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Abstract. Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less
often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not
apply to the whole null-recurrent class.

The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null)
recurrent diffusion which would allow us to have a somewhat unified approach to the problem of non-parametric kernel drift
estimation in the one-dimensional recurrent case. As a particular example we obtain the rate of convergence of the Nadaraya–
Watson estimator in the case of a locally Hölder-continuous drift.

Résumé. Habituellement le problème de l’estimation du drift pour un processus de diffusion est considéré sous l’hypothèse de
l’ergodicité. Il l’est moins souvent sous l’hypothèse de nulle-récurrence, car dans ce cas il y a moins de théorèmes limites, et ceux
qui existent ne s’appliquent pas à toute la classe nulle-récurrente.

Le but de cet article est de démontrer quelques théorèmes limites pour les fonctionnelles additives et martingales dépendantes
d’une diffusion récurrente générale (ergodique ou nulle). Ces théorèmes permettent de donner une approche unifiée au problème
de l’estimation non-paramétrique par noyau du drift dans le cas unidimensionnel récurrent. Comme exemple on obtient la vitesse
de convergence de l’estimateur de Nadaraya–Watson dans le cas d’un drift localement hölderien.
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1. Introduction

Consider a stochastic differential equation

dXt = σ(Xt )dWt + b(Xt )dt, (1)

where b,σ : R → R and (Wt)t≥0 is a Brownian motion on R. Throughout this paper we suppose that σ is strictly
positive, continuous, b is measurable, and for some constant C > 0 and all x ∈ R

σ 2(x) ≤ C
(
1 + x2) and

∣∣b(x)
∣∣ ≤ C

(
1 + |x|).
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Under these conditions for each x0 ∈ R the Eq. (1) has a unique weak solution X = (Xt )t≥0 starting from x0, and the
corresponding semigroup is strong Feller (see e.g. [20], p. 170). Furthermore, we suppose that X is Harris recurrent.
Recall that it means that X admits an invariant measure μ on B(R) such that for any measurable f ≥ 0,

μ(f ) > 0 �⇒ ∀x ∈ R:
∫ ∞

0
f (Xt )dt = ∞ Px-a.s.

In our case (more exactly if σ and b are locally bounded Borel functions and σ does not vanish), the invariant measure
μ is absolutely continuous with respect to the Lebesgue measure, see [19], p. 298. The density of μ(dx) is given by

μ(dx) = 2

σ 2(x)
exp

(∫ x

0

2b

σ 2
(v)dv

)
dx. (2)

Recall also that a one-dimensional diffusion given by (1) is recurrent if and only if∫ x

0
exp

(∫ y

0

2b

σ 2
(v)dv

)
dy → ±∞ as x → ±∞. (3)

With regard to the μ-total mass of R one subdivides Harris recurrent diffusions into two sub-classes: if μ(R) is finite
then X is said to be ergodic, and null-recurrent otherwise.

For such a diffusion we will consider the problem of drift estimation. Throughout this paper we suppose that a
sample path of diffusion is observed on [0, T ] and that T → ∞.

Since we study the asymptotic behavior of diffusion processes, it is important to have at one’s disposal limit
theorems for additive functionals of the form At = ∫ t

0 f (Xs)ds or martingales of the form Mt = ∫ t

0 f (Xs)dWs . The
limit theorems for additive functionals and martingales of ergodic diffusions are available on each level of convergence
and well known, for instance if f ≥ 0, μ(f ) < ∞, we have a LLN

lim
t→∞

1

t

∫ t

0
f (Xs)ds = μ(f ) Px-a.s. ∀x

and if μ(f 2) < ∞, a CLT:

1√
t

∫ t

0
f (Xs)dWs −→ N

(
0,μ

(
f 2)).

For null-recurrent diffusions there is no LLN with deterministic normalization and weak convergence theorems
are available only for a subclass of regularly varying null-recurrent diffusions, see [12,21] and the book by Höpfner
and Löcherbach [10]. As for limit theorems working in a general recurrent setting, there is only one result: the famous
Chacon–Ornstein theorem stating that all integrable additive functionals (IAF) of X are asymptotically equivalent:
∀f ≥ 0, μ(f ) < ∞; ∀g ≥ 0, 0 < μ(g) < ∞;

lim
t→∞

∫ t

0 f (Xs)ds∫ t

0 g(Xs)ds
= μ(f )

μ(g)
Px-a.s. ∀x

and its integral version yields that μ-a.s.

lim
t→∞

Ex

∫ t

0 f (Xs)ds

Ex

∫ t

0 g(Xs)ds
= μ(f )

μ(g)
; (4)

where the exceptional set depends on f and on g.
The literature on statistical inference for ergodic diffusions in general and drift estimation in particular is exten-

sive and significant results can be obtained in this case, see for example the works by Dalalyan and Kutoyants [5],
Dalalyan [4], Van-Zanten [22], Galtchouk and Pergamentchikov [8], Yoshida [24] to mention just a few; an extensive
survey can be found in the recent book [14] by Kutoyants.
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The situation is different for null-recurrent diffusions. As we have mentioned, an important class of regularly
varying null-recurrent diffusions behaving much like the ergodic ones has been thoroughly studied by Höpfner and
Löcherbach in [10]. For such diffusions the pair (Mt/

√
vt ,At/vt ) converges in law as t → ∞, where vt = tαl(t) for

some 0 < α ≤ 1 and l(t) varying slowly at infinity. Using these facts, Höpfner and Kutoyants [9] have presented one of
the first examples concerning the rate of convergence and the limit distribution of MLE for null-recurrent diffusions.
It might be possible to extend their method to the whole class of regular variation, but since it is based on weak
convergence it cannot be used in general cases.

Our aim in this paper is to develop some tools, for the problem of drift estimation, and more precisely, for the rate
of convergence calculation, which would work in a general recurrent (null or ergodic) setting.

The first idea in this direction could be derived from the Chacon–Ornstein theorem. Because all IAF of X are
equivalent, we can consider some fixed IAF as a “time” of the system and try to work with a random normalisation
based on this IAF. This idea was used in [7] to study the rate of convergence of a non-parametric kernel estimator and
by Loukianova, Loukianov [17] to obtain the a.s. rate of convergence of the MLE. However, applying this idea in each
particular case presents a real technical difficulty, and no concise method, based on this idea, has emerged so far.

