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Abstract. In this paper we derive the moderate deviation principle for stationary sequences of bounded random variables under
martingale-type conditions. Applications to functions of φ-mixing sequences, contracting Markov chains, expanding maps of the
interval, and symmetric random walks on the circle are given.

Résumé. Dans cet article, nous établissons un principe de déviation modérée pour des suites stationnaires de variables aléatoires
bornées sous différentes conditions projectives. Nous appliquons ces résultats aux suites φ-mélangeantes, à certaines chaînes de
Markov contractantes, aux transformations uniformément dilatantes de l’intervalle, ainsi qu’à la marche aléatoire symétrique sur
le cercle.
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1. Introduction

For the stationary sequence (Xi)i∈Z of centered random variables, define the partial sums and the normalized partial
sums process by

Sn =
n∑

j=1

Xj and Wn(t) = n−1/2
[nt]∑
i=1

Xi.

In this paper we are concerned with the moderate deviation principle for the normalized partial sums process Wn,
considered as an element of D([0,1]) (functions on [0,1] with left-hand side limits and continuous from the right),
equipped with the Skorohod topology (see Section 14 in [2]) for the description of the topology on D([0,1])). More
exactly, we say that the family of random variables {Wn,n > 0} satisfies the Moderate Deviation Principle (MDP) in
D[0,1] with speed an → 0 and good rate function I (·), if the level sets {x, I (x) ≤ α} are compact for all α < ∞, and
for all Borel sets

− inf
t∈Γ 0

I (t) ≤ lim inf
n

an log P
(√

anWn ∈ Γ
) ≤ lim sup

n
an log P

(√
anWn ∈ Γ

) ≤ − inf
t∈Γ̄

I (t). (1)
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The moderate deviation principle is an intermediate behavior between the central limit theorem (an = a) and large
deviations (an = a/n). Usually, MDP has a simpler rate function, inherited from the approximated Gaussian process,
and holds for a larger class of dependent random variables than the large deviation principle.

De Acosta and Chen [5] used the renewal theory to derive the MDP for bounded functionals of geometrically
ergodic stationary Markov chains. Puhalskii [21] and Dembo [10] applied the stochastic exponential to prove the MDP
for martingales. Starting from the martingale case and using the so-called coboundary decomposition due to Gordin
[18] (Xk = Mk + Zk − Zk+1, where Mk is a stationary martingale difference), Gao [17] and Djellout [15] obtained
the MDP for φ-mixing sequences with summable mixing rate. In the context of Markov chains, the coboundary
decomposition is known as the Poisson equation. Starting from this equation, Delyon, Juditsky and Liptser [9] proved
the MDP for n−1/2 ∑n

k=1 H(Yk), where H is a Lipschitz function, and Yn = F(Yn−1, ξn), where F satisfies |F(x, z)−
F(y, t)| ≤ κ|x − y| + L|z − t | with κ < 1, and (ξn)n≥1 is an iid sequence of random variables independent of Y0.
In their paper, the random variables are not assumed to be bounded: the authors only assume that there exists a
positive δ such that E(eδ|ξ1|) < ∞. They strongly used the Markov structure to derive some appropriate properties for
the coboundary (see their Lemma 4.2).

In this paper we propose a modification of the martingale approximation approach that allows to avoid the cobound-
ary decomposition and thus to enlarge the class of dependent sequences known to satisfy the moderate deviation
principle. Recent or new exponential inequalities are applied to justify the martingale approximation. The conditions
involved in our results are well adapted to a large variety of examples, including regular functionals of linear processes,
expanding maps of the interval and symmetric random walks on the circle.

The paper is organized as follows: In Section 2 we state the main results. A discussion of the conditions, clari-
fications, and some simple examples and extensions follow. Section 3 describes the applications, while Section 4 is
dedicated to the proofs. Several technical lemmas are proved in the Appendix.

2. Results

From now on, we assume that the stationary sequence (Xi)i∈Z is given by Xi = X0 ◦ T i , where T :Ω 	→ Ω is a
bijective bimeasurable transformation preserving the probability P on (Ω, A). For a subfield F0 satisfying F0 ⊆
T −1(F0), let Fi = T −i (F0). By ‖X‖∞ we denote the L∞-norm, that is the smallest u such that P(|X| > u) = 0.

Our first theorem and its corollary treat the so-called adapted case, X0 being F0-measurable and so the sequence
(Xi)i∈Z is adapted to the filtration (Fi )i∈Z.

Theorem 1. Assume that ‖X0‖∞ < ∞ and that X0 is F0-measurable. In addition, assume that

∞∑
n=1

n−3/2
∥∥E(Sn|F0)

∥∥∞ < ∞, (2)

and that there exists σ 2 ≥ 0 with

lim
n→∞

∥∥n−1E
(
S2

n|F0
) − σ 2

∥∥∞ = 0. (3)

Then, for all positive sequences an with an → 0 and nan → ∞, the normalized partial sums processes Wn(·) satisfy
(1) with the good rate function Iσ (·) defined by

Iσ (h) = 1

2σ 2

∫ 1

0

(
h′(u)

)2 du (4)

if simultaneously σ > 0, h(0) = 0 and h is absolutely continuous, and Iσ (h) = ∞ otherwise.

The following corollary gives simplified conditions for the MDP principle, which will be verified in several exam-
ples later on.
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Corollary 2. Assume that ‖X0‖∞ < ∞ and that X0 is F0-measurable. In addition, assume that

∞∑
n=1

n−1/2
∥∥E(Xn|F0)

∥∥∞ < ∞, (5)

and that for all i, j ≥ 1,

lim
n→∞

∥∥E(XiXj |F−n) − E(XiXj )
∥∥∞ = 0. (6)

Then the conclusion of Theorem 1 holds with σ 2 = ∑
k∈Z E(X0Xk).

The next theorem allows to deal with non-adapted sequences and it provides additional applications. Let F−∞ =⋂
n≥0 F−n and F∞ = ∨

k∈Z Fk .

Theorem 3. Assume that ‖X0‖∞ < ∞, E(X0|F−∞) = 0 almost surely, and X0 is F∞-measurable. Define the pro-
jection operators by Pj (X) = E(X|Fj ) − E(X|Fj−1). Suppose that (6) holds and that∑

j∈Z

∥∥P0(Xj )
∥∥∞ < ∞. (7)

Then the conclusion of Theorem 1 holds with σ 2 = ∑
k∈Z E(X0Xk).

2.1. Simple examples, comments and extensions

Comment 4 (φ-mixing sequences). Recall that if Y is a random variable with values in a Polish space Y and if M
is a σ -field, the φ-mixing coefficient between M and σ(Y ) is defined by

φ
(

M, σ (Y )
) = sup

A∈B(Y )

∥∥PY |M(A) − PY (A)
∥∥∞. (8)

For the sequence (Xi)i∈Z and positive integer m, let φm(n) = supim>···>i1≥n φ(M0, σ (Xi1, . . . ,Xim)) and let φ(k) =
φ∞(k) = limm→∞ φm(k) be the usual φ-mixing coefficient. It follows from Corollary 2 that if the variables are
bounded, the conclusion of Theorem 1 holds as soon as∑

k>0

k−1/2φ1(k) < ∞ and lim
k→∞φ2(k) = 0. (9)

The condition (9) improves on the one imposed by Gao [17], that is
∑

k>0 φ(k) < ∞, to get the MDP for bounded
random variables (see his Theorem 1.2).

Comment 5 (Application to the functional LIL). Since the variables are bounded, under the assumptions of Theo-
rem 1 or of Theorem 3, the MDP also holds in C[0,1] for the Donsker process

Dn(t) = Wn(t) + n−1/2(nt − [nt])X[nt]+1.

Hence, if σ 2 > 0, it follows from the proof of Theorem 1.4.1 in [14], that the process{(
2σ 2 log logn

)−1/2
Dn(t): t ∈ [0,1]} (10)

satisfies the functional law of the iterated logarithm. To be more precise, if S denotes the subset of C[0,1] consisting
of all absolutely continuous functions with respect to the Lebesgue measure such that h(0) = 0 and

∫ 1
0 (h′(t))2 dt ≤ 1,

then the process defined in (10) is relatively compact with a.s. limit set S . In the case of bounded random variables,
we then get new criteria to derive the functional LIL. In particular, the functional LIL holds for φ-mixing bounded
random variables satisfying (9).



456 J. Dedecker, F. Merlevède, M. Peligrad and S. Utev

Comment 6 (Linear processes). Let (ci)i∈Z be a sequence of real numbers in 
1(Z) (absolutely summable). Define
Xk = ∑

i∈Z ciεk−i where (εk)k∈Z is a strictly stationary sequence satisfying (6) and (7). Then, so does the sequence
(Xk)k∈Z, and the conclusion of Theorem 3 holds. In particular, the result applies if ε0 is F0-measurable, E(ε1|F0) = 0
and

lim
n→∞

∥∥E
(
ε2

0|F−n

) − E
(
ε2

0

)∥∥∞ = 0.

