
2 + ‖Φ‖2

2‖∇gn‖2
2 +

∫
Rd

gn(y)uΦ · ∇gn(y)dy,
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where uΦ = ∫
Rd dx ∇(Φ2)(x). Using the Cauchy–Schwarz inequality in the last term first for the Euclidean inner

product and afterwards for the integral and recalling that ‖gn‖2 = 1 and that C = supn∈N ‖∇gn‖2 is finite, we see that∫
Rd

‖∇hn,x‖2
2 dx ≤ ‖∇Φ‖2

2 + ‖Φ‖2
2‖∇gn‖2

2 + C|uΦ |.

Now fix δ > 0 and summarize the above estimates to obtain, for any n ∈ N,∫
Rd

dx

[
‖∇hn,x‖2

2 − ρ

∫
Rd

dy h2
n,x(y) log

(
h2

n,x(y)
) − (χ + δ)‖hn,x‖2

2

]

≤ ‖∇Φ‖2
2 + ‖Φ‖2

2

(
‖∇gn‖2

2 − ρ

∫
g2

n log
(
g2

n

) − χ − δ

)
+ C|uΦ | − ρ

∫
Φ2 log

(
Φ2)

= −‖Φ‖2
2

(
δ − o(1)

) + ‖∇Φ‖2
2 + C|uΦ | − ρ

∫
Φ2 log

(
Φ2),

where o(1) refers to n → ∞ (recall that (gn)n is asymptotically maximal in the definition (3.3) of χ ). It is possible to
choose R = Rδ so large that the right-hand side is negative. Indeed, since Φ equals one in QR−1 and equals zero in
Qc

R , all the terms ‖∇Φ‖2
2, |uΦ | and

∫
Φ2 log(Φ2) are of order Rd−1 as R → ∞, while ‖Φ‖2

2 is of order Rd . Since
the integral on the left-hand side is therefore also negative, there is some xn = xn(δ,R) ∈ R

d such that the integrand
is negative, that is,

∥∥∥∥∇ hn,xn

‖hn,xn‖2

∥∥∥∥2

2
− ρ

∫ (
hn,xn

‖hn,xn‖2

)2

log

(
hn,xn

‖hn,xn‖2

)2

≤ χ + δ + ρ log‖hn,xn‖2
2,

using some elementary manipulations. By definition of χ in (3.3), the left-hand side is no smaller than χ , and it
follows that δ + ρ log‖hn,xn‖2

2 is nonnegative. This in turn means that ‖hn,xn‖2
2 ≥ e−δ/ρ ≥ 1 − δ/ρ. Replacing δ/ρ by

δ, we have arrived at our first goal: the construction of some xn(δ,R) ∈ R
d such that (3.9) holds.

Now put xn = xn(
1
4 ,R1/4). We claim that the sequence (g2

n(−xn + ·))n∈N (conceived as probability measures
on R

d ) is tight. Indeed, for any δ ∈ (0, 1
4 ) and any n ∈ N, we pick Rδ and xn(δ,Rδ) as above. Since the masses

of g2
n both in the box xn(

1
4 ,R1/4) + QR1/4 and in the box xn(δ,Rδ) + QRδ exceed 3

4 , the two boxes must have an

nonempty intersection. Hence, the latter box is contained in the box xn(
1
4 ,R1/4) + QR1/4+2Rδ . Consequently, putting

R̃δ = R1/4 + 2Rδ ,∫
QR̃δ

g2
n(−xn + y)dy ≥

∫
xn(δ,Rδ)+QRδ

g2
n(y)dy ≥ 1 − δ.

This shows the tightness of (g2
n(−xn + ·))n∈N.

Now we use the Banach–Alaoglu theorem [13], Theorem 2.18 and [13], Theorems 8.6, 8.7 and 2.11. Since
(‖∇gn(−xn + ·)‖2)n is bounded, there is a subsequence of (gn(−xn + ·))n, still denoted (gn(−xn + ·))n, and
a g ∈ H 1(Rd) satisfying ‖g‖2 ≤ 1, such that gn(−xn + ·) converges to g weakly in L2(Rd) and strongly in
Lp(QR) for any p < 2d

d−2 in d ≥ 3 and for any p < ∞ in d ∈ {1,2} and for any R ∈ (0,∞) and almost every-

where, and ∇gn(−xn + ·) converges to ∇g weakly in L2(Rd). Furthermore, ‖∇g‖2
2 ≤ lim infn→∞ ‖∇gn‖2

2. Since
(g2

n(−xn + ·))n∈N is tight and by local L2-convergence, we also have that g is L2-normalized.
Now we argue that lim supn→∞

∫
g2

n log(g2
n) ≤ ∫

g2 logg2. To derive this for d ≥ 3, we first estimate the integrals
over complements of large boxes. A similar estimate as the one in (3.8) shows, for any R > 0 and n ∈ N,∫

Qc
R

g2
n(−xn + y) log

(
g2

n(−xn + y)
)

dy ≤ −
∫

Qc
R

g2
n(−xn + y)dy log

(∫
Qc

R

g2
n(−xn + y)dy

)

+ C

∫
Qc

R

g2
n(−xn + y)dy,
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where C > 0 is again a Sobolev constant. By tightness, the right-hand side vanishes as R → ∞. A similar argument
applies for d ≤ 2.