The second idea is based on the following observation: we are interested in the calculation of the rate of conver-
gence, and the rate is a notion of tightness. All known limit theorems deal with a stronger type of convergence, and
none (except Chacon–Ornstein) works for the whole recurrent class. However, tightness should be sufficient to treat
the problem of the rate of convergence. Therefore the natural question arises: is there a property of tightness with
deterministic norming for IAF, which would be true for all recurrent diffusions? The answer is affirmative:

For every recurrent diffusion X there is some deterministic function vt , called in the sequel deterministic equivalent
of X. With this function, which will be explained shortly, the following theorem holds:

Theorem 1. For every IAF At of X the following holds

lim
M→∞ lim inf

t→∞ P

(
1

M
<

At

vt

< M

)
= 1.

Such a property was first proved for recurrent Markov chains by Chen [3], without any relation to statistics. In
[16], using Chen’s method, we extended this property to one-dimensional diffusions, and recently, in [15], using a
new version of the Nummelin splitting method, this property was extended to the whole class of continuous time
Harris recurrent Markov processes.

To explain what a deterministic equivalent vt is, we need the notion of a special function.

Definition 1.1. A measurable bounded function f : R → R
+ is said to be special if for every h : R → R

+, measurable,
bounded and such that μ(h) > 0, the following function Uhf is bounded:

Uhf (x) = Ex

∫ ∞

0
exp

[
−

∫ t

0
h(Xs)ds

]
f (Xt )dt.

This notion can be extended to additive functionals.

Definition 1.2. A continuous AF At is said to be special if for every h : R → R
+, measurable, bounded and such that

μ(h) > 0, the function

Uh
A1(x) = Ex

∫ ∞

0
exp

[
−

∫ t

0
h(Xs)ds

]
dAt

is bounded.

For instance, a diffusion local time is a special additive functional (SAF), see [2]; on the other hand, any measurable
bounded function with compact support is special for a n-dimensional strong Feller diffusion, see [15].

Observe that in the “integral version” (4) of the Chacon–Ornstein theorem we cannot determine whether the result
holds or not for fixed x, f and g. The most important application of special functions and functionals is in the fact
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that the assertion (4) holds for every x, and moreover, the following “strong” version of Chacon–Ornstein theorem
(SCO) holds:

Theorem 2. If A, B are two SAF such that ‖νB‖ := EμB1 > 0, then for every pair (π1,π2) of probability measures,

lim
t→∞

Eπ1At

Eπ2Bt

= ‖νA‖
‖νB‖ .

(Recall that if At = ∫ t

0 f (Xs)ds with f ∈ L1(μ), then ‖νA‖ = μ(f ).)
Now, to normalize our additive functional we take some special g with μ(g) = 1, and put

vt = Eπ

∫ t

0
g(Xs)ds,

where π is some probability measure on E. Clearly, vt is non-negative and non-decreasing. In view of the strong
Chacon–Ornstein theorem the asymptotic order of vt depends only on the law of X. If X is an ergodic diffusion, then
vt ∼ t , if X is a null-recurrent diffusion of regular variation with index α, then vt ∼ tα ; in particular, if X is a linear
Brownian motion, then vt ∼ √

t . Some less explicit examples are possible: if X is a drifted Brownian motion with
compactly supported drift, then X is null-recurrent and vt ∼ √

t . However, to evaluate vt in the general case we need
the semi-group of X, so vt is clearly a more “abstract” object.

In [16] we have applied the deterministic equivalent to give a rate of convergence of the MLE for a class of recurrent
diffusions with Hölder drift. In this parametric context, the deterministic equivalent turned out to be an appropriate
tool, because if in the proof of the ergodic case, we replace the normalization t with vt , we obtain, with very few
modifications, a proof for the whole recurrent class.

In this paper we apply the deterministic equivalent to the calculation of the rate of convergence in non-parametric
drift estimation. We suppose, as usual, that the drift function of X is locally α-Hölder near some point x0 ∈ E, and we
estimate b(x0) by the Nadaraya–Watson estimator b̂

ht
x0,t

given by

b̂h
x0,t

=
∫ t

0 φ((Xs − x0)/h)dXs∫ t

0 φ((Xs − x0)/h)ds
.

Here φ is a non-negative smooth function with compact support. The process b̂h
x0,t

is composed with some band-
width ht . In the ergodic setting ht is a deterministic function of t which can be found using a standard optimization
procedure. A similar procedure, when guessing the optimal bandwidth in the general recurrent case, gives ht as a
function of vt . As we have noticed above, vt cannot be calculated in general, but we need an estimator, depending
only on the observations. So we also express the bandwidth (and the rate) in terms of any random and observable
IAF Vt , equivalent (in the sense of Theorem 1) to vt .

Therefore, the objects appearing in this problem and those for which we need to study the asymptotic behaviour,
are additive functionals Ah

t and martingales Mh
t composed with some deterministic or random bandwidth ht , namely

A
ht
t =

∫ t

0
φ

(
Xs − x0

ht

)
ds and M

ht
t =

∫ t

0
φ

(
Xs − x0

ht

)
dWs.

To be precise, with a view of rate calculation, we want to show some tightness property for these objects, with some
normalization depending on vt . When the bandwidth is random, A

ht
t is no longer an additive functional, and M

ht
t is

no longer a martingale. It would be difficult to obtain their asymptotics directly, using stochastic calculus methods,
because these objects do not have the usual stochastic structure. To avoid this difficulty, we firstly show some uniform
in h tightness property for Ah

t . Namely, we show that 1
h
Ah

t admits vt as uniform deterministic equivalent (Theorem 5).

We then derive a “diagonal” tightness property for A
ht
t and M

ht
t , Corollaries 3.1 and 3.2. All results regarding the limit

behavior of A
ht
t and M

ht
t are given in Section 3.

The main technical tools of our work are two theorems on the local time Lx
t of X, namely, the uniform in x

deterministic equivalent (Theorem 3), and the uniform in x strong Chacon–Ornstein Theorem 4. This is the content
of Section 2.
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Statistical applications are given in Section 4. Theorem 6 gives the rate rt = v
−α/(2α+1)
t specified by the bandwidth

ht = v
−1/(2α+1)
t . The random rate Rt and the bandwidth Ht are given by the same theorem and are: Rt = V

−α/(2α+1)
t ;

Ht = V
−1/(2α+1)
t .