Comment 7 (Non-mixing in the ergodic sense example). The following simple example shows that Theorem 1 is
applicable to non-mixing in the ergodic theoretical sense sequences. Moreover it covers a strictly larger class of
examples than its Corollary 2. For all k ∈ Z, let Qk+1 = −Qk , where P(Q0 = ±1) = 1/2 and Xk = Qk + Yk , where
(Yk)k∈Z is an iid sequence of zero mean and bounded random variables, independent of Q0. We can easily check that
all the conditions of Theorem 1 hold while the conditions of Corollary 2 are not satisfied.

Comment 8 (Stationary ergodic martingales that do not satisfy MDP). Let Yk be the stationary discrete Markov
chain with the state space N and the transition kernel given by P(Y1 = j − 1|Y0 = j) = 1 for all j ≥ 1 and
P(Y1 = j |Y0 = 0) = P(τ = j) for j ∈ N with E(τ ) < ∞ and P(τ = 1) > 0 which implies that (Yk) is ergodic. Let
Xk = ξkI(Yk =0) where (ξk) is an iid sequence independent of (Yk) and such that P(ξk = ±1) = 1/2. Then Xk is a sta-
tionary ergodic martingale difference which is also a bounded function of an ergodic Markov chain. Straightforward
computations show that if τ does not have a finite exponential moment then there exists a positive sequence an → 0
with nan → ∞ for which (1) does not hold. Thus the MDP principle is not true in general for the stationary sequences
satisfying (5) without a certain form of condition (3). A similar example was suggested in [15], Remark 2.6.

Comment 9 (On Var (Sn) and Theorem 1). Note that if
∑∞

n=1 n−3/2‖E(Sn|F0)‖2 < ∞, then, by Peligrad and
Utev [19]

lim
n→∞

Var(Sn)

n
= σ 2 = E

(
X2

1

) +
∞∑

j=0

2−j E
(
S2j (S2j+1 − S2j )

)
.

On the other hand, we shall prove later on that condition (2) along with (6) are sufficient for the validity of (3).
Therefore the conclusion of Theorem 1 holds under (2) and (6) with σ 2 identified in this remark.

Comment 10 (Sequences that are not strictly stationary). The proof of Theorem 3 is based on the exponential in-
equality from Lemma 22, that was established without stationarity assumption. Therefore, Theorem 3 admits various
extensions to non-stationary sequences. The following slight generalization is motivated by the fixed design regres-
sion problem Zk = θqk + Xk , where the fixed design points are of the form qk = 1/g(k/n), the error process Xk

is a stationary sequence and we analyze the error of the estimator θ̂ = n−1 ∑n
k=1 Zkg(k/n). If {Xi}i∈Z satisfies the

conditions of Theorem 3, and if g is a Lipschitz function, then the process Wn = {n−1/2 ∑[nt]
i=1 g(i/n)Xi, t ∈ [0,1]}

satisfies (1) with the good rate function J (·) defined by

J (h) = 1

2σ 2

∫ 1

0

(
h′(u)

g(u)

)2

du, where σ 2 =
∑
k∈Z

E(X0Xk).

The proof of this result is omitted. It can be done by following the proof of Theorem 3. To be more precise, we start

by proving the MDP for the process Wn(t) = n−1/2 ∑[nv−1(t)]
i=1 g(i/n)Xi where v(t) = σ 2

∫ t

0 g2(x)dx. For Wn(·), the
rate function is Iσ (·) as in Theorem 1. To go back to the process Wn(·), use the change-of-time Wn = Wn ◦ v.

3. Applications

In this section we present applications to functions of φ-mixing processes, contracting Markov chains, expanding
maps of the interval and symmetric random walks on the circle. The proofs are given in Section 4.
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3.1. Functions of φ-mixing sequences

In this section, we are partly motivated by Djellout et al. [16], Theorem 2.7, who have proved the MDP for

Xk = f (Yk, . . . , Yk−
) − E
(
f (Yk, . . . , Yk−
)

)
, where Yk =

∑
i∈Z

ciεk−i . (11)

In their Theorem 2.7, Djellout et al. [16] assume that:

(i) (εi)i∈Z is an iid sequence;
(ii) (condition on ci ) the spectral density of Yk is continuous on [−π,π[;

(iii) (condition on ε0) ε0 satisfies the so-called LSI condition, which implies that E(exp(δε2
0)) < ∞ for some posi-

tive δ, and that the distribution ε0 has an absolutely continuous component with respect to the Lebesgue measure
with a strictly positive density on the support of μ [see their condition (2.1)];

(iv) (condition on f ) the functions ∂if are Lipschitz for i = 0, . . . , 
.

By applying our main results, we derive the Propositions 11 and 12. In the case where Xk is given by (11), the
Proposition 11 will allow us to obtain the MDP for a large class of functions. However, we require a stronger condition
than (ii), that is we assume that the sequence (ci)i∈Z is in 
1(Z), and instead of (iii), we suppose that ε0 takes its values
in some compact interval [a, b] (this assumption cannot be compared to the LSI condition (iii)). Our method allows to
link the regularity of f to the behavior of the coefficients (ci)i∈Z (in that case, the condition (16) given below means
that

∑
i∈Z wj(2(b − a)|ci |) < ∞ for any j = 0, . . . , 
, where wj is the modulus of continuity of f with respect to the

j th coordinate). In addition, our innovations may be dependent: more precisely, (εi)i∈Z is assumed to be a stationary
φ-mixing sequence.

We now describe our general results. Let (εi)i∈Z = (ε0 ◦ T i)i∈Z be a stationary sequence of φ-mixing random
variables with values in a subset A of a Polish space X . Starting from the definition (8), we denote by φε(n) the
coefficient φε(n) = φ(σ(εi, i ≤ 0), σ (εi, i ≥ n)).

Our first result is for non-adapted sequences, that is satisfying the representation (12). Let H be a function from
AZ to R satisfying the condition

C(A): for any x, y in AZ,
∣∣H(x) − H(y)

∣∣ ≤
∑
i∈Z

Δi1xi =yi
, where

∑
i∈Z

Δi < ∞.

Define the stationary sequence Xk = X0 ◦ T k by

Xk = H
(
(εk−i )i∈Z

) − E
(
H

(
(εk−i )i∈Z

))
. (12)

Note that Xk is bounded in view of C(A).

Proposition 11. Let (Xk)k∈Z be defined by (12), for a function H satisfying C(A). If
∑

k>0 φε(k) is finite, then the
conclusion of Theorem 1 holds with σ 2 = ∑

k∈Z E(X0Xk).

For adapted sequences, that is satisfying the representation (13), we can assume that H satisfies another type of
condition. Let H be a function from AN to R satisfying the condition

C′(A): for any i ≥ 0, sup
x∈AN,y∈AN

∣∣H(x) − H
(
x(i)y

)∣∣ ≤ Ri, where Ri decreases to 0,

the sequence x(i)y being defined by (x(i)y)j = xj for j < i and (x(i)y)j = yj for j ≥ i. Define the stationary sequence
Xk = X0 ◦ T k by

Xk = H
(
(εk−i )i∈N

) − E
(
H

(
(εk−i )i∈N

))
. (13)
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Proposition 12. Let (Xk)k∈Z be defined by (13), for a function H satisfying C′(A). If

∞∑

=1

R


∑
k≥


φε(k − 
)√
k

< ∞, (14)

then the conclusion of Theorem 1 holds with σ 2 = ∑
k∈Z E(X0Xk). In particular, the condition (14) holds as soon as

1.
∑

k>0 φε(k) < ∞ and
∑

k>0 k−1/2Rk < ∞.
2.

∑
k>0 Rk < ∞ and

∑
k>0 k−1/2φε(k) < ∞.

Application to functions of linear processes
Assume that εi takes its values in a compact interval A = [a, b] of R, and let (ci)i∈Z be a sequence of real numbers in

1(Z). Let m = infx∈AZ

∑
i∈Z cixi and M = supx∈AZ

∑
i∈Z cixi . For a function f from [m,M]Z to R, let wi be the

modulus of continuity of f with respect to the ith coordinate, that is

wi(h) = sup
x∈[m,M]Z, t∈[m,M], |xi−t |≤h

∣∣f (x) − f
(
x(i,t)

)∣∣,
the sequence x(i,t) being defined by x

(i,t)
j = xj for j = i and x

(i,t)
i = t . Assume that

for any x, y in [m,M]Z,
∣∣f (x) − f (y)

∣∣ ≤
∑
i∈Z

wi

(|xi − yi |
)
< ∞.