Now we turn to the integral over the interior of a box. Observe that, for any R > 0, the sequence g2
n logg2

n converges
in probability to g2 logg2 with respect to the normalized Lebesgue measure on QR , that is,

lim
n→∞

∫
QR

dy 1{|g2
n(−xn+y) log(g2

n(−xn+y))−g2(y) log(g2(y))|>η} = 0, η > 0,

as is easily deduced from the almost everywhere convergence of gn(−xn + ·) to g, using Lebesgue’s theorem. Fur-
thermore, (g2

n log(g2
n))n is uniformly integrable with respect to the normalized Lebesgue measure on QR , which is

seen, for d ≥ 3, as follows. Note that, for any p ∈ (1, d
d−2 ) and any β ∈ (0,1), there is c > 0 such that

∣∣x log(x)
∣∣ ≤ c

(|x|p + |x|β)
, x > 0, (3.10)

and recall that (‖g2
n‖p′)n and (‖gn‖2)n are bounded for any p′ with p < p′ < d

d−2 . From this it is easy to deduce

the uniform integrability on QR for d ≥ 3. A similar argument is used for d = 1,2. Hence limn→∞
∫
QR

g2
n log(g2

n) =∫
QR

g2 log(g2). Using the above, we even see that lim supn→∞
∫

Rd g2
n log(g2

n) ≤ ∫
Rd g2 log(g2).

Hence we see that g is a minimizer in the definition (3.3) of χ . Without loss of generality, we may therefore assume
that g is equal to ĝ introduced in Lemma 3.1. Since gn(−xn + ·) converges to ĝ on every compact subset of R

d in Lp

for any p ∈ (1, 2d
d−2 ) in d ≥ 3 and for any p < ∞ in d ≤ 2, and by compactness of (g2

n(−xn + ·), we have also that

g2
n(−xn + ·) converges towards ĝ in L2(Rd)-sense. This ends the proof. �

Now we show that the variational formula χ(ε) can be approximated by finite-box versions. Introduce

χR(ε) = inf

{
‖∇g‖2

2 − H
(
g2): g ∈ H 1(

R
d
)
,‖g‖2 = 1, supp(g) ⊂ Q3R,

∀x ∈ Q2R:
∫

QR

∣∣g2(x + y) − ĝ2(y)
∣∣dy ≥ ε

}
. (3.11)

Then χR = χR(0) = inf{‖∇g‖2
2 − H(g2): g ∈ H 1(Rd),‖g‖2 = 1, supp(g) ⊂ Q3R}.

Lemma 3.3 (Finite-box approximation of χ ). For any ε ≥ 0,

lim inf
R→∞ χR(ε) ≥ χ(ε). (3.12)

Proof. Let (gR)R≥1 be a family of L2-normalised functions gR ∈ H 1(Rd) satisfying supp(gR) ⊂ Q3R and∫
QR

|g2
R(x + y) − ĝ2(y)|dy ≥ ε for any x ∈ Q2R such that ‖∇gR‖2

2 − H(g2
R) converges towards lim infR→∞ χR(ε)

as R → ∞. Precisely as in the proof of Lemma 3.2, we see that, for some sequence Rn → ∞ as n → ∞, there are
suitable shifts xn ∈ R

d and some L2-normalised g ∈ H 1(Rd) such that gRn(xn + ·) converges towards g in L2(Rd)

sense and

lim inf
R→∞ χR(ε) = lim

n→∞
(‖∇gRn‖2

2 − H
(
g2

Rn

)) = ‖∇g‖2
2 − H

(
g2). (3.13)

By L2(Rd)-convergence of gRn(xn + ·) towards g, and since
∫
QR

|g2
R(x + y) − ĝ2(y)|dy ≥ ε for any x ∈ Q2R , we

know that g lies in the set of functions over which the infimum is taken in the definition (3.5) of χ(ε). Hence, the
right-hand side of (3.13) is not smaller than χ(ε), which finishes the proof. �

After these preparations, we finally can prove the last building block in the proof of Proposition 2.4.
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Proof of Lemma 2.5. Recall the definition of χR(β, ε, t) from (2.29); recall also (2.25), (2.27) and (2.5). We prove
(i) and (ii) jointly. Let ψt ∈ F (Q3R), depending on R > 0, β ∈ (0,∞] and ε ≥ 0, be an approximately maximizing
function in the definition (2.29) of −χR(β, ε, t). More precisely, we require that

λ
(t)
3R(ψt ) − ρ log

(
e

ρ
L3R(ψt )

)
≤ −χR(β, ε, t) + 1

t
.