Expressed in deterministic terms, our result agrees with the well-known rate rt = t−α/(2α+1) in the ergodic case
of this model, as well as with those of Delattre and Hoffmann [6], where the minimax rate rt = t−α/(4α+2) specified
by the bandwidth ht = t−(−1/(4α+2)) was found for the model of drifted Brownian motion with compactly supported
drift. Recall that this diffusion is null-recurrent with vt ∼ √

t . Our random expressions agree with those of Delattre,
Hoffmann and Kessler [7], where the Nadaraya–Watson estimator was studied in a minimax setting by different
methods and both rate and bandwidth were expressed in terms of one fixed IAF: the occupation time.

Notice finally that for multi-dimensional diffusions, it is possible, using the Nummelin splitting, to get a result
similar to Theorem 6, but only with deterministic rate and bandwidth [15].

2. Uniform deterministic equivalent and uniform Strong Chacon–Ornstein theorem for the local time

Recall that we consider a recurrent scalar diffusion X given by the Eq. (1) and subject to the same assumptions. As
usual, μ denotes the invariant measure of X and (Lx

t )t≥0 the Tanaka–Meyer local time at the point x ∈ R. Let π

be some probability on R and vt = Eπ

∫ t

0 g(Xs)ds be a deterministic equivalent of X. We suppose g measurable,
bounded, compactly supported and such that μ(g) = 1. In this section we derive a uniform deterministic equivalent for
(Lx

t )t≥0 (Theorem 3), and we show that the local time obeys a uniform strong Chacon–Ornstein theorem (Theorem 4).

Proposition 2.1. For each y ∈ R, ‖νLy ‖ = σ 2(y)μ(y), where μ(y) is the density of the invariant measure μ(dy) with
respect to Lebesgue measure. In particular, 0 < ‖νLy ‖ < ∞.

Proof. Denote by p(t;x, y) the density of the transition function of X with respect to the invariant measure μ. This
density exists and may be taken to be positive, jointly continuous in all variables and symmetric, that is p(t, x, y) =
p(t, y, x), see [11], p. 149.

On the other hand, the invariant measure μ has itself a density with respect to Lebesgue measure, μ(dx) = μ(x)dx,
where

μ(x) = 2

σ 2(x)
exp

(∫ x

0

2b

σ 2
(v)dv

)
. (5)

We have the following relation between the local time and the density p(t;x, y):

ExL
y
t = σ 2(y)μ(y)

∫ t

0
p(s;x, y)ds, (6)

see [1], p. 21 or [11], p. 175. The factor σ 2(y)μ(y) arises since L
y
t is the Tanaka–Meyer local time and not the

Ito–McKean local time.

‖νLy ‖ := EμL
y

1 = σ 2(y)μ(y)

∫
R

μ(x)dx

∫ 1

0
p(s;x, y)ds

= σ 2(y)μ(y)

∫ 1

0
ds

∫
R

p(s;y, x)μ(x)dx = σ 2(y)μ(y).

�

Remark 2.1. The condition ‖νLy ‖ > 0 implies, according to Brancovan [2], that ∀x ∈ R, Px(L
y∞ = ∞) = 1, and that

Ly is a SAF.

Theorem 3. Let K ⊂ R be some compact set. For any initial probability ν the following limit holds:

lim
M→∞ lim inf

t→∞ Pν

(
1

M
≤ inf

x∈K

Lx
t

vt

≤ sup
x∈K

Lx
t

vt

≤ M

)
= 1.



776 D. Loukianova and O. Loukianov

Before we prove this theorem let us discuss the structure of the proof. The basic idea is of course to show some
kind of uniform continuity property of the family of normalized local times. For each point x0 ∈ K, we do it for some
small interval [x0 − δ;x0 + δ] with δ > 0 depending on x0. Using this we will start by proving the Theorem 3 for this
small interval and then for the compact K . By definition for y < z,

L
y
t − Lz

t

2
= (Xt − y)+ − (Xt − z)+ − [

(X0 − y)+ − (X0 − z)+
]

−
∫ t

0
1{y<Xs≤z}σ(Xs)dWs −

∫ t

0
1{y<Xs≤z}b(Xs)ds a.s. (7)

For t ≥ 0, y < z denote

M
y,z
t =

∫ t

0
1{y<Xs≤z}σ(Xs)dWs. (8)

Using occupation formula and boundedness of |b|/σ 2 on K , with C > 0, we can write

∣∣Ly
t − Lz

t

∣∣ ≤ 2δ + ∣∣My,z
t

∣∣ + C

∫ z

y

Lx
t dx a.s. (9)

Now to prove Theorem 3 we need Lemmas 2.1–2.4. The first one is axillary to the second. The second deals with
the martingale term of the decomposition (9), the third one with the last term of the (9) and Lemma 2.4 gives the
equicontinuity property we need.

Put Kδ := [x0 − δ;x0 + δ].

Lemma 2.1. For any initial probability ν the following limit holds:

lim
M→∞ lim sup

t→∞
Pν

(∫ x0+δ

x0−δ

(
Lx

t

)2 dx > Mv2
t

)
= 0.

Proof. Fix some x < x0. Observe that with some constant C > 0 we have

(
Lx

t − L
x0
t

)2 ≤ C

{
(2δ)2 +

(∫ t

0
1{x<Xs≤x0}σ(Xs)dWs

)2

+
(∫ t

0
1{Xs∈Kδ}

∣∣b(Xs)
∣∣ds

)2}
.

Observe that thanks to conditions on b and σ in the Introduction they are bounded on Kδ . For t ≥ 0, introduce the
notation

At =
∫ t

0
1{Xs∈Kδ}

∣∣b(Xs)
∣∣ds. (10)

Since At is an IAF (and even SAF), with notation (10) we have(
Lx

t − L
x0
t

)21
At≤ 4√

Mvt
≤ C

{
(2δ)2 + (

M
x,x0
t

)2 + √
Mv2

t

}
.

Notice that

Eν

(
M

x,x0
t

)2 ≤ Eν

∫ t

0
1{Xs∈Kδ}σ 2(Xs)ds := ṽt .

