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Abstract. We consider an initial population whose size evolves according to a continuous state branching process. Then we add
to this process an immigration (with the same branching mechanism as the initial population), in such a way that the immigration
rate is proportional to the whole population size. We prove this continuous state branching process with immigration proportional
to its own size is itself a continuous state branching process. By considering the immigration as the apparition of a new type, this
construction is a natural way to model neutral mutation. It also provides in some sense a dual construction of the particular pruning
at nodes of continuous state branching process introduced by the authors in a previous paper. For a critical or sub-critical quadratic
branching mechanism, it is possible to explicitly compute some quantities of interest. For example, we compute the Laplace
transform of the size of the initial population conditionally on the non-extinction of the whole population with immigration. We
also derive the probability of simultaneous extinction of the initial population and the whole population with immigration.

Résumé. Nous considérons une population initiale dont la taille évolue selon un processus de branchement continu. Nous ajoutons
ensuite à ce processus une population migrante (qui évolue selon le même mécanisme de branchement que la population initiale),
avec un taux d’immigration propotionnel à la taille de la population totale. Nous montrons que ce processus de branchement
continu avec immgration proportionnelle à sa taille est encore un processus de branchement continu. En voyant cette immigration
comme l’apparition d’un nouveau type, cette construction est un moyen naturel de modéliser des mutations, neutres vis à vis de
l’évolution. Elle peut être également vue comme la construction duale de l’élagage aux noeuds de l’arbre généalogique associé à
la population totale, introduit par les auteurs dans un article précédent. Lorsque le mécanisme de branchement est quadratique et
critique ou sous-critique, il est possible de calculer explicitement certaines quantités intéressantes. Par example, nous calculons la
transformée de Laplace de la taille de la population initiale conditionnellement à la non-extinction de la population totale. Nous en
déduisons également la probabilité d’extinction simultanée de la population initiale et de la population totale.
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1. Introduction

We consider an initial Eve-population of type 0 whose size evolves as a continuous state branching process (CB),
Y 0 = (Y 0

t , t ≥ 0), with branching mechanism ψ0 defined by

ψ0(λ) = α0λ + βλ2 +
∫

(0,∞)

π(d�)
[
e−λ� − 1 + λ�1{�≤1}

]
, (1)
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where α0 ∈ R, β ≥ 0 and π is a Radon measure on (0,∞) such that
∫
(0,∞)

(1 ∧ �2)π(d�) < ∞. See [9] for a definition
of CB as limit of Galton–Watson processes. We assume that this population undergoes some irreversible mutations
with constant rate, giving birth either to one individual of type 1 (with rate ᾱ), or to infinitely many offspring of type 1
(with rate and mutant offspring size described by a measure ν). This second population of type 1 evolves according
to the same branching mechanism as the Eve-population (i.e. the mutations are neutral). The population of type 1
undergoes also some mutations and gives birth to a population of type 2 with the same rules, and so on.

If we lose track of the genealogy, the new population of type 1 can be seen as an immigration process with
rate proportional to the size of the Eve-population, the population of type 2 is an immigration process with rate
proportional to the size of the population of type 1, and so on. We are interested in the law of the total population size
X = (Xt , t ≥ 0), which is a CB with immigration (CBI) rate proportional to its own size. If the mutations are neutral,
we expect X to be a CB. This is indeed the case: if ψ0 is the branching mechanism of the Eve-population and

φ(λ) = ᾱλ +
∫

(0,+∞)

ν(dx)
(
1 − e−λx

)

is the immigration mechanism, then the total population size is a CB with branching mechanism ψ = ψ0 − φ, see
Theorem 3.3.

Another approach is to associate with critical or sub-critical CBs a genealogical structure, i.e. an infinite continuous
random tree (CRT), see [5] or [10]. In that context, each individual of the CB can be followed during its lifetime and
mutations can be added as marks on its lineage. Pruning the CRT associated with the total population (of branching
mechanism ψ = ψ0 −φ) at these marks allow to recover the Eve-population from the total population. This construc-
tion has been used in [2] and the construction given here via immigration proportional to the size of the population
can be seen as the dual of the pruning construction of [2], see Section 4 and more precisely Corollary 4.2. However
[2] considers only the case where the branching mechanism of X is given by a shift of the branching mechanism of
the Eve-population. We shall give in a forthcoming paper [3] a more general pruning procedure which will correspond
to the general proportional immigration presented here.

Natural questions then arise from a population genetics point of view, where only the whole population Xt is ob-
served at time t . In order to compute some quantities related to the Eve-population, given the total population, we
compute the joint law of the Eve-population and the whole population at a given time: (Y 0

t ,Xt ). For the quadratic
critical or sub-critical branching mechanism, we provide the explicit Laplace transform of the joint distribution of
(Y 0

t ,Xt ). In particular, we compute P(Y 0
t = 0|Xt > 0), the probability for the Eve-type to have disappeared at time t ,

conditionally on the survival of the total population at time t, see Remark 5.3. We also compute the Laplace transform
of Y 0

t conditionally on the population to never be extinct, see Proposition 5.6. In Lemma 5.5, we compute the probabil-
ity of simultaneous extinction of the Eve-population and the whole population, in other words, the probability for the
last individual alive to have undergone no mutation. The techniques used here did not lead us to an explicit formula
but for the quadratic branching mechanism. For the general critical or sub-critical case, we use, in [1], a Williams
decomposition of the genealogical tree to give a very simple formula for the probability of simultaneous extinction of
the Eve-population and the whole population.