Define the random variables Yk = ∑
i∈Z ciεk−i , and let

Xk = f
(
(Yk−i )i∈Z

) − E
(
f

(
(Yk−i )i∈Z

))
(15)

(note that (15) is a generalization of (11)). Clearly, Xk may be written as in (12), for a function H from AZ to R.
Moreover, H satisfies C(A) with Δi ≤ ∑


∈Z w
(2(b − a)|ci−
|) provided that∑
i∈Z

∑

∈Z

w


(
2(b − a)|ci |

)
< ∞. (16)

From Proposition 11, if
∑

k>0 φε(k) < ∞ and if (16) holds, then the conclusion of Theorem 1 holds. In partic-
ular, the condition (16) holds as soon as there exist (bi)i∈Z in 
1(Z) and α in ]0,1] such that w
(h) ≤ b
|h|α and∑

i∈Z |ci |α < ∞. Two simple examples of such functions are:

1. f (x) = ∑
i∈Z gi(xi) for some gi such that |gi(x) − gi(y)| ≤ bi |x − y|α for any x, y in [m,M].

2. f (x) = �
q
i=phi(xi) for some hi such that |hi(x) − hi(y)| ≤ Ki |x − y|α for any x, y in [m,M].

Now, assume that ci = 0 for i < 0, so that Yk = ∑
i≥0 ciεk−i . If f is in fact a function of x through x0 only, we

simply denote by w = w0 its modulus of continuity over [m,M]. In that case Xk = f (Yk) − E(Yk) may be written
as in (13) for a function H satisfying C′(A) with Ri ≤ w(2|b − a|∑k≥i |ck|). From item 1 of Proposition 12, if∑

k>0 φε(k) < ∞ and if

∑
n≥1

n−1/2w

(
2|b − a|

∑
k≥n

|ck|
)

< ∞, (17)

then the conclusion of Theorem 1 holds. In particular, if |ci | ≤ Cρi for some C > 0 and ρ ∈]0,1[, the condition (17)
holds as soon as:∫ 1

0

w(t)

t
√| log t | dt < ∞.

Note that this condition is satisfied as soon as w(t) ≤ D| log(t)|−γ for some D > 0 and some γ > 1/2. In particular,
it is satisfied if f is α-Hölder for some α ∈]0,1].
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3.2. Contracting Markov chains

Let (Yn)n≥0 be a stationary Markov chain of bounded random variables with invariant measure μ and transition
kernel K . Denote by ‖ · ‖∞,μ the essential supremum norm with respect to μ. Let Λ1 be the set of 1-Lipschitz
functions. Assume that the chain satisfies the two following conditions:

there exist C > 0 and ρ ∈]0,1[ such that sup
g∈Λ1

∥∥Kn(g) − μ(g)
∥∥∞,μ

≤ Cρn, (18)

for any f,g ∈ Λ1 and any m ≥ 0 lim
n→∞

∥∥Kn
(
f Km(g)

) − μ
(
f Km(g)

)∥∥∞,μ
= 0. (19)

We shall see in the next proposition that if (18) and (19) are satisfied, then the MDP holds in D[0,1] for the sequence

Xn = f (Yn) − μ(f ) (20)

as soon as the function f belongs to the class L defined below.

Definition 13. Let L be the class of functions f from R to R such that |f (x) − f (y)| ≤ c(|x − y|), for some concave
and non-decreasing function c satisfying∫ 1

0

c(t)

t
√| log t | dt < ∞. (21)

Note that (21) holds if c(t) ≤ D| log(t)|−γ for some D > 0 and some γ > 1/2. In particular, L contains the class
of functions from [0,1] to R which are α-Hölder for some α ∈]0,1].

Proposition 14. Assume that the stationary Markov chain (Yn)n≥0 satisfies (18) and (19), and let Xn be defined
by (20). If f belongs to L, then the conclusion of Theorem 1 holds with

σ 2 = σ 2(f ) = μ
((

f − μ(f )
)2) + 2

∑
n>0

μ
(
Kn(f ) · (f − μ(f )

))
.

The proof of this proposition is based on the following lemma which has interest in itself.

Lemma 15. Let un = supg∈Λ1
‖Kn(g) − μ(g)‖∞,μ. Let f be a function from R to R such that |f (x) − f (y)| ≤

c(|x − y|) for some concave and non-decreasing function c. Then∥∥Kn(f ) − μ(f )
∥∥∞,μ

≤ c(un).

Remark 16. If un ≤ Cρn for a C > 0 and ρ ∈]0,1[, and if c(t) ≤ D| log(t)|−γ for D > 0 and γ > 0, then∥∥Kn(f ) − μ(f )
∥∥∞,μ

= O
(
n−γ

)
.

We now give two conditions under which (18) and (19) hold. Let [a, b] be a compact interval in which lies the
support of μ. For a Lipschitz function f , let Lip(f ) = supx,y∈[a,b] |f (x) − f (y)|/|x − y|. The chain is said to be
Lipschitz contracting if there exist κ > 0 and ρ ∈]0,1[ such that

Lip
(
Kn(f )

) ≤ κρn Lip(f ). (22)

Let BV be the class of bounded variation functions from [a, b] to R. For any f ∈ BV , denote by ‖df ‖ the total
variation norm of the measure df : ‖df ‖ = sup{∫ g df,‖g‖∞ ≤ 1}. The chain is said to be to be BV -contracting if
there exist κ > 0 and ρ ∈ [0,1[ such that∥∥dKn(f )

∥∥ ≤ κρn‖df ‖. (23)
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It is easy to see that if either (22) or (23) holds, then (18) and (19) are satisfied (to see that the condition (23)
implies (19), it suffices to note that it implies the same property for two BV functions f,g (see (52)), and that any
Lipshitz function from [a, b] to R is a BV functions).

Application to iterated random functions
The stationary bounded Markov chain (Yn)n≥0 with transition kernel K is one-step Lipschitz contracting if there exists
ρ ∈]0,1[ such that

Lip
(
K(f )

) ≤ ρ Lip(f ).

Note that if K is one-step Lipschitz contracting then (22) obviously holds with κ = 1. The one-step contraction is a
very restrictive assumption. However, it is satisfied if Yn = F(Yn−1, εn) for some iid sequence (εi)i>0 independent
of Y0, and some function F such that∥∥F(x, ε1) − F(y, ε1)

∥∥
1 ≤ ρ|x − y| for any x, y in R. (24)

Remark 17. Under a more restrictive condition on F than (24), namely∣∣F(x, z) − F(y, t)
∣∣ ≤ ρ|x − y| + L|z − t |, (25)

Delyon et al. [9] have proved the MDP for Xn = f (Yn) − μ(f ) when f is a Lipschitz function. In their paper, the
chain is not assumed to be bounded. It is only assumed that E(eδε1) < ∞ for some δ > 0, which implies the same
property for X1 (for a smaller δ) by using the inequality (25).

3.2.1. Application to expanding maps
Let T be a map from [0,1] to [0,1] preserving a probability μ on [0,1], and let

Xk = f ◦ T n−k+1 − μ(f ), Wn(t) = Wn(f, t) = n−1/2
[nt]∑
i=1

(
f ◦ T n−i+1 − μ(f )

)
.

Define the Perron–Frobenius operator K from L2([0,1],μ) to L2([0,1],μ) via the equality∫ 1

0
(Kh)(x)f (x)μ(dx) =

∫ 1

0
h(x)(f ◦ T )(x)μ(dx). (26)

The map T is said to be BV -contracting if its Perron–Frobenius operator is BV -contracting, that is satisfies (23). As
a consequence of Proposition 14, the following corollary holds.

Corollary 18. If T is BV -contracting, and if f belongs to BV ∪ L, then the conclusion of Theorem 1 holds with

σ 2 = σ 2(f ) = μ
((

f − μ(f )
)2) + 2

∑
n>0

μ
(
f ◦ T n · (f − μ(f )

))
.

Let us present a large class of BV -contracting maps. We shall say that T is uniformly expanding if it belongs to
the class C defined in [4], Section 2.1, p. 11. Recall that if T is uniformly expanding, then there exists a probability
measure μ on [0,1], whose density fμ with respect to the Lebesgue measure is a bounded variation function, and
such that μ is invariant by T . Consider now the more restrictive conditions:

(a) T is uniformly expanding.
(b) The invariant measure μ is unique and (T ,μ) is mixing in the ergodic-theoretic sense.

(c)
1

fμ

1fμ>0 is a bounded variation function.



Moderate deviations for stationary sequences of bounded random variables 461

Starting from Proposition 4.11 in [4], one can prove that if T satisfies the assumptions (a), (b) and (c) above, then it is
BV contracting (see for instance [7], Section 6.3). Some well-known examples of maps satisfying the conditions (a),
(b) and (c) are:

1. T (x) = βx − [βx] for β > 1. These maps are called β-transformations.
2. I is the finite union of disjoint intervals (Ik)1≤k≤n, and T (x) = akx + bk on Ik , with |ak| > 1.
3. T (x) = a(x−1 − 1) − [a(x−1 − 1)] for some a > 0. For a = 1, this transformation is known as the Gauss map.

Remark 19. The case where f (x) = x (that is Xn = T n −μ(T )) has already been considered by Dembo and Zeitouni
[11]. However, in this paper, the assumptions on T are more restrictive than the assumptions (a), (b) and (c) above.
In particular, they assume that there is a finite partition (Ij )1≤j≤m of [0,1] on which T restricted to Ik is C1 and
infx∈Ik

|T ′(x)| > 1, so that their result does not cover the case of the Gauss map (Item 3 above).