Thanks to the condition on σ the last expectation is an expectation of SAF, and we have denoted it by ṽt to stress the
fact that it is a version of the deterministic equivalent of X. Observe that the same reasoning (with changing M

x,x0
t on

M
x0,x
t ) and the same estimations hold for x > x0. Finally, for all x ∈ Kδ it holds

Eν

(
Lx

t − L
x0
t

)21
At≤ 4√

Mvt
≤ C

{
(2δ)2 + ṽt + √

Mv2
t

}
.
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Now, to prove the lemma we use the following decomposition:

Pν

(∫ x0+δ

x0−δ

(
Lx

t

)2 dx > Mv2
t

)
≤ Pν

(
8δ

(
L

x0
t

)2
> Mv2

t

) + Pν

(
4
∫ x0+δ

x0−δ

(
Lx

t − L
x0
t

)2 dx > Mv2
t ;At <

4
√

Mvt

)

+ Pν

(
At >

4
√

Mvt

)
. (11)

With some constant C, for the second term of the right-hand side expression of (11) we have:

Pν

(
4
∫ x0+δ

x0−δ

(
Lx

t − L
x0
t

)2 dx > Mv2
t ;At <

4
√

Mvt

)

≤ 1

Mv2
t

∫ x0+δ

x0−δ

Eν

(
Lx

t − L
x0
t

)21
At≤ 4√

Mvt
dx ≤ C

(2δ)2 + ṽt + √
Mv2

t

Mv2
t

.

According the strong Chacon–Ornstein theorem there is a limit of ṽt /vt , as t → ∞. Using this, together with
Theorem 1 for the other two terms on the right of (11) we obtain Lemma 2.1. �

Let V be some IAF of X, such that ‖νV ‖ > 0, and for simplicity we take ‖νV ‖ = 1. Vt will play the role of
normalization for L

y
t − Lz

t to obtain the uniform continuity property we need.
In the sequel of this section denote

ΩM,t :=
{∫

Kδ

(
Lx

t

)2 dx < M2v2
t ;

vt

M
≤ Vt ≤ vtM

}
.

Let {(My,z
t ; t ≥ 0);x0 − δ ≤ y < z ≤ x0 + δ} be a family of martingales defined by (8).

Lemma 2.2. For every u > 0 and M > 0 there is some τ = τ(ω,M,u,Kδ) such that a.s. for t > τ it holds

sup
y,z∈Kδ

|My,z
t |

Vt

1ΩM,t
<

u

v
1/4
t

.

Proof. Fix some u > 0 and M > 0. Denote

Bn =
{

sup
{t;en−1<vt≤en}

sup
{a,b∈Kδ}

|My,z
t |

Vt

1ΩM,t
≥ u

v
1/4
t

}
.

We will use the Nishiyama martingale inequality to bound the probability of Bn and then the Borel–Cantelli lemma to
prove Lemma 2.2. The statement of the Nishiyama martingale’s inequality for our setting is given bellow, for a proof
of this result see [18] and for its generalization see [23].

Let ρ be a metric on Kδ , denote by ‖M‖ρ,t the quadratic ρ-modulus of the family of martingales {My,z
t ;y <

z,y, z ∈ Kδ}. For every t > 0, this modulus is given by

‖M‖ρ,t = sup
y �=z

√
〈My,z

t 〉
ρ(y, z)

.

As usual, denote by N(Kδ,ρ, ε) the metric entropy of Kδ with respect to the metric ρ, i.e. the minimal number of
ρ-balls of radius ε, needed to cover Kδ. The Nishiyama inequality for tail probabilities [23] states that

P
(

sup
t≤τ

sup
ρ(y,z)≤η

∣∣My,z
t

∣∣1{‖M‖ρ,τ ≤κ} ≥ x
)

≤ 2e−x2/(cφ2(η)κ2),
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where C > 0, η > 0, κ > 0 are constants, τ is a finite stopping time and

φ(η) =
∫ η

0

√
logN(Kδ,ρ, ε)dε

is supposed to be finite.
Before we use the Nishiyama inequality we need to evaluate the quadratic ρ-modulus on the set ΩM,t . We have

〈
M

y,z
t

〉 = ∫ t

0
1{[y;z[}(Xs)σ

2(Xs)ds =
∫ z

y

Lx
t dx ≤ √

z − y

√∫ x0+δ

x0−δ

(
Lx

t

)2 dx

and then

〈
M

y,z
t

〉
1ΩM,t

≤ √
z − yMvt .

If we take ρ(y, z) = 4
√

z − y as a distance on Kδ , it is easy to see that φ(δ) is finite and we obtain a bound for quadratic
ρ-modulus ‖M‖ρ,t restricted on ΩM,t :

‖M‖ρ,t1ΩM,t
= sup

y �=z

√
〈My,z

t 〉
ρ(y, z)

1ΩM,t
≤ √

Mvt .

Then

P(Bn) = P
(

sup
{t;en−1<vt≤en}

sup
{y,z∈Kδ}

|My,z
t |

Vt

1ΩM,t
>

u

v
1/4
t

)

≤ P
(

sup
{t;en−1<vt≤en}

sup
{y,z∈Kδ}

∣∣My,z
t

∣∣ >
uvt

Mv
1/4
t

; ‖M‖ρ,t ≤ √
Mvt

)

≤ P
(

sup
{t;en−1<vt≤en}

sup
{y,z∈Kδ}

∣∣My,z
t

∣∣ >
uen−1

Men/4
; ‖M‖ρ,en ≤ √

Men

)

≤ 2 exp

(
− u2e2n−2

M3e(3/2)nφ2(δ)

)
.

For all u > 0, for all M > 0 the series
∑

n P(Bn) converges, and the lemma follows by Borel–Cantelli. �

Note that v
1/4
t is enough for our needs, but actually one can replace v

1/4
t in the lemma with v

p
t without changing

the proof.

Lemma 2.3. For every M > 0 there is some t = t (ω,M) such that a.s. for t > t (ω,M) it holds

sup
y �=z∈Kδ

1

z − y

∫ z

y

Lx
t

Vt

dx 1ΩM,t
≤ A

with some constant A > 0, independent of M, t,ω.

Proof. Let y < z in Kδ .