In the particular case of CB with quadratic branching mechanism (ψ(u) = βu2, β > 0), similar results are given
in [15] (using genealogical structure for CB) and in [16] (using a decomposition of Bessel bridges from [12]). In the
critical (ψ ′(0+) = 0) or sub-critical (ψ ′(0+) > 0) case one could have used the genealogical process associated to CB
introduced by [10] and to CBI developed by [8] to prove the present result. This presentation would have been more
natural in view of the pruning method used in [2]. Our choice not to rely on this presentation was motivated by the
possibility to consider super-critical cases (ψ ′(0+) < 0).

The paper is organized as follows: In Section 2, we recall some well-known facts on CB and CBI. In Section 3,
we build a CBI X whose branching mechanism is ψ0 and immigration rate at time t proportional to Xt and prove
that this process is again a CB. We give in Section 4 some links with the pruning at nodes of CB introduced in [2].
Eventually, we compute the joint law of the Eve-population and the whole population in Section 5, as well as some
related quantities.
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2. CB and CB with immigration

The results from this section can be found in [7] (see also [11] for a survey on CB and CBI, and the references therein).
Let ψ be a branching mechanism of a CB: for λ ≥ 0,

ψ(λ) = αλ + βλ2 +
∫

(0,∞)

π(d�)
[
e−λ� − 1 + λ�1{�≤1}

]
, (2)

where α ∈ R, β ≥ 0 and π is a Radon measure on (0,∞) such that
∫
(0,∞)

(1 ∧ �2)π(d�) < ∞. Notice ψ is smooth on
(0,∞) and convex. We have ψ ′(0+) ∈ [−∞,+∞), and ψ ′(0+) = −∞ if and only if

∫
(1,∞)

�π(d�) = ∞. In order to
consider only conservative CB, we shall also assume that for all ε > 0

∫ ε

0

1

|ψ(u)| du = ∞. (3)

Notice that ψ ′(0+) > −∞ implies (3).

2.1. CB

Let Px be the law of a CB Z = (Zt , t ≥ 0) started at x ≥ 0 and with branching mechanism ψ . The process Z is a
Feller process and thus càdlàg. Thanks to (3), the process is conservative, that is a.s. for all t ≥ 0, Zt < +∞. For every
λ > 0, for every t ≥ 0, we have

Ex

[
e−λZt

] = e−xu(t,λ), (4)

where the function u is the unique non-negative solution of

u(t, λ) +
∫ t

0
ψ

(
u(s, λ)

)
ds = λ, λ ≥ 0, t ≥ 0. (5)

This equation is equivalent to

∫ λ

u(t,λ)

dr

ψ(r)
= t, λ ≥ 0, t ≥ 0. (6)

The process Z is infinitely divisible. Let Q be its canonical measure. The σ -finite measure Q is defined on the set of
càdlàg functions. Intuitively, it gives the “distribution” of the size process for a population generated by an infinitesimal
individual. In particular, by the Lévy–Itô decomposition (see for instance [14]), Z is distributed under Px as

∑
i∈I Zi ,

where
∑

i∈I δZi is a Poisson point measure with intensity xQ(dZ). Thus, for any non-negative measurable function F

defined on the set of càdlàg functions, we have the following exponential formula for Poisson point measure

Ex

[
e−∑

i∈I F (Zi)
] = exp

(−xQ
[
1 − e−F(Z)

])
.

The CB is called critical (resp. super-critical, resp. sub-critical) if ψ ′(0+) = 0 (resp. ψ ′(0+) < 0, resp. ψ ′(0+) > 0).
We shall need inhomogeneous notation. For t < 0, we set Zt = 0. Let Px,t denote the law of (Zs−t , s ∈ R) under Px ,

and let Qt be the distribution of (Zs−t , s ∈ R) under Q.
For μ a positive measure on R, we set Hμ = sup{r ∈ R;μ([r,∞)) > 0} the maximal element of its support.

Proposition 2.1. Let μ be a finite positive measure on R with support bounded from above (i.e. Hμ is finite). Then
we have for all s ∈ R, x ≥ 0,

Ex

[
e− ∫

Zr−sμ(dr)
] = e−xw(s), (7)
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where the function w is a measurable locally bounded non-negative solution of the equation

w(s) +
∫ ∞

s

ψ
(
w(r)

)
dr =

∫
[s,∞)

μ(dr), s ≤ Hμ and w(s) = 0, s > Hμ. (8)

If ψ ′(0+) > −∞ or if μ({Hμ}) > 0, then (8) has a unique measurable locally bounded non-negative solution.

This result is well known for the critical and sub-critical branching mechanism (see e.g. [6]). As we did not find a
reference for the super-critical branching mechanism, we give a short proof of this proposition.

Proof of Proposition 2.1. Let n ≥ 1. We set Z
(n),s
t = Z(i+1)/2n−s for t ∈ [i/2n, (i + 1)/2n). Using that Z is càdlàg,

we get a.s. limn→∞ Z
(n),s
t = Zt−s for all t, s ∈ R. Since the process Z is finite, we get by the dominated convergence

theorem a.s. for all s ∈ R∫
[−s,Hμ]

Zr−sμ(dr) = lim
n→∞

∫
[−s,Hμ]

Z(n),s
r μ(dr).