3.3. Symmetric random walk on the circle

Let K be the Markov kernel defined by

Kf (x) = 1

2

(
f (x + a) + f (x − a)

)
on the torus R/Z, with a irrational in [0,1]. The Lebesgue–Haar measure m is the unique probability which is invariant
by K . Let (ξi)i∈Z be the stationary Markov chain with transition kernel K and invariant distribution m. Let

Xk = f (ξk) − m(f ), Wn(t) = Wn(f, t) = n−1/2
[nt]∑
i=1

(
f (ξi) − m(f )

)
. (27)

From Derriennic and Lin [13], Section 2, we know that the central limit theorem holds for n−1/2Wn(f,1) as soon as
the series of covariances

σ 2(f ) = m
((

f − m(f )
)2) + 2

∑
n>0

m
(
f Kn

(
f − m(f )

))
(28)

is convergent, and that the limiting distribution is N (0, σ 2(f )). In fact the convergence of the series in (28) is equiv-
alent to∑

k∈Z∗

|f̂ (k)|2
d(ka,Z)2

< ∞, (29)

where f̂ (k) are the Fourier coefficients of f . Hence, for any irrational number a, the criterion (29) gives a class of
function f satisfying the central limit theorem, which depends on the sequence (d(ka,Z))k∈Z∗ . Note that a function f

such that

lim inf
k→∞ k

∣∣f̂ (k)
∣∣ > 0, (30)

does not satisfy (29) for any irrational number a. Indeed, it is well known from the theory of continued fraction that
if pn/qn is the nth convergent of a, then |pn − qna| < q−1

n , so that d(ka,Z) < k−1 for an infinite number of positive
integers k. Hence, if (30) holds, then |f̂ (k)|/d(ka,Z) does not even tend to zero as k tends to infinity.

Our aim in this section is to give conditions on f and on the properties of the irrational number a ensuring that the
MDP holds in D[0,1].

a is said to be badly approximable by rationals if for any positive ε,
(31)

the inequality d(ka,Z) < |k|−1−ε has only finitely many solutions for k ∈ Z.
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From Roth’s theorem the algebraic numbers are badly approximable (cf. Schmidt [22]). Note also that the set of badly
approximable numbers in [0,1] has Lebesgue measure 1.

In Section 5.3 of [8], it is proved that the condition (29) (and hence the central limit theorem for n−1/2Wn(f,1))
holds for any badly approximable number a as soon as

sup
k =0

|k|1+ε
∣∣f̂ (k)

∣∣ < ∞ for some positive ε. (32)

Note that, in view of (30), one cannot take ε = 0 in the condition (32).
In fact, for badly approximable numbers, the condition (32) implies also the MDP in D[0,1]:

Proposition 20. Suppose that a is badly approximable by rationals, i.e. satisfies (31). If the function f satisfies (32),
then the conclusion of Theorem 1 holds with σ 2 = σ 2(f ).

Note that, under the same conditions, the process {Wn(f, t), t ∈ [0,1]} satisfies the weak invariance principle in
D[0,1]. Indeed, to prove Proposition 20, we show that the conditions of Corollary 2 are satisfied, but these conditions
imply the weak invariance principle (see for instance [19]). From Comment 5, we also infer that the Donsker process
defined in (10) satisfies the functional law of the iterated logarithm.

4. Proofs

Since the proofs of our results are mainly based on some exponential bounds for the deviation probability of the
maximum of the partial sums for dependent variables, we present these inequalities, which have interest in themselves.

4.1. Exponential bounds for dependent variables

We state first the exponential bound from Proposition 2 in [20] that we are going to use in the proof of the main
theorem.

Lemma 21. Let (Xi)i∈Z be a stationary sequence of random variables adapted to the filtration (Fi )i∈Z. Then

P
(

max
1≤i≤n

|Si | ≥ t
)

≤ 4
√

e exp

(
−t2/2n

[
‖X1‖∞ + 80

n∑
j=1

j−3/2
∥∥E(Sj |F0)

∥∥∞

]2)
.

In the next lemma, we bound the maximal exponential moment of the stationary sequence by using the projective
criteria.

Lemma 22. Let {Yk}k∈Z be a sequence of random variables such that for all j , E(Yj |F−∞) = 0 almost surely and Yj

is F∞-measurable. Define the projection operators by Pj (X) = E(X|Fj ) − E(X|Fj−1). Assume that

∥∥Pk−j (Yk)
∥∥∞ ≤ pj and D :=

∞∑
j=−∞

pj < ∞.

Let {gk, k ∈ N} be a sequence of numbers and define,

Sk =
k∑

i=1

giYi, Mk = max
1≤j≤k

Sj , G2
n =

n∑
i=1

g2
i .

Then,

E exp(tMn) ≤ 4 exp

(
1

2
G2

nD
2t2

)
.
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In particular,

P
(

max
1≤k≤n

|Sk| ≥ x
)

≤ 8 exp

(
− x2

2G2
nD

2

)
.

Proof. Start with the decomposition

Yk =
∞∑

j=−∞
Pk−j (Yk) =

∞∑
j=−∞

bjPk−j (Yk)

bj

,

where bj = pj/D ≥ ‖Pk−j (Yk)‖∞/D, for any j ∈ Z. Then

Sm =
∞∑

j=−∞
bj

m∑
k=1

gkPk−j (Yk)

bj

.

Thus,

Mn ≤
∞∑

j=−∞
bj max

1≤m≤n

m∑
k=1

Pk−j (gkYk)

bj

=:
∞∑

j=−∞
bjM

(j)
n ,

where M
(j)
n denotes max1≤m≤n

∑m
k=1 gkPk−j (Yk)/bj .

Since exp(x) is convex and non-decreasing and bj ≥ 0 with
∑

j∈Z bj = 1,

E exp(tMn) ≤ E exp

( ∞∑
j=−∞

bj tM
(j)
n

)
≤

∞∑
j=−∞

bj E exp
(
tM

(j)
n

)
.

Consider the martingale difference Uk = gkPk−j (Yk)/bj . Since Zk = exp(t (U1 + · · · + Uk)/2) is a submartingale,
Doob’s inequality yields

E exp
(
tM

(j)
n

) = E
(

max
1≤k≤n

Z2
k

)
≤ 4EZ2

n = 4E exp
(
t (U1 + · · · + Un)

)
.

Applying Azuma’s inequality to the right-hand side, and noting that

‖Uk‖∞ = |gk| ‖Pk−j (Yk)‖∞
bj

≤ |gk|D,

we infer that

E exp
(
tM

(j)
n

) ≤ 4 exp

(
1

2
G2

nD
2t2

)
.

Since
∑

j∈Z bj = 1, we obtain that

E exp(tMn) ≤
∑
j∈Z

bj 4 exp

(
1

2
G2

nD
2t2

)
= 4 exp

(
1

2
G2

nD
2t2

)
.

Next, to derive the one-sided probability inequality we use the exponential bound with t = x/(G2
nD

2), so

P(Mn ≥ x) ≤ E exp(tMn) exp(−tx) = 4 exp

(
− x2

2G2
nD

2

)
.
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Finally, to derive the two-sided inequality we observe that the stationary sequence {−Yj } also satisfies the conditions
of the lemma. The proof is complete. �

The next technical lemma provides an exponential bound for any random vector plus a correction in terms of
conditional expectations (see also [23]).

Lemma 23. Let {Xi}1≤i≤n be a vector of real random variables adapted to the filtration {Fn}n≥1. Denote
B=sup1≤i≤n ‖Xi‖∞. Then, for all δ > 0 and c a natural number with cB/n ≤ δ/2, we have

P

(
max

1≤i≤n

∣∣∣∣∣1

n

i∑
u=1

Xu

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2n

64B2c

)
+ P

(
sup

1≤i≤[n/c]

∣∣∣∣∣1

c

ic∑
j=(i−1)c+1

E(Xj |F(i−1)c)

∣∣∣∣∣ ≥ δ

4

)
. (33)

Proof. Let c be a fixed integer and k = [n/c] (where, as before, [x] denotes the integer part of x). The initial step of
the proof is to divide the variables in consecutive blocks of size c and to average the variables in each block

Yi,c = 1

c

ic∑
j=(i−1)c+1

Xj , i ≥ 1.