∫ z

y

Lx
t

Vt

dx 1ΩM,t
≤ (z − y)

{
L

x0
t

Vt

+ sup
y,z

|Ly
t − Lz

t |
Vt

1ΩM,t

}
. (12)
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Using the Chacon–Ornstein theorem and Proposition 2.1, almost surely L
x0
t

Vt
→ ‖νLx ‖

‖νV ‖ = σ 2(x)μ(x) := l0 with l0
independent of ω. Using the definition (7) and the notations (10) and (8) we can write:

|Ly
t − Lz

t |
Vt

1ΩM,t
≤ 2δ

Vt

+ |My,z
t |

Vt

1ΩM,t
+ At

Vt

.

Following Lemma 2.2 there is some t = t (ω,M), such that for t > t (ω,M)

|Ly
t − Lz

t |
Vt

1ΩM,t
≤ 2δ

Vt

+ δ

v
1/4
t

+ At

Vt

≤ 2l1, (13)

where we have denoted l1 = limt→∞ At

Vt
. From (12) and (13) we deduce that the lemma holds with A = 2(l0 + l1). �

Lemma 2.4. For every M there is some t = t (ω,M), such that a.s. for t > t (ω,M) it holds with some constant C > 0

sup
y �=z∈Kδ

|Ly
t − Lz

t |
Vt

1ΩM,t
≤ δC.

Proof. We apply Lemmas 2.2 and 2.3 to the decomposition

|Ly
t − Lz

t |
Vt

1ΩM,t
≤ 2δ

Vt

+ |My,z
t |

Vt

1ΩM,t
+

∫ z

y

Lx
t

Vt

dx 1ΩM,t
,

where in Lemma 2.2 we take u = δ. �

This property is weaker than the restricted uniform continuity of normalized local time, but enough for what we

want to do. Namely, it provides the necessarily “uniform” argument to show that infK Lx
t

vt
is not far from L

x0
t

vt
for

K = [x0 − δ;x0 + δ] with a small δ. Now we can prove Theorem 3:

Proof. We firstly prove the theorem for Kδ = [x0 − δ;x0 + δ] with some small δ depending on x0.

Let t = t (ω,M) of Lemma 2.4. As previously, let l0 > 0 be the almost sure limit l0 = limt→∞ L
x0
t

Vt
. Let t ′(ω) =

inf{t > 0; l0/2 < L
x0
t /Vt < 2l0} and τ = max(t, t ′). Fix M > 0 and δ = δ(x0) > 0 in such a way that the following

holds with C > 0 from Lemma 2.4

1

M
≤ l0

2
− δC ≤ 2l0 + δC ≤ M.

We have

P
(

1

M
≤ inf

x∈Kδ

Lx
t

Vt

≤ sup
x∈Kδ

Lx
t

Vt

≤ M

)

≥ P
(

1

M
≤ L

x0
t

Vt

+ inf
x∈Kδ

Lx
t − L

x0
t

Vt

≤ L
x0
t

Vt

+ sup
x∈Kδ

Lx
t − L

x0
t

Vt

≤ M ∩ ΩM,t ∩ t > τ

)

≥ P
(

1

M
≤ L

x0
t

Vt

− δC ≤ L
x0
t

Vt

+ δC ≤ M ∩ ΩM,t ∩ t > τ

)

≥ P
(

1

M
≤ l0

2
− δC ≤ 2l0 + δC ≤ M ∩ ΩM,t ∩ t > τ

)
≥ P(ΩM,t ∩ t > τ). (14)

For the last expression we have

lim
M→∞ lim inf

t→∞ P
(
ΩM,t ∩ t > τ(ω,M)

) = 1.
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Note that we can easily change Vt with vt in (14), so the theorem for Kδ is proven.
Now let K be some compact in the state space. For each x ∈ K we choose δx > 0 such that the theorem with

K(x) = [x − δx;x + δx] is true. Then by standard compactness arguments we obtain the theorem for K . �

The strong Chacon–Ornstein (SCO) theorem states that if At is a SAF and vt is a deterministic equivalent associated
to Xt , then EνAt ∼ vt , as t → ∞ for any initial distribution ν. The following theorem is a uniform version of SCO
theorem for a local time.

Theorem 4. The sequence of real function gt (y) = EνL
y
t

vt
converges uniformly on Kδ to the function l(y) = σ 2(y)μ(y)

as t → ∞.

Proof. The point by point convergence follows from the strong Chacon–Ornstein theorem and Proposition 2.1:

lim
t→∞

EνL
y
t

vt

= ‖νLy ‖
1

= σ 2(y)μ(y). (15)

To show the uniform convergence we will prove that the family {EνL
y
t

vt
}t>0 is equicontinuous on Kδ = [x0 − δ, x0 + δ].

1

2
L

y
t = (Xt − y)+ − (X0 − y)+ −

∫ t

0
1{Xs>y} dXs

hence

1

2

(
EνL

y
t − EνL

z
t

) = Eν

(
(Xt − y)+ − (Xt − z)+

) − Eν

(
(X0 − y)+ − (X0 − z)+

)
− Eν

∫ t

0
1{y<Xs≤z}b(Xs)ds.

So, as an initial inequality we can take

1

2

∣∣EνL
y
t − EνL

z
t

∣∣ ≤ 2|y − z| + Eν

∫ t

0
1{y<Xs≤z}

∣∣b(Xs)
∣∣ds. (16)

We rewrite this using occupation formula, and divide by vt :

|EνL
y
t − EνL

z
t |

2vt

≤ 2|y − z|
vt

+
∫ z

y

|b(x)|
σ 2(x)

EνL
x
t

vt

dx. (17)

From (16) we have for all y, z ∈ Kδ

1

2

∣∣EνL
y
t − EνL

z
t

∣∣ ≤ 4δ + Eν

∫ t

0
1{Xs∈Kδ}

∣∣b(Xs)
∣∣ds = 4δ + ṽt . (18)

Since b is locally bounded and X is strong Feller, the second term on the right-hand side in (18) is an expectation of
special additive functional which was denoted by ṽt . Hence, for all x ∈ Kδ

EνL
x
t

vt

≤ |EνL
x
t − EνL

x0
t |

vt

+ EνL
x0
t

vt

≤ 4δ + ṽt + ˜̃vt

vt

,

where we denoted EνL
x0
t by ˜̃vt to stress the fact that EνL

x0
t is an expectation of another special additive functional.