Using the Markov property of Z, we get that

Ex

[
e− ∫

Z
(n),s
r μ(dr)

] = e−xw(n)(s),

where w(n) is the unique non-negative solution of

w(n)(s) +
∫ ([Hμ2n]+1)/2n

s

ψ
(
w(n)(r)

)
dr =

∫
[k/2n,∞)

μ(dr),

with k s.t. k/2n < s ≤ (k + 1)/2n.
Let T > Hμ + 1. Notice that for all s ∈ [−T ,T ], we have

∫
Z

(n),s
r μ(dr) ≤ sup{Zt , t ∈ [0,2T ]}μ([−T ,Hμ]) < ∞

a.s. Let C be defined by e−C = Ex[e− sup{Zt ,t∈[0,2T ]}μ([−T ,Hμ])]. Notice C < ∞. This implies that for all n ≥ 1,
s ∈ [−T ,T ],

0 ≤ w(n)(s) ≤ C < ∞.

By the dominated convergence theorem, w(n)(s) converges to w(s) = − log(E1[e− ∫
Zr−sμ(dr)]), which lies in [0,C],

for all s ∈ [−T ,T ]. By the dominated convergence theorem, we deduce that w solves (8). Since T is arbitrary, the
proposition is proved but for the uniqueness of solutions of (8).

If ψ ′(0+) > −∞, then ψ is locally Lipschitz. This implies there exists a unique locally bounded non-negative
solution of (8).

If ψ ′(0+) = −∞, and μ({Hμ}) > 0, we get that
∫

Zr−sμ(dr) ≥ aZHμ−s , where a = μ({Hμ}) > 0. This implies
that w(s) ≥ u(Hμ − s, a) > 0 for s ∈ R. The function u(·, a) is strictly positive on R+ because of condition (3) and
Eq. (6). Since ψ is locally Lipschitz on (0,∞), we deduce there exists a unique locally bounded non-negative solution
of (8). �

2.2. CBI

Let x > 0, ᾱ ≥ 0, ν be a Radon measure on (0,∞) such that
∫
(0,∞)

(1 ∧ x)ν(dx) < ∞. Let B+ denote the set of non-
negative measurable functions defined on R. Let h ∈ B+ be locally bounded. We consider the following independent
processes.

• ∑
i∈I δti ,xi ,Zi , a Poisson point measure with intensity h(t)1{t≥0} dt ν(dx)Px,t (dZ).

• Z̃, distributed according to Px .
• ∑

j∈J δ
tj ,Ẑj , a Poisson point measure with intensity ᾱh(t)1{t≥0} dt Qt (dZ).
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For t ∈ R, let Yt = Z̃t + ∑
i∈I Zi

t + ∑
j∈J Ẑ

j
t ∈ [0,∞]. We say Y = (Yt , t ≥ 0) is a continuous state branching

process with immigration (CBI) started at x, whose branching mechanism is ψ and immigration is characterized with
(h,φ) where the immigration mechanism, φ, is defined by

φ(λ) = ᾱλ +
∫

(0,∞)

ν(dx)
(
1 − e−λx

)
, λ ≥ 0, (9)

where ᾱ ≥ 0, and ν is a Radon measure on (0,∞) such that
∫
(0,∞)

(1 ∧ x)ν(dx) < ∞.
One gets Y is a conservative Hunt process when h is constant, see [7]. Notice that Y is a non-homogeneous Markov

processes. We also have Y0 = x and Yt = 0 for t < 0.
Using the Poisson point measure property, one can construct on the same probability space two CBI, Y 1 and Y 2,

with the same branching process ψ , the same starting point and immigration characterized by (h1, φ) and (h2, φ)

such that Y 1
t ≤ Y 2

t for all t ≤ T as soon as h1(t) ≤ h2(t) for all t ≤ T . We can apply this with h1 = h and h2(t) =
sup{h(s); s ∈ [0, T ]} for t ∈ R and some T > 0, and use that Y 2 is conservative (see [7]) to get that Y 1 has a locally
bounded version over [0, T ]. Since T is arbitrary, this implies that any CBI has a locally bounded version. We shall
work with this version.

The following lemma is a direct consequence of the exponential formula for Poisson point measures (see e.g. [13],
Chapter XII).

Lemma 2.2. Let μ be a finite positive measure on R with support bounded from above (i.e. Hμ is finite). We have for
s ∈ R:

E
[
e− ∫

Yr−sμ(dr)
] = e−xw(s)−∫ ∞

0 h(t)φ(w(s+t))dt , (10)

where the function w is defined by (7).

3. State dependent immigration

3.1. Induction formula

Let (xk, k ∈ N) be a sequence of non-negative real numbers. Let Y 0 be a CB with branching mechanism ψ0, defined
by (1), starting at x0. We shall assume that Y 0 is conservative, that is condition (3) holds for ψ0. We construct
by induction Yn, n ≥ 1, as the CBI started at xn, with branching mechanism ψ0 and immigration characterized by
(Y n−1, φ), with φ given by (9).