Then, for all 1 ≤ i ≤ k we construct the martingale,

Mi,c =
i∑

j=1

(
Yj,c − E(Yj,c|F(j−1)c)

) =
i∑

j=1

Dj,c

and we use the decomposition

P

(
max

1≤j≤n

∣∣∣∣∣1

n

j∑
u=1

Xu

∣∣∣∣∣ ≥ δ

)
≤ P

(
max

1≤i≤k

∣∣∣∣∣1

k

i∑
j=1

Yj,c

∣∣∣∣∣ ≥ δ − cB

n

)
≤ P

(
max

1≤i≤k

∣∣∣∣∣1

k

i∑
j=1

Yj,c

∣∣∣∣∣ ≥ δ

2

)

≤ P
(

max
1≤i≤k

1

k
|Mi,c| ≥ δ

4

)
+ P

(
max

1≤i≤k

1

k

∣∣∣∣∣
i∑

j=1

E(Yj,c|F(j−1)c)

∣∣∣∣∣ ≥ δ

4

)

≤ P
(

max
1≤i≤k

1

k
|Mi,c| ≥ δ

4

)
+ P

(
max

1≤j≤k

∣∣E(Yj,c|F(j−1)c)
∣∣ ≥ δ

4

)
.

Next, we apply Azuma’s inequality to the martingale part and obtain,

P
(

max
1≤i≤k

|Mi,c| ≥ δk

4

)
≤ 2 exp

(
− δ2k2

32kB2

)
≤ 2 exp

(
− δ2n

64cB2

)
which implies that

P

(
max

1≤i≤n

∣∣∣∣∣1

n

i∑
u=1

Xu

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
− δ2n

64B2c

)
+ P

(
max

1≤i≤k

∣∣E(Yi,c|F(i−1)c)
∣∣ ≥ δ

4

)
proving the lemma. �

4.2. Some facts about the moderate deviation principle

This paragraph deals with some preparatory material. The following theorem is a result concerning the MDP for a
triangular array of martingale differences sequences. It follows from Theorem 3.1 and Lemma 3.1 of [21], (see also
[15], Proposition 1 and Lemma 2).
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Lemma 24. Let kn be an increasing sequence of integers going to infinity. Let {Dj,n}1≤j≤kn be a triangular ar-
ray of martingale differences adapted to a filtration Fj,n. Define the normalized partial sums process Zn(t) =
n−1/2 ∑[knt]

i=1 Di,n. Let an be a sequence of real numbers such that an → 0 and nan → ∞. Assume that ‖Dj,n‖∞ =
o(

√
nan) and that for all δ > 0, there exists σ 2 ≥ 0 such that

lim sup
n→∞

an log P

(∣∣∣∣∣1

n

kn∑
j=1

E
(
D2

j,n|F(j−1),n

) − σ 2

∣∣∣∣∣ ≥ δ

)
= −∞. (34)

Then, for the given sequence an the partial sums processes Zn(·) satisfy (1) with the good rate function Iσ (·) defined
in (4).

To be able to obtain the moderate deviation principle by approximation with martingales we state next a simple
approximation lemma from [12], Theorem 4.2.13, p. 130, called exponentially equivalence lemma.

Lemma 25. Let ξn(·) := {ξn(t), t ∈ [0,1]} and ζn(·) := {ζn(t), t ∈ [0,1]} be two processes in D([0,1]). Assume that
for any δ > 0,

lim sup
n→∞

an log P
(√

an sup
t∈[0,1]

∣∣ξn(t) − ζn(t)
∣∣ ≥ δ

)
= −∞.

Then, if the sequence of processes ξn(·) satisfies (1) then so does the sequence of processes ζn(·).

In dealing with dependent random variables, to brake the dependence, a standard procedure is to divide first the
variables in blocks. This technique introduces a new parameter, and so, in order to use a blocking procedure followed
by a martingale approximation, we have to establish a more specific exponentially equivalent approximation, as stated
in the following lemma:

Lemma 26. For any positive integer m, let kn,m be an increasing sequence of integers going to infinity. Let

{d(m)
j,n }1≤j≤kn,m be a sequence of triangular array of martingale differences adapted to a filtration F (m)

j,n . Define the

normalized partial sums process Z
(m)
n (t) = n−1/2 ∑[kn,mt]

i=1 d
(m)
i,n . Let an be a sequence of positive numbers such that

an → 0 and nan → ∞. Assume that for all m ≥ 1

sup
1≤j≤kn,m

∥∥d
(m)
j,n

∥∥∞ = o
(√

nan

)
as n → ∞ (35)

and that for all δ > 0, there exists σ 2 ≥ 0 such that

lim
m→∞ lim sup

n→∞
an log P

(∣∣∣∣∣1

n

kn,m∑
j=1

E
((

d
(m)
j,n

)2∣∣F (m)
(j−1),n

) − σ 2

∣∣∣∣∣ ≥ δ

)
= −∞. (36)

Let {ζn(t), t ∈ [0,1]} be a sequence of D[0,1]-valued random variables such that for all δ > 0,

lim
m→∞ lim sup

n→∞
an log P

(√
an sup

t∈[0,1]

∣∣ζn(t) − Z(m)
n (t)

∣∣ ≥ δ
)

= −∞. (37)

Then, the processes ζn(·) satisfy (1) with the good rate function Iσ (·) defined in (4).

Proof. Define the functions

A1(δ, n,m) = an log P
(

sup
t∈[0,1]

∣∣ζn(t) − Z(m)
n (t)

∣∣ ≥ δ
)
;
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A2(δ, n,m) = an log P

(
sup

t∈[0,1]

∣∣∣∣∣1

n

[kn,mt]∑
j=1

E
((

d
(m)
j,n

)2∣∣F (m)
(j−1),n

) − tσ 2

∣∣∣∣∣ ≥ δ

)
;

A3(δ, n,m) = log
(

sup
1≤j≤kn,m

∥∥d
(m)
j,n

∥∥∞
)

− log
(√

ann
)
.

Observe that the functions Ai, i = 1,2,3 satisfy the conditions of Lemma 30 from the Appendix and so, we can find
a sequence mn → ∞ such that the martingale difference sequence (d

(mn)
j,n ) satisfies the conditions of Lemma 24. We

then derive that the sequence of processes Z
(mn)
n (·) satisfies (1) and, by applying Lemma 25, so does the sequen-

ce ζn(·). �

4.3. Proof of Theorem 1

Let m be an integer and k = kn,m = [n/m] (where, as before, [x] denotes the integer part of x).
The initial step of the proof is to divide the variables in blocks of size m and to make the sums in each block

Xi,m =
im∑

j=(i−1)m+1

Xj , i ≥ 1.

Then we construct the martingales,

M
(m)
k =

[n/m]∑
i=1

(
Xi,m − E(Xi,m|F(i−1)m)

) :=
[n/m]∑
i=1

Di,m

and we define the process {M(m)
k (t): t ∈ [0,1]} by

M
(m)
k (t) := M

(m)
[kt] .

Now, we shall use Lemma 26 applied with d
(m)
j,n = Dj,m, and verify the conditions (36) and (37).

We start by proving (36). Notice first that {Di,m}i≥1 is a row-wise stationary sequence of bounded martingale
differences. We have to verify

lim
m→∞ lim sup

n→∞
an log P

(∣∣∣∣∣1

n

[n/m]∑
j=1

E
(
D2

j,m|F(j−1)m

) − σ 2

∣∣∣∣∣ ≥ δ

)
= −∞. (38)

Notice that

E
(
D2

j,m|F(j−1)m

) = E
(
X2

j,m|F(j−1)m

) − (
E(Xj,m|F(j−1)m)

)2

and that, by stationarity

1

n

∥∥∥∥∥
[n/m]∑
j=1

(
E(Xj,m|F(j−1)m)

)2

∥∥∥∥∥∞
≤ ‖E(Sm|F0)‖2∞

m
.

Also ∥∥∥∥∥1

n

[n/m]∑
j=1

E
(
X2

j,m|F(j−1)m

) − σ 2

∥∥∥∥∥∞
≤ ∥∥m−1E

(
S2

m|F0
) − σ 2

∥∥∞ +
(

1 − km

n

)
σ 2.
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Consequently

lim sup
n→∞

∥∥∥∥∥1

n

[n/m]∑
j=1

E
(
D2

j,m|F(j−1)m

) − σ 2

∥∥∥∥∥∞
≤ ‖E(Sm|F0)‖2∞

m
+ ∥∥m−1E

(
S2

m|F0
) − σ 2

∥∥∞

which is smaller than δ/2 provided m is large enough, by the first part of Lemma 29 from the Appendix and condi-
tion (3). This proves (38).

It remains to prove (37), that means in our notation that for any δ > 0

lim
m→∞ lim sup

n→∞
an log P

(√
an

n
sup

t∈[0,1]
∣∣S[nt] − M

(m)
k (t)

∣∣ ≥ δ

)
= −∞. (39)

Notice first that

sup
t∈[0,1]

∣∣S[nt] − M
(m)
k (t)

∣∣ ≤ sup
t∈[0,1]

∣∣∣∣∣
[nt]∑

i=[kt]m+1

Xi

∣∣∣∣∣ + sup
t∈[0,1]

∣∣∣∣∣
[kt]∑
i=1

E(Xi,m|F(i−1)m)

∣∣∣∣∣
≤ o

(√
nan

) + max
1≤j≤[n/m]

∣∣∣∣∣
j∑

i=1

E(Xi,m|F(i−1)m)

∣∣∣∣∣.
Then, by using Lemma 21 we derive that

an log P

(√
an

n
max

1≤j≤[n/m]

∣∣∣∣∣
j∑

i=1

E(Xi,m|F(i−1)m)

∣∣∣∣∣ ≥ δ

)

≤ an log
(
4
√

e
) − δ2m

2(‖E(Sm|F0)‖∞ + 80
∑∞

j=1 j−3/2‖E(Sjm|F0)‖∞)2
.

which is convergent to −∞ when n → ∞ followed by m → ∞, by Lemma 29.