According to the strong Chacon–Ornstein theorem the right-hand side expression converges to some constant, hence
for some constant M > 0 and t > 0 large enough

sup
x∈[x0−δ,x0+δ]

EνL
x
t

vt

≤ M. (19)
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Now we insert (19) in (17): for some K > 0 and a large enough t

|EνL
y
t − EνL

z
t |

vt

≤ |y − z|
vt

+ M sup
[x0−δ,x0+δ]

|b(x)|
σ 2(x)

|y − z| ≤ K|y − z|

and uniform convergence follows from the Ascoli lemma. �

Corolarry 2.1. Let ht , t ≥ 0, be some deterministic function with range in [0, δ] and such that limt→∞ ht = 0. For

all y ∈ [−1;1] limt→∞ EνL
x0+ht y
t

vt
= μ(x0)σ

2(x0).

Proof. We use the theorem about continuous convergence, see [13], p. 194: A sequence of continuous functions (fn)

defined on some metric compact X converges uniformly to f if and only if for any sequence (xn) the condition
limn→∞ xn = x implies limn→∞ fn(xn) = f (x). �

Corolarry 2.2. Let φ be measurable bounded and compactly supported in [−1;1]. Let h : R+ → R
+ be such that

limt→∞ ht = 0, and ψ : R → R
+ continuous in x0. Then for any initial probability ν the following limit holds:

lim
t→∞

Eν

∫ t

0 φ((Xs − x0)/ht )ψ(Xs)ds

htvt

= ψ(x0)μ(x0)

∫
R

φ(y)dy.

Proof. Using the occupation formula

Eν

∫ t

0 φ((Xs − x0)/ht )ψ(Xs)ds

htvt

= Eν

∫
R

φ((x − x0)/ht )(ψ(x)/σ 2(x))Lx
t dx

htvt

=
∫

R

φ(y)
ψ(x0 + hty)

σ 2(x0 + hty)
ft (y)dy,

where we have denoted ft (y) = EνL
x0+ht y
t

vt
. Using Corollary 2.1,

∀y ∈ [−1;1] lim
t→∞ft (y) = μ(x0)σ

2(x0).

Also using (19) for some M > 0 and t large enough we obtain sup[−1,1] ft ≤ M . The dominated convergence theorem
concludes the proof. �

3. Limit theorems for AF and martingales composed with deterministic or random bandwidth

Let φ : R → R
+ be of class C1, with support in [−1,1] and

∫ 1
−1 φ(x)dx = 1. Let X be a Harris recurrent diffusion

subject to the assumptions of (1). Denote for h ≥ 0

1

h
Ah

t = 1

h

∫ t

0
φ

(
Xs − x0

h

)
ds

(for h = 0 see (21)), and for h > 0

Mh
t =

∫ t

0
φ

(
Xs − x0

h

)
σ(Xs)dWs. (20)

Since φ is C1, there is a continuous modification of 1
h
Ah

t and if σ is bounded, of Mh
t , h ∈]0, δ]. We adopt these

modifications in what follows. As before, for δ > 0, Kδ = [x0 − δ, x0 + δ] and vt denotes a deterministic equivalent
of X.

In this section we obtain asymptotic results for Ah
t and Mh

t composed with deterministic or random bandwidth ht .
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Theorem 5. For any initial probability ν,

lim
N→∞ lim inf

t→∞ Pν

(
1

N
< inf

h∈[0;δ]
Ah

t

hvt

≤ sup
h∈[0;δ]

Ah
t

hvt

< N

)
= 1.

Proof. By occupation formula, there is a P negligible set Ω0, outside of which we have

1

h
Ah

t = 1

h

∫ t

0
φ

(
Xs − x0

h

)
ds = 1

h

∫
R

φ

(
x − x0

h

)
1

σ 2(x)
Lx

t dx

=
∫ 1

−1

φ(y)

σ 2(x0 + hy)
L

x0+hy
t dy (21)

for all t > 0 and every h ∈ [0, δ].
With some 0 < C < ∞, outside of Ω0, we have

1

C
inf

x∈Kδ

Lx
t ≤ inf

h∈[0;δ]
1

h
Ah

t ≤ sup
h∈[0;δ]

1

h
Ah

t ≤ C sup
x∈Kδ

Lx
t

for all t > 0. Fix some N > 0.

P
(

1

N
< inf

h∈[0;δ]
Ah

t

hvt

≤ sup
h∈[0;δ]

Ah
t

hvt

< N

)
≥ P

(
C

N
< inf

x∈Kδ

Lx
t

vt

≤ sup
x∈Kδ

Lx
t

vt

<
N

C

)

and the lemma follows from Theorem 3. �

Corolarry 3.1. Let Ht(ω), t ≥ 0, be some measurable process with range in [0, δ]. Denote by A
Ht
t the composition

of Ah
t (ω) with Ht(ω). Then for any initial probability ν,

lim
N→∞ lim inf

t→∞ P
(

1

N
<

A
Ht
t

Htvt

< N

)
= 1.

Lemma 3.1. Let h : R+ →]0, δ] be such that limt→∞ ht = 0. Let (Mh
t ) be the martingale defined by (20) and M

ht
t is

a composition of this martingale with ht . Then for any initial probability ν,

lim
N→∞ lim inf

t→∞ Pν

(
−N <

M
ht
t√

htvt

< N

)
= 1.

Proof. (M
ht
s ; s ∈ [0, t]) is a martingale, so we have by the Markov inequality and quadratic variation’s definition

Pν

(∣∣∣∣ M
ht
t√

htvt

∣∣∣∣ > N

)
≤ Eν[Mht

t ]2

N2htvt

= Eν

∫ t

0 φ2((Xs − x0)/ht )σ
2(Xs)ds

N2htvt

.

Lemma 3.1 follows from Corollary 2.2 and the fact that σ > 0. �

Lemma 3.2. Let ν be some probability on R, (Ht )t≥0 be adapted random processes with range in ]0, δ] and ht some
measurable deterministic function with range in ]0, δ], such that

lim
N→∞ lim inf

t→∞ Pν

(
1

N
<

Ht

ht

< N

)
= 1.