Lemma 3.1. Let (μk, k ∈ N) be a family of finite measures on R with support bounded from above. We have for all
n ∈ N, s ∈ R,

E
[
e−∑n

k=0
∫

Y k
r−sμk(dr)

] = e−∑n
k=0 xn−kw

(n)
k (s),

where w
(n)
0 is defined by (7) with μ replaced by μn, and for k ≥ 1, w(n)

k is defined by (7) with μ replaced by μn−k(dr)+
φ(wk−1(r))dr . In particular, wk is a locally bounded non-negative solution of the equation

w(s) +
∫ ∞

s

ψ0(w(r)
)

dr =
∫

[s,∞)

μn−k(dr) +
∫ ∞

s

φ
(
w

(n)
k−1(r)

)
dr, s ∈ R. (11)

(Notice wk(s) = 0 for s > max{Hμk′ , k′ ∈ {0, . . . , k}}.)

Proof. This is a consequence of the computation of E[e−∑n
k=0

∫
Y k

r−sμk(dr)|Y 0, . . . , Y n−1], using Proposition 2.1. This
also implies that (11) holds. Then, by induction, one deduces from (11) that wk is locally bounded. �
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3.2. Convergence of the total mass process

We consider the sequence (Y n,n ≥ 0) defined in the previous section with x0 = x ≥ 0 and xn = 0 for n ≥ 1. We set
Xn

t = ∑n
k=0 Y k

t for t ∈ R. Let Xt be the increasing limit of Xn
t as n → +∞, for all t ∈ R. We have Xt ∈ [0,+∞]. We

call X = (Xt , t ∈ R) a CBI with branching mechanism ψ0 and immigration process (X,φ). We set ψ = ψ0 − φ.

Remark 3.2. For λ ≥ 0, we have

ψ0(λ) − φ(λ) =
(

α0 − ᾱ −
∫

(0,1]
�ν(d�)

)
λ + βλ2 +

∫
(0,∞)

(
π(d�) + ν(d�)

)[
e−λ� − 1 + λ�1{�≤1}

]
.

This gives that ψ = ψ0 − φ is a branching mechanism.

The process Y 0 describes the size process of the Eve-population, Y 1 the size process of the population of mutants
born from the Eve-population Y 0, Y 2 the size process of the population of mutants born from mutant population Y 1,
and so on. The size process of the total population is given by X = ∑

k≥0 Y k . In a neutral mutation case, it is natural
to assume that all the processes Y k have the same branching mechanism. Since we assume xk = 0 for all k ≥ 1, this
means only the Eve-population is present at time 0.

Theorem 3.3. We assume that ψ is conservative, i.e. satisfies (3). The process X, which is a CBI with branching
mechanism ψ0 and immigration process (X,φ), is a CB with branching mechanism ψ = ψ0 − φ.

Remark 3.4. As a consequence of Theorem 3.3, X is a Markov process. Notice that the process (Y 0, . . . , Y n) is also
Markov but not (Xn

t , t ≥ 0) for n ≥ 1.

Proof of Theorem 3.3. Let μ be a finite measure on R with support bounded from above (i.e. Hμ < ∞). We shall
assume that μ({Hμ}) = a > 0.

We keep the notations of Lemma 3.1, with μk = μ. In particular we see from (11) that w
(n)
k does not depend on n.

We shall denote it by wk . By monotone convergence, we have

E
[
e− ∫

Xr−sμ(dr)
] = lim

n→∞ E
[
e−∑n

k=0
∫

Y k
r−sμ(dr)

] = lim
n→∞ e−xwn(s),

where the limits are non-increasing. This implies that (wn,n ≥ 0) increases to a non-negative function w∞. By
monotone convergence theorem (for

∫ Hμ

s
ψ0(w(r))1{wn(r)>0} dr and the integral with φ) and dominated convergence

theorem (for
∫ Hμ

s
ψ0(w(r))1{wn(r)≤0} dr), we deduce from (11), that w∞ solves w(s) = 0 for s > Hμ and

w(s) +
∫ Hμ

s

ψ0(w(r)
)

dr =
∫

[s,∞)

μ(dr) +
∫ Hμ

s

φ
(
w(r)

)
dr, s ≤ Hμ. (12)

Notice that w∞(s) ∈ [0,∞] and the two sides of the previous equality may be infinite.
Thanks to Proposition 2.1, and since ψ0 − φ is a branching mechanism (see Remark 3.2), there exists a unique

locally bounded non-negative solution of (12), which we shall call w̄. Therefore to prove that w∞ = w̄, it is enough
to check that w∞ is locally bounded. This will be the case if we check that w∞ ≤ w̄. In particular, we get w∞ = w̄, if
we can prove that wn ≤ w̄ for all n ∈ N. We shall prove this by induction.

We consider the measure μ0(dr) = μ(dr) + φ(w̄(r))1{r≤Hμ} dr . Notice Hμ0 = Hμ and μ0({Hμ0}) = μ({Hμ}) =
a > 0. We define w̄0 by

e−xw̄0(s) = E
[
e− ∫

Y 0
r−sμ

0(dr)
]
.

The function w̄0 is a locally bounded non-negative function which solves

w(s) +
∫ Hμ

s

ψ0(w(r)
)

dr =
∫

[s,∞)

μ(dr) +
∫ Hμ

s

φ
(
w̄(r)

)
dr, s ≤ Hμ.
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Thanks to Proposition 2.1, w̄0 is unique. Since w̄ solves the same equation, we deduce that w̄0 = w̄. We also have

e−xw0(s) = E
[
e− ∫

Y 0
r−sμ(dr)

] ≥ E
[
e− ∫

Y 0
r−sμ

0(dr)
]
.