4.4. Proof of Corollary 2 and Comment 9

Notice that obviously, by triangle inequality and changing the order of summation, (5) implies (2). So, in order to es-
tablish both Corollary 2 and Comment 9, we just have to show that condition (2) together with (6) imply condition (3).
This will be achieved by using the following two lemmas.

First let us introduce some notations. Let Sa,b = Sb − Sa and set

Δ̃r,∞ =
∞∑

j=r

2−j/2
∥∥E(S2j |F0)

∥∥∞, Δ∞ = ∥∥E
(
X2

1|F0
)∥∥1/2

∞ +
∞∑

j=0

2−j/2
∥∥E(S2j |F0)

∥∥∞.

By Peligrad and Utev [19], Δ̃0,∞ < ∞ is equivalent to (2).

Lemma 27. Assume that X0 is F0-measurable and that ‖E(X2
1|F0)‖∞ < ∞. Let n, r be integers such that 2r−1 <

n ≤ 2r . Then

∥∥E
(
S2

n|F0
)∥∥∞ ≤ n

(∥∥E
(
X2

1|F0
)∥∥1/2

∞ + 1

2

r−1∑
j=0

2−j/2
∥∥E(S2j |F0)

∥∥∞

)2

≤ nΔ2∞.

Moreover, under (2),∥∥n−1E
(
S2

n|I
) − η

∥∥∞ → 0 as n → ∞,
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where I is the σ -field of all T -invariant sets and

η = E
(
X2

1|I
) +

∞∑
j=0

2−j E
(
S2j (S2j+1 − S2j )|I

)
.

In particular, if E(XiXj |F−∞) = E(XiXj ), for any i, j in Z, then

η = σ 2 = E
(
X2

1

) +
∞∑

j=0

2−j E
(
S2j (S2j+1 − S2j )

)
.

Proof. The proofs of the first three statements are almost identical to the proof of the corresponding facts in Proposi-
tion 2.1 of [19]. The only changes are to replace everywhere the L2-norm ‖x‖ by the L∞-norm ‖x‖∞ and the usual
expectation E(X) by the conditional expectation E(X) = E(X|F0). The last statement follows from Proposition 2.12
in [3], since for all i, j ,

E(XiXj |I) = E
(
E(XiXj |F−∞)|I

) = E(XiXj ).

�

Lemma 28. Assume that X0 is F0-measurable and that ‖E(X2
1|F0)‖∞ < ∞. Suppose that the conditions (2) and (6)

are satisfied. Then,∥∥n−1E
(
S2

n|F0
) − σ 2

∥∥∞ → 0 as n → ∞.

Proof. By Lemma 27, it is enough to show that

1

n

∥∥E
(
S2

n|F0
) − E

(
S2

n

)∥∥∞ → 0 as n → ∞.

We prove this lemma by diadic recurrence. For t integer, denote

At,k = ∥∥E
(
S2

t |F−k

) − E
(
S2

t

)∥∥∞.

Then, by the properties of conditional expectation and stationarity, for all t ≥ 1

A2t,k = ∥∥E
(
S2

2t |F−k

) − E
(
S2

2t

)∥∥∞ ≤ ∥∥E
(
S2

t |F−k

) − E
(
S2

t

)∥∥∞
+ ∥∥E

(
S2

t,2t |F−k

) − E
(
S2

t

)∥∥∞ + 2
∥∥E(StSt,2t |F−k) − E(StSt,2t )

∥∥∞
≤ 2

∥∥E
(
S2

t |F−k

) − E
(
S2

t

)∥∥∞ + 2
∥∥E(StSt,2t |F−k)

∥∥∞ + 2
∣∣E(StSt,2t )

∣∣.
Using for the last two terms the bound from Lemma 27, the Cauchy–Schwartz inequality and stationarity, we have

A2t,k ≤ 2At,k + 4t1/2Δ∞
∥∥E(St |F0)

∥∥∞.

Whence, with the notation

Br,k = 2−r
∥∥E

(
S2

2r |F−k

) − E
(
S2

2r

)∥∥∞ = 2−rA2r ,k

by recurrence, for all r ≥ m and all k > 0, we derive

Br,k ≤ Br−1,k + 2(−r+3)/2Δ∞
∥∥E(S2r−1 |F0)

∥∥∞ ≤ Bm,k + 2Δ∞
r∑

j=m

2−j/2
∥∥E(S2j |F0)

∥∥∞.
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Therefore

2−r
∥∥E

(
S2

2r |F−k

) − E
(
S2

2r

)∥∥∞ ≤ Bm,k + 2Δ∞Δ̃m,∞. (40)

Now notice that, by stationarity and triangle inequality∥∥E
(
S2

2r |F0
) − E

(
S2

2r

)∥∥∞ ≤ ∥∥E
(
S2

2r |F−k

) − E
(
S2

2r

)∥∥∞ + ∥∥E
(
S2

2r − S2
k,k+2r |F0

)∥∥∞, (41)

and that by Lemma 27∥∥E
(
S2

2r − S2
k,k+2r |F0

)∥∥∞ ≤ ∥∥E
(
(S2r − Sk,k+2r )2|F0

)∥∥1/2
∞

∥∥E
(
(S2r + Sk,k+2r )2|F0

)∥∥1/2
∞

≤ 4k
∥∥E

(
X2

1|F0
)∥∥1/2

∞
∥∥E

(
S2

2r |F0
)∥∥1/2

∞

≤ 22+r/2k
∥∥E

(
X2

1|F0
)∥∥1/2

∞ Δ∞. (42)

Then, starting from (41) and using (40) and (42), we derive that for r ≥ m + 1,

2−r
∥∥E

(
S2

2r |F0
) − E

(
S2

2r

)∥∥∞ ≤ Bm,k + 2Δ∞Δ̃m,∞ + 2−r/2+2k
∥∥E

(
X2

1|F0
)∥∥1/2

∞ Δ∞.

As a consequence

lim sup
r→∞

2−r
∥∥E

(
S2

2r |F0
) − E

(
S2

2r

)∥∥∞ ≤ Bm,k + 2Δ∞Δ̃m,∞.

Then, we first let k → ∞ and by condition (6) it follows that limk→∞ Bm,k = 0. Then, we let m tend to infinity and
by condition (2), we derive

lim
r→∞ 2−r

∥∥E
(
S2

2r |F0
) − E

(
S2

2r

)∥∥∞ = 0.

To complete the proof of the lemma we use the diadic expansion n = ∑r−1
k=0 2kak , where ar−1 = 1 and ak ∈ {0,1} and

continue the proof as in Proposition 2.1 in [19]. �

4.5. Proof of Theorem 3

Fix a positive integer m and define the stationary sequence

ξj,m := E(Xj |Fj+m−1) − E(Xj |Fj−m).

Using a standard martingale decomposition we define

θj,m =
∞∑
t=0

E(ξj+t,m|Fj+m−1) =
2m−2∑
k=0

E(ξj+k,m|Fj+m−1)

and observe that

‖θ0,m‖∞ =
∥∥∥∥∥

2m−2∑
k=0

m−1∑
i=k−m+1

Pi(Xk)

∥∥∥∥∥∞
≤ 2m

∑
i∈Z

∥∥P0(Xi)
∥∥∞ < ∞. (43)

Then, E(θj+1,m|Fj+m−1) = θj,m − ξj,m and thus,

k∑
j=1

ξj,m = θ1,m − θk+1,m +
k∑

j=1

dj,m, (44)
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where dj,m := θj+1,m − E(θj+1,m|Fj+m−1) is a stationary bounded martingale difference.
Moreover,

k∑
j=1

Xj =
k∑

j=1

dj,m + Rk,m, (45)

where

Rk,m := θ1,m − θk+1,m +
k∑

j=1

[
Xj − E(Xj |Fj+m−1) + E(Xj |Fj−m)

]
.

First, we show that Rk,m is negligible for the moderate deviation principle. We notice that by (43) it is enough to
establish that

R′
k,m :=

k∑
j=1

[
Xj − E(Xj |Fj+m−1) + E(Xj |Fj−m)

]
is negligible. Observe that

Xj − E(Xj |Fj+m−1) + E(Xj |Fj−m) =
∑
|t |≥m

Pj−t (Xj ) and

∑
j∈Z

∥∥P0
(
Xj − E(Xj |Fj+m−1) + E(Xj |Fj−m)

)∥∥∞ ≤
∞∑

|k|≥m

∥∥P0(Xk)
∥∥∞ =: Dm. (46)

Now, the exponential inequality given in Lemma 22 entails that

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

E
[
Xj − E(Xj |Fj+m−1) + E(Xj |Fj−m)

]∣∣∣∣∣ ≥ δ

√
n

an

)
≤ 8 exp

(
− δ2n

an2nD2
m

)
.