Then we have

lim
N→∞ lim sup

t→∞
Pν

(∣∣∣∣ M
Ht
t√

htvt

− M
ht
t√

htvt

∣∣∣∣ > N

)
= 0.
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Proof. Under the assumption of the lemma we can differentiate with respect to h the stochastic integral Mh
t . For

h ∈]0, δ] its derivative is given by:

∂

∂h
Mh

t =
∫ t

0
φ

(
Xs − x0

h

)
σ(Xs)dWs = 1

h

∫ t

0
ψ

(
Xs − x0

h

)
σ(Xs)dWs = 1

h
Nh

t ,

where we denote ψ(
Xs−x0

h
) = −φ(

Xs−x0
h

)
Xs−x0

h
and Nh

t = ∫ t

0 ψ(
Xs−x0

h
)σ (Xs)dWs . Remark that Nh

t and Mh
t have

the same structure in the sense that ψ(x) is also supported in [−1,1] and of class C1(R). We will use the representation

M
Ht
t − M

ht
t =

∫ Ht

ht

1

h
Nh

t dh.

We have

P
(∣∣∣∣ M

Ht
t√

htvt

− M
ht
t√

htvt

∣∣∣∣ > N,
1√
N

≤ Ht

ht

≤ √
N

)

≤ P
(

1√
htvt

∫ ht

√
N

ht /
√

N

1

h

∣∣Nh
t

∣∣dh > N

)
≤ 1

N

1√
htvt

Eν

∫ ht

√
N

ht /
√

N

1

h

∣∣Nh
t

∣∣dh

= 1

N

1√
htvt

∫ ht

√
N

ht /
√

N

1√
h

Eν |Nh
t |√

h
dh. (22)

Using the Cauchy–Schwarz inequality, quadratic-variation and occupation formulas

Eν |Nh
t |√

h
≤

√
Eν |Nh

t |2
h

=
√

Eν

∫ t

0 ψ2((Xs − x0)/h)σ 2(Xs)ds

h

=
√

Eν

∫
R

ψ2((x − x0)/h)σ 2(x)Lx
t dx

h
=

√∫
R

ψ2(y)σ 2(x0 + hy)EνL
x0+hy
t dy.

According to Theorem 4 the sequence of real function gt (y) → EνL
y
t

vt
converges uniformly on Kδ to the function

l(y) = μ(y)σ 2(y) as t → ∞. By assumptions l is bounded on Kδ , so there is some A > 0 and some t0 such that for
all t > t0∫

R

ψ2(y)σ 2(x0 + hy)
EνL

x0+hy
t

vt

dy ≤ A.

We insert now this estimation in (22):

Pν

(∣∣∣∣ M
Ht
t√

htvt

− M
ht
t√

htvt

∣∣∣∣ > N,
1√
N

≤ Ht

ht

≤ √
N

)

≤ 1

N

1√
ht

∫ ht

√
N

ht /
√

N

1√
h

√∫
R

ψ2(y)σ 2(x0 + hy)
EνL

x0+hy
t

vt

dy dh

≤ √
A

1

N

1√
ht

∫ ht

√
N

ht /
√

N

1√
h

dh = 2
√

A
1

N

1√
ht

(√
ht

√
N −

√
ht√
N

)

and the lemma follows by taking limit as N → ∞. �

From Lemmas 3.1 and 3.2 we deduce Corollary 3.1.
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Corolarry 3.2. Let (Ht )t≥0 be adapted random processes with range in ]0, δ]. For any initial probability ν,

lim
N→∞ lim inf

t→∞ Pν

(
−N <

M
Ht
t√

htvt

< N

)
= 1.

4. Application to non-parametric estimation

We observe until time t a sample path of the processes X, weak solution of (1). Suppose that the drift coefficient b

is unknown and for x0 ∈ R we want to estimate b(x0). Let δ > 0 be such that [x0 − δ;x0 + δ] ⊂ R. We suppose that
σ and b satisfy the assumptions of (1), and also that for some α ∈]0,1] and γ > 0 the function b satisfies the local
Hölder condition:

sup
x∈[x0−δ,x0+δ]

|b(x) − b(x0)|
|x − x0|α ≤ γ.

Let φ : R → R
+ be of class C1 with support in [−1,1] and

∫
φ(x)dx = 1. For h > 0 we consider a family of

Nadaraya–Watson estimators

b̂h
x0,t

=
∫ t

0 φ((Xs − x0)/h)dXs∫ t

0 φ((Xs − x0)/h)ds
.

Let Vt be some given IAF of X such that ‖νV ‖ > 0, and let vt be its deterministic equivalent.
Denote

Ht = V
−1/(2α+1)
t ∧ δ; ht = v

−1/(2α+1)
t ∧ δ; rt = v

α/(2α+1)
t ; Rt = V

α/(2α+1)
t . (23)

To estimate b(x0) we use b̂
Ht
x0,t

, so Ht and Rt play the role of “random bandwidth” and of “random rate,” respectively.

Theorem 6. Rt is an upper rate of convergence of b̂
Ht
x0,t

to b(x0)

lim
K→∞ lim sup

t→∞
Pν

(
Rt

∣∣b̂Ht
x0,t

− b(x0)
∣∣ > K

) = 0.

Proof. Using (1) we can write:

∣∣b̂Ht
x0,t

− b(x0)
∣∣ ≤ | ∫ t

0 φ((Xs − x0)/Ht )σ (Xs)dWs |∫ t

0 φ((Xs − x0)/Ht )ds
+

∫ t

0 φ((Xs − x0)/Ht )|b(Xs) − b(x0)|ds∫ t

0 φ((Xs − x0)/Ht )ds

≤ | ∫ t

0 φ((Xs − x0)/Ht )σ (Xs)dWs |∫ t

0 φ((Xs − x0)/Ht )ds
+ γHα

t

= | ∫ t

0 φ((Xs − x0)/Ht )σ (Xs)dWs |√
vtHt

× vtHt∫ t

0 φ((Xs − x0)/Ht )ds
× 1√

vtHt

+ γHα
t ,

where in the second line we have used the Hölder property of b. Let

Ω1
t,K =

{ | ∫ t

0 φ((Xs − x0)/Ht )σ (Xs)dWs |√
vtHt

≤ K1/4
}
;

Ω2
t,K =

{
1

K1/4
≤

∫ t

0 φ((Xs − x0)/Ht )ds

vtHt

≤ K1/4
}
;

Ω3
t,K =

{
1

K1/4
≤ Vt

vt

≤ K1/4
}
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and

Ωt,K = Ω1
t,K ∩ Ω2

t,K ∩ Ω3
t,K .