This implies that w0 ≤ w̄0 = w̄.
Assume we proved that wn−1 ≤ w̄ for some n ≥ 1. Then we can consider the measure μn(dr) = μ(dr) +

[φ(w̄(r)) − φ(wn−1(r))]1{r≤Hμ} dr . Notice Hμn = Hμ and μn({Hμn}) = a > 0. Recall x = x0 ≥ 0 and xk = 0 for
k ≥ 1. We define w̄n by

e−xw̄n(s) = E
[
e− ∫

Yn
r−sμ

n(dr)
]
.

The function w̄n is a locally bounded non-negative function which solves for s ≤ Hμ

w(s) +
∫ Hμ

s

ψ0(w(r)
)

dr =
∫

[s,∞)

μn(dr) +
∫ Hμ

s

φ
(
wn−1(r)

)
dr

=
∫

[s,∞)

μ(dr) +
∫ Hμ

s

φ
(
w̄(r)

)
dr.

Thanks to Proposition 2.1, w̄n is unique. Since w̄ solves the same equation, we deduce that w̄n = w̄. We also have

e−xwn(s) = E
[
e− ∫

Yn
r−sμ(dr)

] ≥ E
[
e− ∫

Yn
r−sμ

n(dr)
]
.

This implies that wn ≤ w̄. Therefore, this holds for all n ≥ 0, which according to our previous remark entails that
w∞ = w̄.

By taking μ(dr) = ∑K
k=1 λkδtk (dr) for K ∈ N

∗, λ1, . . . , λK ∈ [0,∞) and 0 ≤ t1 ≤ · · · ≤ tK , we deduce that X has
the same finite marginal distribution as a CB with branching mechanism ψ0 − φ. Hence X is a CB with branching
mechanism ψ0 − φ. �

4. The dual to the pruning at node

For θ ∈ R, we consider the group of operators (Tθ , θ ∈ R) on the set of real measurable functions defined by

Tθ (f )(·) = f (θ + ·) − f (θ).

Let ψ0 be given by (1) with Lévy measure π . Using the previous section, for θ > 0, we can give a probabilistic
interpretation to T−θ (ψ

0) as a branching mechanism of a CBI with proportional immigration. Let θ0 = sup{θ ≥ 0;∫
(1,∞)

eθ�π(d�) < ∞}. Notice that θ0 = 0 if ψ0′
(0+) = −∞, as ψ0′

(0+) = −∞ is equivalent to
∫
(1,∞)

�π(d�) = +∞.

We assume θ0 > 0 and we set Θ = (0, θ0] if
∫
(1,∞)

eθ0�π(d�) < ∞ and Θ = (0, θ0) otherwise. Let θ ∈ Θ . We define

φθ (λ) = 2βθλ +
∫

(0,∞)

(
eθx − 1

)(
1 − e−λx

)
π(dx).

It is straightforward to check that T−θ (ψ
0) = ψ0 − φθ and that φθ is an immigration mechanism. Notice that for

θ < θ0, we have T−θ (ψ
0)′(0+) > −∞, that is T−θ (ψ

0) is a conservative branching mechanism.
The next corollary is a direct consequence of the previous section.

Corollary 4.1. Let θ ∈ Θ . If θ = θ0 assume furthermore that T−θ0(ψ
0) is conservative. A CBI process X with branch-

ing mechanism ψ and immigration (X,φθ ) is a CB with branching mechanism T−θ (ψ).

On the other end, for θ > 0, Tθ (ψ) can be seen as the branching mechanism of a pruned CB. The following
informal presentation relies on the pruning procedure developed in [2]. Let us consider a CRT associated with a
critical or sub-critical branching mechanism ψ with no Brownian part, which we shall write in the following form:

ψ(λ) = α1λ +
∫

(0,+∞)

(
e−λr − 1 − λr

)
π(dr),
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with
∫
[1,∞)

rπ(dr) < ∞, α1 = α + ∫
[1,∞)

rπ(dr) ≥ 0 and
∫
(0,1)

rπ(dr) = +∞. In that case, the CB process with
branching mechanism ψ has no diffusion part (β = 0) and increases only by positive jumps.

Let us recall that a CRT can be coded by the so-called height process H = (Ht , t ≥ 0), see [5]. A CRT is a
random rooted real tree, i.e. a compact metric space (τ, d) such that there is only one continuous path from a point
to another, with a distinguished vertex called the root. To each t ≥ 0 is associated an individual in the tree, and Ht

is the distance of this individual to the root. Intuitively, for the individual t ≥ 0, Ht ≥ 0 represents its generation.
Conversely, it is possible to reconstruct the CRT given the height process H . The individual t is called an ancestor
of s if Ht = min{Hu,u ∈ [s ∧ t, s ∨ t]}, and we shall write s � t . This describes a genealogical structure that can be
coded by a real tree.

Informally, for t fixed, the “size” of the population at generation a ≥ 0 of all individuals r ≤ t is given by the
local time of H at level a up to time t , La

t say. For the CRT associated with the branching mechanism ψ , the process
L = (La

Tx
, a ≥ 0), where Tx = inf{t ≥ 0,L0

t ≥ x} is a CB with branching mechanism ψ . The height process codes for
the genealogy of the CB process L.