By the two extra conditions, we have∣∣L3R(ψt ) − ρ
∣∣ ≤ β and dR

(
ψt(x + ·), ψ̂(·)) ≥ ε for any x ∈ Q2R.

By the first condition, we may pick some c ∈ R (to be precise, c = ρ log(ρ/L3R(ψt ))) such that

1 = 1

e

∫
Q3R

e(ψt (x)+c)/ρ dx and
∣∣1 − e−c/ρ

∣∣ ≤ β

ρ
. (3.14)

Since λ
(t)
3R(ψt + c) = λ

(t)
3R(ψt )+ c and L3R(ψt + c) = ec/ρ L3R(ψt ) and since L3R(ψt + c) = ρ by the choice of c, we

have

− lim inf
t→∞ χR(β, ε, t) = lim sup

t→∞
λ

(t)
3R(ψt + c) − ρ.

Recall the Rayleigh–Ritz formula λd
R(V ) = maxf ∈�2(BR):‖f ‖2=1(〈�df,f 〉 + 〈V,f 2〉) for potentials V :BR → R.

Hence, there is an �2-normalized function ft ∈ �2(Zd) in that is positive in B3Rαt and zero outside and satisfies

λ
(t)
3R(ψt + c) = α2

t λ
d
3Rαt

(
1

α2
t

[
ψd

t + c
]) = α2

t

〈
�dft , ft

〉 + 〈
ψd

t + c,f 2
t

〉
. (3.15)

For any i ∈ {1, . . . , d}, introduce g
(i)
t : Rd → [0,∞) defined by

g
(i)
t (x) = α

d/2
t

[
ft

(�xαt�
) + (

αtxi − �αtxi�
)(

ft

(�xαt� + ei

) − ft

(�xαt�
))]

,

where x = (xi)i=1,...,d , and ei ∈ R
d is the ith unit vector. Abbreviate x̃i = (xj )j �=i ∈ R

d−1 and denote g
(i)
t ,̃xi

(xi) =
g

(i)
t (x). For almost every x̃i ∈ R

d−1, the map g
(i)
t ,̃xi

is continuous and piecewise affine, and hence lies in H 1(R) with
support in [−3R,3R]. Now let (tn)n∈N be a sequence in (0,∞) with limn→∞ tn = ∞ such that the limit superior of
λ

(t)
3R(ψt + c) is realized along this sequence. Using Fubini’s theorem and Fatou’s lemma, one shows, in the same way

as in the proof of [12], Proposition 5.1, that

d∑
i=1

∫
Rd−1

dx̃i lim inf
n→∞

∫
R

dxi

∣∣(g(i)
n,̃xi

)′
(xi)

∣∣2
< ∞.

Furthermore, since |xi − �α(tn)xi�/α(tn)| ≤ α(tn)
−1, one also derives that

lim
n→∞

∥∥g
(i)
tn

− α(tn)
d/2ftn

(⌊
α(tn)·

⌋)∥∥
2 = 0.

Hence, one sees that, along some subsequence, for almost every x̃i ∈ R
d−1, g

(i)
tn,̃xi

converges towards some g
(i)
x̃i

∈
H 1(Rd). According to [13], Theorems 8.6 and 8.7, the convergence is strong in Lq for any q < 2d

d−2 for d ≥ 3 and

for all q < ∞ for d ∈ {1,2}, pointwise almost everywhere and weak in L2 for the gradients. Furthermore, as also is
shown in the proof of [12], Proposition 5.1, there is some L2-normalized g ∈ H 1(Rd) with support in Q3R such that
g(x) = g

(i)
x̃i

(xi) for almost all x ∈ R
d , and we have

lim sup
t→∞

α2
t

〈
�dft , ft

〉 ≤ −‖∇g‖2
2.
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Observe that, for any i ∈ {1, . . . , d},
〈
ψd

t , f 2
t

〉 =
∫

Rd

(
ψt(x)

)
ft

(�αtx�)2
αd

t dx

=
∫

Rd

(
ψt(x)

)(
g

(i)
t (x) − α

d/2
t

(
αtxi − �αtxi�

)(
ft

(�xαt� + ei

) − ft

(�xαt�
)))2 dx.