The last inequality together with (7) and Lemma 25 reduces the theorem to the MDP principle for bounded stationary
martingale difference {dj,m; j ∈ Z}.

Then, by Lemma 26, it remains to verify that

lim
m→∞ lim sup

n→∞
an ln P

(∣∣∣∣∣1

n

n∑
j=1

(
E

(
d2
j,m|Fj+m−1

) − σ 2)∣∣∣∣∣ ≥ δ

)
= −∞.

In order to prove this convergence, by Lemma 23, applied with B = 2(
∑


∈Z ‖P0(X
)‖∞)2, it is enough to establish
that

lim
m→∞ lim sup

n→∞

∥∥∥∥∥1

n

n∑
j=1

(
E

(
d2
j,m|Fm−1

) − σ 2)∥∥∥∥∥∞
= 0.

Since {dj,m} is a martingale difference, it follows from the decomposition (44) and (43), that it remains to prove that

lim
m→∞ lim sup

n→∞

∥∥∥∥∥1

n
E

((
n∑

j=2m−1

ξj,m

)2∣∣∣Fm−1

)
− σ 2

∥∥∥∥∥∞
= 0. (47)

Write(
n∑

j=2m−1

ξj,m

)2

=
n∑

i=2m−1

ξ2
i,m + 2

n∑
i=2m−1

(N+i)∧n∑
j=i+1

ξi,mξj,m + 2
n∑

i=2m−1

n∑
j=N+i+1

ξi,mξj,m.
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Notice that, since ξj,m = ∑j+m−1
k=j−m+1 Pk(Xj ), we get

1

n

∥∥∥∥∥
n∑

i=2m−1

n∑
j=N+i+1

E(ξi,mξj,m|Fm−1)

∥∥∥∥∥∞

≤ 1

n

n∑
i=2m−1

∞∑
j=N+i+1

∥∥E(ξi,mξj,m|Fm−1)
∥∥∞

≤ 1

n

n∑
i=2m−1

i+m−1∑
k=i−m+1

∥∥Pk(Xi)
∥∥∞

∑

≥N

∥∥Pk(Xi+
)
∥∥∞ ≤

∑
i∈Z

∥∥P0(Xi)
∥∥∞

∑
|
|≥N/2

∥∥P0(X
)
∥∥∞ → 0

as N → ∞, uniformly in n, and so, (47) is implied by

lim
m→∞ lim sup

n→∞

∥∥∥∥∥1

n
E

(
n∑

i=2m−1

ξ2
i,m + 2

n∑
i=2m−1

(N+i)∧n∑
j=i+1

ξi,mξj,m

∣∣∣Fm−1

)
− σ 2

N

∥∥∥∥∥∞
= 0, (48)

where σ 2
N = E(X2

0) + 2E(X0X1) + · · · + 2E(X0XN−1). Write ξi,m = Xi + (ξi,m − Xi). By condition (6), we easily
get that

lim
m→∞ lim sup

n→∞

∥∥∥∥∥1

n
E

(
n∑

i=2m−1

X2
i + 2

n∑
i=2m−1

(N+i)∧n∑
j=i+1

XiXj

∣∣∣Fm−1

)
− σ 2

N

∥∥∥∥∥∞
= 0,

hence (48) holds since

‖Xi − ξi,m‖∞ ≤
∑

|k|≥m

∥∥P0(Xk)
∥∥∞ → 0 as m → ∞. �

4.6. Proof of Proposition 11

Let Fk = σ(εi, i ≤ k). From Theorem 4.4.7 in [1], there exists (ε′
i )i>0 distributed as (εi)i>0 and independent of F0

such that∥∥E(1{εk =ε′
k, for some k≥n}|F0)

∥∥∞ = φε(n).

Let (ε
(0)
i )i∈Z be the sequence defined by ε

(0)
i = εi if i ≤ 0 and ε

(0)
i = ε′

i if i > 0. Let (ε
(−1)
i )i∈Z be the sequence

defined by ε
(−1)
i = εi if i < 0, ε

(−1)
i = ε′

i if i > 0 and ε
(−1)
0 = x, where x ∈ A. Define now Zk = H((εk−i )i∈Z),

Z
(0)
k = H((ε

(0)
k−i )i∈Z) and Z

(−1)
k = H((ε

(−1)
k−i )i∈Z). We shall apply Theorem 3. Note first that (7) is equivalent to∑

i∈Z ‖P0(Zi)‖∞ < ∞. Now

P0(Zi) = E
(
Z

(0)
i |F0

) − E
(
Z

(−1)
i |F−1

) + E
(
Zi − Z

(0)
i |F0

) − E
(
Zi − Z

(−1)
i |F−1

)
.

Denoting by Eε(·) the conditional expectation with respect to ε, we infer from C(A) that∣∣E(
Z

(0)
i |F0

) − E
(
Z

(−1)
i |F−1

)∣∣ = ∣∣Eε

(
H

((
ε
(0)
i−j

)
j∈Z

) − H
((

ε
(−1)
i−j

)
j∈Z

))∣∣ ≤ Δi.

Now, from C(A) again,

∣∣E(
Zi − Z

(0)
i |F0

)∣∣ ≤
∞∑

k=1

Δi−kE(1εk =ε′
k
|F0) and E

(
Zi − Z

(−1)
i |F−1

) ≤ Δi +
∞∑

k=1

Δi−kE(1εk =ε′
k
|F−1).
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Consequently, by the φ-mixing property, we obtain the upper bound

∑
i∈Z

∥∥P0(Zi)
∥∥∞ ≤ 2

∑
i∈Z

Δi + 2
∑
i∈Z

∞∑
k=1

Δi−kφε(k),

which is finite provided that
∑

i∈Z Δi < ∞ and
∑

k>0 φε(k) < ∞. It remains to prove (6). Let X
(0)
k = Z

(0)
k − E(Z

(0)
k ).

We have∥∥E(XkXl |F0) − E(XkXl)
∥∥∞ ≤ ∥∥E

(
X

(0)
k X

(0)
l |F0

) − E
(
X

(0)
k X

(0)
l

)∥∥∞
+ ∥∥E

(
Xk

(
Xl − X

(0)
l

)|F0
) − E

(
Xk

(
Xl − X

(0)
l

))∥∥∞
+ ∥∥E

(
X

(0)
l

(
Xk − X

(0)
k

)|F0
) − E

(
X

(0)
l

(
Xk − X

(0)
k

))∥∥∞. (49)

Clearly, by C(A) and the φ-mixing property,

∥∥E
(
Xk

(
Xl − X

(0)
l

)|F0
) − E

(
Xk

(
Xl − X

(0)
l

))∥∥∞ ≤ 4‖Xk‖∞
∞∑

k=1

Δl−kφε(k),

which tends to zero as l tends to infinity. In the same way

lim
k→0

∥∥E
(
X

(0)
l

(
Xk − X

(0)
k

)|F0
) − E

(
X

(0)
l

(
Xk − X

(0)
k

))∥∥∞ = 0.

Let Hk = H − E(Z
(0)
k ). Let (ηi)i∈Z be distributed as (εi)i∈Z and independent of ((εi)i∈Z, (ε′

i )i>0), and let (η
(0)
i )i∈Z

be the sequence defined by η
(0)
i = ηi if i ≤ 0 and η

(0)
i = ε′

i if i > 0. With these notations, we have

E
(
X

(0)
k X

(0)
l |F0

) − E
(
X

(0)
k X

(0)
l

) = Eε

(
Hk

((
ε
(0)
k−i

)
i∈Z

)(
Hl

((
ε
(0)
l−i

)
i∈Z

) − Hl

((
η

(0)
l−i

)
i∈Z

)))
+ Eε

(
Hl

((
η

(0)
l−i

)
i∈Z

)(
Hk

((
ε
(0)
k−i

)
i∈Z

) − Hk

((
η

(0)
k−i

)
i∈Z

)))
. (50)

Consequently, applying C(A) once more, we have that∥∥E
(
X

(0)
k X

(0)
l |F0

) − E
(
X

(0)
k X

(0)
l

)∥∥∞ ≤ ∥∥X
(0)
k

∥∥∞
∑
i≥l

Δi + ∥∥X
(0)
l

∥∥∞
∑
i≥k

Δi,

which tends to zero as k and l tends to infinity. This completes the proof.

4.7. Proof of Proposition 12

We shall apply Corollary 2. We use the same notations as for the proof of Proposition 11. With these notations, we
have

E(Xk|F0) = E
(
X

(0)
k |F0

) + E
(
Xk − X

(0)
k |F0

)
.