An individual t is called a node of the CRT if the height process corresponding to its descendants, (Hs −Ht, s � t)

has a positive local time at level 0, say �t . (If t ≤ Tx , then �t corresponds to a jump of the CB process L at level Ht ;
reciprocally to a jump � of the CB process L at level a there corresponds an individual t ≤ Tx such that Ht = a

and �t = �.) Intuitively �t corresponds to the “size” of the offspring population of individual t . Let θ > 0 be fixed.
A node t of size �t is marked with probability 1 − e−θ�t , independently of the other nodes. To prune the CRT,
we just remove all individuals who have a marked ancestor. The height process of the pruned CRT is then given by
Hθ = (HCt , t ≥ 0), where C is the inverse of the Lebesgue measure of the set of individuals whose ancestors have no
mark:

Ct = inf

{
r0 ≥ 0;

∫ r0

0
1{∀s,r�s,s is not marked} dr ≥ t

}
.

Theorem 1.5 in [2] shows that this pruned CRT is itself a CRT associated with the branching mechanism Tθ (ψ).
By looking at the local time of the pruned process, we get a nice construction of a CB process of branching mech-

anism Tθ (ψ), which we shall call a pruned CB with intensity θ > 0, from a CB process of branching mechanism ψ .
Notice this construction was done under the assumption that β = 0 (see also [4] when β > 0 and π = 0). The general
pruning procedure in the general case β > 0 and π �= 0 will be presented in a forthcoming paper [3].

In a certain sense the immigration is the dual to the pruning at node: to build a CB process of branching mechanism
ψ from a CB process of branching mechanism Tθ (ψ), with θ > 0, one has to add an immigration at time t which rate
is proportional to the size of the population at time t and immigration mechanism φ̃θ defined by:

φ̃θ (λ) = Tθ (ψ)(λ) − ψ(λ) = 2βθλ +
∫

(0,∞)

(
1 − e−θx

)(
1 − e−λx

)
π(dx) for λ ≥ 0.

In other words, we get the following result, whose first part comes from Theorem 1.5 in [2]. As in [2], we assume
only for the next corollary that β = 0 and

∫
(0,1)

�π(d�) = +∞.

Corollary 4.2. Let X be a critical or sub-critical CB process with branching mechanism ψ . Let X(θ) be the pruned
CB of X with intensity θ > 0: X(θ) is a CB process with branching mechanism Tθ (ψ). The CBI process, X̃, with
branching mechanism Tθ (ψ) and immigration (X̃, φ̃θ ) is distributed as X.

5. Application: Law of the initial process

We consider a population whose size evolves as X = (Xt , t ≥ 0), a CB with branching mechanism ψ given by (2). We
assume ψ satisfies the hypothesis of Section 2. This population undergoes some irreversible mutations with constant
rate. Each mutation produces a new type of individuals. In the critical or sub-critical quadratic case (π = 0), the
genealogy of the associated CB corresponds to the limit of the genealogy of a Wright–Fisher model, up to some time
change due to non-constant population size.

We assume the population at time 0 has the same original Eve-type. We are interested in the law of Y 0 = (Y 0
t , t ≥ 0),

the “size” of the sub-population with the original type knowing the size of the whole population. In particular, we
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shall compute P(Y 0
t = 0|Xt > 0), the probability for the Eve-type to have disappeared, conditionally on the survival

of the total population at time t .
We shall assume Y 0 is a CB with branching mechanism ψ0 and X is the CBI with immigration (X,φ), with φ =

ψ0 − ψ , considered in Section 3.2. Thus, we model the mutations by an immigration process with rate proportional
to the size of the population.

The joint law of (Xt , Y
0
t ) can be easily characterized by the following lemma.

Lemma 5.1. Let t ≥ 0, λ1, λ2 ∈ R+. We assume X0 = Y 0
0 = x ≥ 0. We have

E
[
e−λ1Xt−λ2Y

0
t
] = e−xw(0),

where (w,w∗) is the unique measurable non-negative solution on (−∞, t] of

w(s) +
∫ t

s

ψ0(w(r)
)

dr = λ1 + λ2 +
∫ t

s

φ
(
w∗(r)

)
dr,

w∗(s) +
∫ t

s

ψ
(
w∗(r)

)
dr = λ1.

Proof. Recall the notation of Section 3.2. In particular x0 = x and xn = 0 for all n ≥ 1. Let us apply Lemma 3.1 with

μ0(dr) = (λ1 + λ2)δt (dr),

μk(dr) = λ1δt (dr) for k ≥ 1.

We get

E
[
e−(λ1X

n
t +λ2Y

0
t )

] = e−xw
(n)
n (0),

where for s ≤ t ,

w
(n)
0 (s) +

∫ t

s

ψ0(w(n)
0 (r)

)
dr = λ1,

w
(n)
k (s) +

∫ t

s

ψ0(w(n)
k (r)

)
dr = λ1 +

∫ t

s

φ
(
w

(n)
k−1(r)

)
dr for 1 ≤ k ≤ n − 1,

w(n)
n (s) +

∫ t

s

ψ0(w(n)
n (r)

)
dr = λ1 + λ2 +

∫ t

s

φ
(
w

(n)
n−1(r)

)
dr.

We let n go to infinity and use similar arguments as in the proof of Theorem 3.3 to get the result. �

Some more explicit computations can be made in the case of quadratic branching mechanism (see also [16] when
α = 0). Let α ≥ 0 and θ > 0 and set

ψ(u) = αu + u2, ψ0(u) = Tθ (ψ)(u) = (α + 2θ)u + u2.