It is also clear from the proof of [12], Proposition 5.1, that the function in the brackets on the right-hand side has an
L2 distance to g

(i)
t that vanishes as t → ∞ and that g

(i)
t converges towards g strongly in L2. We write now gt instead

of g
(1)
t /‖g(1)

t ‖2; recall that limt→∞ ‖g(1)
t ‖2 = 1. Hence, we have

− lim inf
t→∞ χR(β, ε, t) = lim sup

t→∞
λ

(t)
3R(ψt + c) − ρ ≤ lim sup

n→∞
(
α2

tn

〈
�dftn, ftn

〉 + 〈
ψd

t + c,f 2
tn

〉) − ρ

≤ −‖∇g‖2
2 + lim sup

n→∞
〈
ψtn + c − ρ,g2

tn

〉
.

Now we employ the definition of H in (3.1) to rewrite

〈
ψtn + c − ρ,g2

tn

〉 = H
(
g2

tn

) − ρ

〈
g2

tn
, log

g2
tn

e(ψtn+c−ρ)/ρ

〉
.

Recall that gt is L2-normalized and that e(ψtn+c−ρ)/ρ is a probability density on Q3R by (3.14). Hence, the last term
is equal to the entropy between the two probability measures with densities 1

e e(ψtn+c)/ρ resp. g2
t . According to [6],

Example 6.2.17, we can estimate this entropy against the variational distance between these measures as follows.

〈
g2

tn
, log

g2
tn

e(ψtn+c−ρ)/ρ

〉
≥ 1

2

∥∥∥∥g2
tn

− 1

e
e(ψtn+c)/ρ

∥∥∥∥2

1,3R

,

where ‖ · ‖1,3R denotes the L1-norm on L1(Q3R). In the same way as in the proof of Lemma 3.2 (see around (3.10))
one sees that lim supn→∞ H(g2

tn
) ≤ H(g2). Hence,

− lim inf
t→∞ χR(β, ε, t) ≤ H

(
g2) − ‖∇g‖2

2 − ρ

2
lim inf
n→∞

∥∥∥∥g2
tn

− 1

e
e(ψtn+c)/ρ

∥∥∥∥2

1,3R

. (3.16)

Recall that g ∈ H 1(Rd) is L2-normalized with support in Q3R . Hence, the right-hand side is not larger than −χR , and
this ends the proof of Lemma 2.5(i), since we know from Lemma 3.3 that limR→∞ χR = χ .

However, for proving (ii), we have to work harder in order to get an upper bound that is strictly smaller. Recall
the definition of χR(ε) in (3.11). If g is bounded away from ĝ in the sense that

∫
QR

|g2(x + y) − ĝ2(y)|dy ≥ ε
4e for

any x ∈ Q2R , then we can estimate the first two terms on the right-hand side of (3.16) from above against −χR( ε
4e ),

which finishes the proof of Lemma 2.5(ii), since lim infR→∞ χR( ε
4e ) ≥ χ( ε

4e ) > χ by Lemmas 3.3 and 3.2. Hence, it
remains to consider the case that

∫
QR

|g2(x + y)− ĝ2(y)|dy < ε
4e for some x ∈ Q2R . Then we also have

∫
QR

|g2
tn
(x +

y) − ĝ2(y)|dy < ε
2e for all sufficiently large n, since gtn converges towards g in L2(Q3R). Now we estimate the last

term on the right-hand side of (3.16) as follows. Recall that ĝ2 = 1
e eψ̂/ρ and use the reversed triangle inequality to

estimate∥∥∥∥g2
tn

− 1

e
e(ψtn+c)/ρ

∥∥∥∥
1,3R

≥
∫

QR

∣∣∣∣1

e
e[(ψtn (x+y))+c]/ρ − g2

tn
(x + y)

∣∣∣∣dy

≥ ec/ρ

∫
QR

1

e

∣∣∣∣e(ψtn (x+y))/ρ − eψ̂(y)/ρ

∣∣∣∣dy

− ∣∣ec/ρ − 1
∣∣ ∫

QR

1

e
eψ̂(y)/ρ dy −

∫
QR

∣∣̂g2(y) − g2
tn
(x + y)

∣∣dy. (3.17)
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Recall that ψtn ∈ ΓR,ε , i.e., we have in particular that
∫
QR

1
e |e(ψtn (x+y))/ρ − eψ̂(y)/ρ |dy ≥ ε

e , see (2.5). Furthermore,

we use the estimate for c in (3.14) and the above mentioned one for the distance between g2
tn

and ĝ2 to see that, for
β > 0 small enough, the right-hand side of (3.17) is positive and may be estimated by∥∥∥∥g2

tn
− 1

e
e(ψtn+c)/ρ

∥∥∥∥
1,3R

≥ ec/ρ ε

e
− ec/ρ β

ρ
− ε

2e
. (3.18)

If one picks β > 0 so small that ec/ρ ≥ 3/4 and ec/ρ β
ρ

≤ ε
8e , then the right-hand side of (3.18) is not smaller than ε

8e .
This ends the proof. �
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