Now, applying C′(A),

∣∣E(
Xk − X

(0)
k |F0

)∣∣ ≤
k∑

i=1

Rk−iE(1εi =ε′
i
|F0) +

k∑
i=1

Rk−iP
(
εi = ε′

i

)
,

and by the φ-mixing property,

∥∥E
(
Xk − X

(0)
k |F0

)∥∥∞ ≤ 2
k∑

i=1

Rk−iφε(i). (51)
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Now, by C′(A) again,∥∥E
(
X

(0)
k |F0

)∥∥∞ = ∥∥Eε

(
H

((
ε
(0)
k−i

)
i∈Z

) − H
((

η
(0)
k−i

)
i∈Z

))∥∥∞ ≤ Rk.

Consequently, since φε(0) > 0, the condition (5) is implied by (14). It remains to prove (6). We start from the decom-
position (49). By (51),

∥∥E
(
Xk

(
Xl − X

(0)
l

)|F0
) − E

(
Xk

(
Xl − X

(0)
l

))∥∥∞ ≤ 4‖Xk‖∞
l∑

i=1

Rl−iφε(i) and

∥∥E
(
X

(0)
l

(
Xk − X

(0)
k

)|F0
) − E

(
X

(0)
l

(
Xk − X

(0)
k

))∥∥∞ ≤ 4
∥∥X

(0)
l

∥∥∞
k∑

i=1

Rk−iφε(i).

Hence, in view of (14), these two terms converge to zero as k and l tend to infinity. From (50) and condition C′(A),
we have that∥∥E

(
X

(0)
k X

(0)
l |F0

) − E
(
X

(0)
k X

(0)
l

)∥∥∞ ≤ ∥∥X
(0)
k

∥∥∞Rl + ∥∥X
(0)
l

∥∥∞Rk,

which again converges to zero as k and l tend to infinity. This completes the proof.

4.8. Proof of Proposition 14

It suffices to prove that for any f in L, the sequence Xi = f (Yi) − μ(f ) satisfies the conditions (5) and (6) of
Corollary 2.

Note first that (6) holds because of (19) and because any continuous function from [a, b] to R can be uniformly
approximated by Lipschitz functions.

From Lemma 15, we have that∥∥Kn(f ) − μ(f )
∥∥∞,μ

≤ c
(
Cρn

)
,

for some concave non-decreasing function c. Consequently (5) holds as soon as
∑

k>0 k−1/2c(Cρk) is finite, which in
turn is equivalent to (21).

4.9. Proof of Lemma 15

Let (Yi)i≥1 be the Markov chain with transition Kernel K and and invariant measure μ. From Lemma 1 in [6], we
know that there exists Y ∗

k distributed as Yk and independent of Y0 such that

sup
g∈Λ1

∥∥Kk(g) − μ(g)
∥∥∞,μ

= ∥∥E
(∣∣Yk − Y ∗

k

∣∣|Y0
)∥∥∞.

For any f such that |f (x) − f (y)| ≤ c(|x − y|), we have∥∥Kk(f ) − μ(f )
∥∥∞,μ

= ∥∥E
(
f (Yk)|Y0

) − E
(
f

(
Y ∗

k

)|Y0
)∥∥∞

≤ ∥∥E
(
c
(∣∣Yk − Y ∗

k

∣∣)|Y0
)∥∥∞.

Since c is concave and non-decreasing, we get that∥∥Kk(f ) − μ(f )
∥∥∞,μ

≤ ∥∥c
(
E

(∣∣Yk − Y ∗
k

∣∣|Y0
))∥∥∞ ≤ c

(∥∥E
(∣∣Yk − Y ∗

k

∣∣|Y0
)∥∥∞

)
,

and the proof is complete.
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4.10. Proof of Corollary 18

Let (Yi)i≥1 be the Markov chain with transition Kernel K and invariant measure μ. Using Eq. (26) it is easy to see
that (Y0, . . . , Yn) is distributed as (T n+1, . . . , T ). Consequently, for f in L, Corollary 18 follows from Proposition 14
and condition (23).

Assume now that f is BV . We shall prove that the sequence Xi = f (Yi) − μ(f ) satisfies the conditions (5) and
(6) of Corollary 2. Since K is BV -contracting we have that∥∥E(Xk|Y0)

∥∥∞ = ∥∥Kk(f ) − μ(f )
∥∥∞,μ

≤ ∥∥dKk(f )
∥∥ ≤ Cρk‖df ‖,

so that (5) is satisfied. On the other hand, applying Lemma 1 in [7], we have that, for any l > k ≥ 0,∥∥E(XkXl |Y0) − E(XkXl)
∥∥∞ ≤ C(1 + C)ρk‖df ‖2, (52)

so that (6) holds. This completes the proof of Corollary 18 when f is BV .

4.11. Proof of Proposition 20

To prove Proposition 20, it suffices to prove that the sequence Xi = f (ξi) − m(f ) satisfies the conditions (5) and (6)
of Corollary 2. Let ‖ · ‖∞,m be the essential supremum norm with respect to m.

Note that ‖E(Xn|ξ0)‖∞ = ‖Kn(f ) − m(f )‖∞,m, and that

Kn(f )(x) − m(f ) =
∑
k∈Z∗

cosn(2πka)f̂ (k) exp(2iπkx).

By assumption, there exists C > 0 such that supk =0 |k|1+ε|f̂ (k)| ≤ C. Hence

∑
n>0

‖Kn(f ) − m(f )‖∞,m√
n

≤ C
∑
k∈Z∗

|k|−1−ε
∑
n>0

| cos(2πka)|n√
n

. (53)

Here, note that there exists a positive constant K such that, for any 0 < a < 1, we have
∑

n>0 n−1/2an ≤ Ka(1 −
a)−1/2 (to see this, it suffices to compare the sum with the integral of the function h(x) = x−1/2ax ). Consequently,
we infer from (53) that∑

n>0

‖Kn(f ) − m(f )‖∞,m√
n

≤ CK
∑
k∈Z∗

1

|k|1+ε
√

1 − | cos(2πka)|

≤ CK
∑
k∈Z∗

1

|k|1+εd(2ka,Z)
, (54)

the last inequality being true because (1−| cos(πu)|) ≥ π(d(u,Z))2. Since a is badly approximable by rationals, then
so is 2a. Hence, arguing as in the proof of Lemma 5.1 in [8], we infer that for any positive η there exists a constant D

such that

2N+1−1∑
k=2N

1

d(2ka,Z)
≤ D2(N+2)(1+η)N.

Applying this result with η = ε/2, we infer from (54) that∑
n>0

‖Kn(f ) − m(f )‖∞,m√
n

≤ 2CKD
∑
N≥0

2(N+2)(1+ε/2)N max
2N≤k≤2N+1

k−1−ε < ∞,

so that the condition (5) of Corollary 2 is satisfied. The condition (6) of Corollary 2 follows from the inequality (5.18)
in [8].
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Appendix

This section collects some technical lemmas.
The proof of the following lemma is left to the reader since it uses the same arguments as in the proof of Proposi-

tion 2.5 in [19] by replacing the L2 norm by the L∞ norm.

Lemma 29. Under condition (2),

‖E(Sm|F0)‖∞√
m

→ 0 and
1√
m

∞∑
j=1

‖E(Smj |F0)‖∞
j3/2

→ 0 as m → ∞.

The following lemma gives a simple fact about convergence.

Lemma 30. Let Aj(x,n,m), j = 1, . . . , J , x > 0, be real-valued functions such that for each j, n,m the function
Aj(x,n,m) is non-increasing in x > 0 and assume that, for any x > 0,

lim sup
m→∞

lim sup
n→∞

Aj(x,n,m) = −∞.

Then for any un → ∞, there exists mn → ∞ such that mn ≤ un and, for any x > 0 and j = 1, . . . , J ,

lim sup
n→∞

Aj(x,n,mn) = −∞.

Proof. First, we observe that by considering the function

A(x,n,m) = max
1≤j≤J

Aj (x,n,m),

the lemma reduces to the case J = 1.
Construct strictly increasing positive integer sequences ψk and nk such that for all n ≥ nk ,

A

(
1

k
,n,ψk

)
≤ −k.

Let g(n) = k for nk < n ≤ nk+1 starting with k = 1 and g(n) = 1 for n ≤ n1. Then, g(n) is non-decreasing, g(n) → ∞
and for all n > n1 such that nk < n ≤ nk+1 (and so g(n) = k).

ng(n) = nk < n.

Now, let G(n) be a positive integer sequence such that G(n) ≤ g(n) and G(n) → ∞. Then,

nG(n) ≤ ng(n) = nk < n.

Hence, there exists G(n) such that

ψG(n) ≤ un, nG(n) ≤ n and G(n) → ∞.

Finally, let mn = ψG(n). Then, obviously

mn ≤ un and mn → ∞.

On the other hand, for any x > 0 and n such that x ≥ 1/G(n), since A(x,n,m) is non-increasing in x, we have

A(x,n,mn) ≤ A

(
1

G(n)
,n,mn

)
= A

(
1

G(n)
,n,ψG(n)

)
≤ −G(n) → −∞

which proves the lemma. �
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