The CB which models the total population is critical (α = 0) or sub-critical (α > 0). The immigration mechanism is
φ(u) = ψ0(u) − ψ(u) = 2θu.

We set b = (α + 2θ) and for t ≥ 0,

h(t) =
{

1 + λ1
1−e−αt

α
if α > 0,

1 + λ1t if α = 0.
(13)
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Proposition 5.2. Let t ≥ 0, λ1, λ2 ∈ R+. We have

E
[
e−λ1Xt−λ2Y

0
t
] = e−xv0(t),

where

v0(t) = e−bth(t)−2
(

1

λ2
+

∫ t

0
e−brh(r)−2 dr

)−1

+ λ1e−αth(t)−1.

Proof. By the previous lemma, we have

E
[
e−λ1Xt−λ2Y

0
t
] = e−xw(0), (14)

where for s ≤ t ,

w(s) +
∫ t

s

w(r)
(
w(r) + b

)
dr = λ1 + λ2 + 2θ

∫ t

s

w∗(r)dr,

w∗(s) +
∫ t

s

w∗(r)
(
w∗(r) + α

)
dr = λ1. (15)

The last equation is equivalent to
(
w∗)′ − w∗(w∗ + α

) = 0 on (−∞, t],w∗(t) = λ1. (16)

The function z∗ := 1
w∗ is thus the unique solution of

(
z∗)′ + αz∗ + 1 = 0 on (−∞, t], z∗(t) = 1

λ1
.

If α > 0, this leads to

z∗(s) = 1

α

(
eα(t−s) − 1

) + 1

λ1
eα(t−s).

If α = 0, we have z∗(s) = t − s + 1
λ1

. We get

w∗(s) = h′(t − s)h(t − s)−1 = λ1e−α(t−s)h(t − s)−1. (17)

Equation (15) is equivalent to

w′ − w(w + b) = −2θw∗ on (−∞, t],w(t) = λ1 + λ2.

Set y = w − w∗ and use the differential equation (16), to get that y solves

y′ − y2 − y
(
2w∗ + b

) = 0 on (−∞, t], y(t) = λ2.

Then the function z := 1/y is the unique solution of

z′ + (
2w∗ + b

)
z + 1 = 0 on (−∞, t], z(t) = 1

λ2
.

One solution of the homogeneous differential equation z′
0 = −(2w∗ + b)z0 is z0(s) = eb(t−s)h(t − s)2. Looking for

solutions of the form z(s) = C(s)z0(s) gives

z(s) = z0(s)

(
1

λ2
+

∫ t

s

z0(u)−1 du

)
.
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We conclude using (14) and w = w∗ + z−1. �

Remark 5.3. We can compute the conditional probability of the non-extinction of the Eve-population: P(Y 0
t > 0|

Xt > 0). However, this computation can be done without the joint law of (Xt , Y
0
t ) as

P
(
Y 0

t > 0|Xt > 0
) = P(Y 0

t > 0,Xt > 0)

P(Xt > 0)
= P(Y 0

t > 0)

P(Xt > 0)
= 1 − P(Y 0

t = 0)

1 − P(Xt = 0)
,

with P(Xt = 0) = limλ1→∞ E[e−λ1Xt ] = e−xg(α,t)−1
and P(Y 0

t = 0) = limλ2→∞ E[e−λ2Y
0
t ] = e−xg(b,t)−1

, where

g(a, t) =
{

eat−1
a

if a > 0,
t if a = 0.

(18)

The same kind of computation allows also to compute the joint law at different times.

Proposition 5.4. Let 0 ≤ u < t , λ1, λ2 ∈ R+. We have

E
[
e−λ1Xt−λ2Y

0
u
] = e−xv1(u,t),

where

v1(u, t) = e−bth(t)−2
(

e−b(t−u)h(t − u)−2

λ2
+

∫ t

t−u

e−brh(r)−2 dr

)−1

+ λ1e−αth(t)−1.

Proof. Recall the notation of Section 3.2. In particular x0 = x and xn = 0 for all n ≥ 1. Let us apply Lemma 3.1 with

μ0 = λ1δt + λ2δu,

μk = λ1δt for k ≥ 1.

Let n go to infinity as in the proof of Lemma 5.1 to get that

E
[
e−λ1Xt−λ2Y

0
u
] = e−xw(0), (19)

where (w,w∗) is the unique non-negative solution on (−∞, t] of

w(s) +
∫ t

s

ψ0(w(r)
)

dr = λ1 + λ21{s≤u} +
∫ t

s

φ
(
w∗(r)

)
dr,

(20)

w∗(s) +
∫ t

s

ψ
(
w∗(r)

)
dr = λ1.

Notice w∗ is still given by (17). For s > u, we have w(s) = w∗(s) and, for s ≤ u, Eq. (20) is equivalent to

w′ − w(w + b) = −2θw∗ on (−∞, u],w(t) = w∗(u) + λ2.

From the proof of Proposition 5.2, we get

1

w(s) − w∗(s)
= eb(t−s)h(t − s)2

(
e−b(t−u)h(t − u)−2

λ2
+

∫ u

s

e−b(t−r)h(t − r)−2 dr

)
.