We have

Pν

(
Rt × ∣∣b̂Ht

x0,t
− b(x0)

∣∣ ≥ K
) ≤ Pν

(
v

α/(2α+1)
t

(
K1/2 1√

vtht

+ γ hα
t

)
> K

)
+ Pν

(
Ωc

t,K

)
= Pν

(
K1/2 + 1 > K

) + Pν

(
Ωc

t,K

)
,

where we used the fact that hα
t = v

−α/(2α+1)
t for large t ,

√
vtht =

√
v

1−1/(2α+1)
t = v

α/(2α+1)
t . Using Corollaries 3.1

and 3.2 we obtain

lim
K→∞ lim sup

t→∞
P
(
Ωc

t,K

) = 0

and Theorem 6 follows. �

In the previous theorem we express the bandwidth and the rate as a function of additive functional Vt of observed
process Xt . It is easy to see that the theorem holds if we change Ht with ht and Rt with rt given by (23) which are
both deterministic.

Acknowledgments

We wish to thank S. Delattre and M. Hoffmann for useful comments and discussions, and the referee for his pertinent
remarks.

References

[1] A. Borodin and P. Salminen. Handbook of Brownian Motion – Facts and Formulae. Probability and its Applications. Birkhäuser, Basel, 1996.
MR1477407

[2] M. Brancovan. Fonctionnelles additives spéciales des processus récurrents au sens de Harris. Z. Wahrsch. Verw. Gebiete 47 (1979) 163–194.
MR0523168

[3] X. Chen. How often does a Harris recurrent Markov chain recur? Ann. Probab. 27 (1999) 1324–1346. MR1733150
[4] A. Dalalyan. Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Statist. 33 (2005) 2507–2528. MR2253093
[5] A. Dalalyan and Y. Kutoyants. On second order minimax estimation of the invariant density for ergodic diffusions. Statist. Decisions 22

(2004) 17–41. MR2065989
[6] S. Delattre and M. Hoffmann. Asymptotic equivalence for a null recurrent diffusion model. Bernoulli 8 (2002) 139–174. MR1895888
[7] S. Delattre, M. Hoffmann and M. Kessler. Dynamics adaptive estimation of a scalar diffusion. Prépublication PMA-762, Univ. Paris 6.

Available at www.proba.jussieu.fr/mathdoc/preprints/.
[8] L. Galtchouk and S. Pergamentchikov. Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes. Math.

Methods Statist. 10 (2001) 316–330. MR1867163
[9] R. Höpfner and Y. Kutoyants. On a problem of statistical inference in null recurrent diffusions. Stat. Inference Stoch. Process. 6 (2003) 25–42.

MR1965183
[10] R. Höpfner and E. Löcherbach. Limit Theorems for Null Recurrent Markov Processes. Providence, RI, 2003. MR1949295
[11] K. Itô and H. P. McKean, Jr. Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974. MR0345224
[12] R. Khasminskii. Limit distributions of some integral functionals for null-recurrent diffusions. Stochastic Process. Appl. 92 (2001) 1–9.

MR1815176
[13] K. Kuratowski. Introduction a la theorie des ensembles et a la topologie. Institut de Mathematiques, Universite Geneve, 1966. MR0231338
[14] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes. Springer, London, 2004. MR2144185
[15] E. Löcherbach and D. Loukianova. On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel

estimation for multidimensional diffusions. To appear in Stochastic Process. Appl.
[16] D. Loukianova and O. Loukianov. Deterministic equivalents of additive functionals of recurrent diffusions and drift estimation. To appear in

Stat. Inference Stoch. Process.
[17] D. Loukianova and O. Loukianov. Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions. In

Dependence in Probability and Statistics 269–347. Springer, New York, 2006. MR2283262

http://www.ams.org/mathscinet-getitem?mr=1477407
http://www.ams.org/mathscinet-getitem?mr=0523168
http://www.ams.org/mathscinet-getitem?mr=1733150
http://www.ams.org/mathscinet-getitem?mr=2253093
http://www.ams.org/mathscinet-getitem?mr=2065989
http://www.ams.org/mathscinet-getitem?mr=1895888
http://www.ams.org/mathscinet-getitem?mr=1867163
http://www.ams.org/mathscinet-getitem?mr=1965183
http://www.ams.org/mathscinet-getitem?mr=1949295
http://www.ams.org/mathscinet-getitem?mr=0345224
http://www.ams.org/mathscinet-getitem?mr=1815176
http://www.ams.org/mathscinet-getitem?mr=0231338
http://www.ams.org/mathscinet-getitem?mr=2144185
http://www.ams.org/mathscinet-getitem?mr=2283262


786 D. Loukianova and O. Loukianov

[18] Y. Nishiyama. A maximum inequality for continuous martingales and M-estimation in Gaussian white noise model. Ann. Statist. 27 (1999)
675–696. MR1714712

[19] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1994. MR1303781
[20] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2, Wiley, New York, 1990. MR0921238
[21] A. Touati. Théorèmes limites pour les processus de Markov récurrents. Unpublished paper, 1988. (See also C.R.A.S. Paris Série I 305 (1987)

841–844.) MR0923211
[22] H. van Zanten. On empirical processes for ergodic diffusions and rates of convergence of M-estimators. Scand. J. Statist. 30 (2003) 443–458.

MR2002221
[23] H. van Zanten. On the rate of convergence of the maximum likelihood estimator in Brownian semimartingale models. Bernoulli 11 (2005)

643–664. MR2158254
[24] N. Yoshida. Asymptotic behavior of M-estimators and related random field for diffusion process. Ann. Inst. Statist. Math. 42 (1990) 221–251.

MR1064786

http://www.ams.org/mathscinet-getitem?mr=1714712
http://www.ams.org/mathscinet-getitem?mr=1303781
http://www.ams.org/mathscinet-getitem?mr=0921238
http://www.ams.org/mathscinet-getitem?mr=0923211
http://www.ams.org/mathscinet-getitem?mr=2002221
http://www.ams.org/mathscinet-getitem?mr=2158254
http://www.ams.org/mathscinet-getitem?mr=1064786

	Introduction
	Uniform deterministic equivalent and uniform Strong Chacon-Ornstein theorem for the local time
	Limit theorems for AF and martingales composed with deterministic or random bandwidth
	Application to non-parametric estimation
	Acknowledgments
	References