We conclude using (19). �

At this stage, we can give the joint distribution of the extinction time of X, τX = inf{t > 0;Xt = 0}, and of Y 0,
τY 0 = inf{t > 0;Y 0

t = 0}. For u ≤ t , we have P(τX ≤ t, τY 0 ≤ u) = limλ1→∞,λ2→∞ exp−xv1(u, t) that is

P(τX ≤ t, τY 0 ≤ u) = exp−x

(
e−bt+2αt

(∫ t

t−u

e−br+2αrg(α, t)2g(α, r)−2 dr

)−1

+ g(α, t)−1
)

.
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We can compute the probability of simultaneous extinction of the Eve-population and the whole population, see also
Proposition 5 in [16], where α = 0. In [1], using different techniques we derive this formula for general critical or
sub-critical branching mechanisms.

Lemma 5.5. We have P(τY 0 = τX|τX = t) = e−2θt .

Proof. We have P(τY 0 = τX|τX = t) = 1 − limu↑t ∂tP(τ
Y0≤u,τX≤t)

∂tP(τX≤t)
= e−2θt . �

We can deduce from the latter proposition the law of Y 0
u conditionally on the non-extinction of the whole popula-

tion. We set

A(b,u) = 1

λ2
ebu + g(b,u).

Proposition 5.6. Let u ≥ 0, λ2 ∈ R+. We have

lim
t→+∞E

[
e−λ2Y

0
u |Xt > 0

] = e−xA(b,u)−1(
1 − A(b,u)−2G(α,u)

)
,

where

G(a,u) = 2

λ2
ebug(a,u) +

{
2 g(b+a,u)−g(b,u)

a
if a > 0,

2∂1g(b,u) if a = 0.

Proof. We have

E
[
e−λ2Y

0
u |Xt > 0

] = E[e−λ2Y
0
u ] − E[e−λ2Y

0
u 1{Xt=0}]

P(Xt > 0)
·

Using Proposition 5.4

E
[
e−λ2Y

0
u 1{Xt=0}

] = lim
λ1→+∞ E

[
e−λ2Y

0
u −λ1Xt

] = e−xv̄1(u,t),

with v̄1(u, t) = limλ1→+∞ v1(u, t).
Definition (18) implies

v̄1(u, t) =
(

ebug(α, t)2

λ2g(α, t − u)2
+ ebt

∫ t

t−u

e−br g(α, t)2

g(α, r)2
dr

)−1

+ e−αtg(α, t)−1.

Performing an asymptotic expansion of v̄1 as t goes to ∞ leads to the result. �

References

[1] R. Abraham and J.-F. Delmas. Williams’ decomposition of the Lévy continuum random tree and simultaneous extinction probability for
populations with neutral mutations. Stochastic. Process. Appl. DOI: 10.1016/j.spa.2008.06.001.

[2] R. Abraham and J.-F. Delmas. Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141 (2008) 113–
154.

[3] R. Abraham, J.-F. Delmas and G. Voisin. Pruning a Lévy continuum random tree. Preprint. Available at arXiv: 0804.1027.
[4] R. Abraham and L. Serlet. Poisson snake and fragmentation. Electron. J. Probab. 7 (2002). MR1943890
[5] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002).
[6] E. Dynkin. Branching particle systems and superprocesses. Ann. Probab. 19 (1991) 1157–1194. MR1112411
[7] K. Kawazu and S. Watanabe. Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16 (1971)

34–51. MR0290475
[8] A. Lambert. The genealogy of continuous-state branching processes with immigration. Probab. Theory Related Fields 122 (2002) 42–70.

MR1883717

http://dx.doi.org/10.1016/j.spa.2008.06.001
http://arxiv.org/abs/0804.1027
http://www.ams.org/mathscinet-getitem?mr=1943890
http://www.ams.org/mathscinet-getitem?mr=1112411
http://www.ams.org/mathscinet-getitem?mr=0290475
http://www.ams.org/mathscinet-getitem?mr=1883717


238 R. Abraham and J.-F. Delmas

[9] J. Lamperti. Continuous state branching process. Bull. Amer. Math. Soc. 73 (1967) 382–386. MR0208685
[10] J.-F. Le Gall and Y. Le Jan. Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998) 213–252. MR1617047
[11] Z.-H. Li. Branching processes with immigration and related topics. Front. Math. China 1 (2006) 73–97. MR2225400
[12] J. Pitman and M. Yor. A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59 (1982) 425–457. MR0656509
[13] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Heidelberg, 1991.
[14] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, 1999. MR1739520
[15] L. Serlet. Creation or deletion of a drift on a Brownian trajectory. In Séminaire de Probabilités, XLI 215–232.
[16] J. Warren. Branching processes, the Ray–Knight theorem, and sticky Brownian motion. In Séminaire de Probabilités, XXXI 1–15. Lecture

Notes in Math. 1655. Springer, Berlin, 1997. MR1478711

http://www.ams.org/mathscinet-getitem?mr=0208685
http://www.ams.org/mathscinet-getitem?mr=1617047
http://www.ams.org/mathscinet-getitem?mr=2225400
http://www.ams.org/mathscinet-getitem?mr=0656509
http://www.ams.org/mathscinet-getitem?mr=1739520
http://www.ams.org/mathscinet-getitem?mr=1478711

	Introduction
	CB and CB with immigration
	CB
	CBI

	State dependent immigration
	Induction formula
	Convergence of the total mass process

	The dual to the pruning at node
	Application: Law of the initial process
	References

