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Abstract. We derive a quenched invariance principle for random walks in random environments whose transition probabilities
are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random
conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.

Résumé. Nous dérivons un principe d’invariance presque sûr pour les marches aléatoires en milieu aléatoire dont les transitions
sont données par des poids indexés par des cycles bornés. A cet effet nous adaptons la démonstration pour les marches symétriques
en milieu aléatoire de Sidoravicius et Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) dans le cas non réversible.
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1. Introduction and summary

We consider a class of random walks in random environments (RWRE’s) on Zd admitting the following “bounded
cycle representation”:

We begin by introducing some terminology. A cycle C is a finite sequence (z0, z1, . . . , zn) of points in Zd such that
z0, . . . , zn−1 are pairwise different and zn = z0. The number n is also called the length of the cycle. We allow cycles
of lengths 1 and 2. For x ∈ Zd , we write x ∈ C if there is an index i = 0, . . . , n − 1 such that zi = x. For x ∈ Zd ,
the cycle C + x is defined by (z0 + x, z1 + x, . . . , zn + x). Finally, we also identify the cycle C with the sequence of
its (directed) edges ((z0, z1), (z1, z2), . . . , (zn−1, zn)). Thus, for (x, y) ∈ Zd × Zd , we write (x, y) ∈ C if there is an
index i = 0, . . . , n − 1 such that zi = x, zi+1 = y.

Let K ∈ N, and let C1, . . . ,CK be cycles of lengths n1, . . . , nK . It may be helpful to think of all these cycles
having a common point (e.g. the origin), although we do not need that. Let (Ω,F ,P) be a probability space endowed
with a group of measurable transformations (Tx)x∈Zd such that Tx+y = Tx ◦ Ty for all x, y ∈ Zd , let W1, . . . ,WK be
non-negative random variables on (Ω,F ,P), and let M be the random variable on (Ω,F ,P) given by

M(ω) :=
K∑

i=1

∑
x∈Zd

Wi(Txω) · 1{0∈Ci+x} (1.1)
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for all ω ∈ Ω . We suppose that M is strictly positive. (See also Assumption (b) below.) For each ω ∈ Ω and each
z ∈ Zd , set

pz(ω) := 1

M(ω)
·

K∑
i=1

∑
x∈Zd

Wi(Txω) · 1{(0,z)∈Ci+x}. (1.2)

Then, for any ω ∈ Ω , we have pz(ω) ≥ 0 for all z ∈ Zd and
∑

z∈Zd pz(ω) = 1, i.e. the pz(ω) define a probability
measure on Zd . For fixed x ∈ Zd and fixed ω ∈ Ω , the random walk in the “environment” ω and with the “starting
point” x is the Markov chain (Xn)n∈N on the probability space (Σ,G,Px,ω) with transition probabilities

Px,ω(Xn+1 = y + z|Xn = y) = pz(Tyω)

and initial distribution

Px,ω(X0 = x) = 1.

Obviously, there is no loss of generality in assuming that (Σ,G) is the set (Zd)N endowed with the product σ -field,
(Xn)n∈N is the coordinate process, and Px,ω is the probability measure on (Σ,G) determined by the above conditions.

First of all, note that the RWRE has bounded range, uniformly in ω, because

Λ := {
z ∈ Zd

∣∣ ∃ i = 1, . . . ,K, x ∈ Zd : (0, z) ∈ Ci + x
}

(1.3)

is a finite set and for any ω ∈ Ω , we have

pz(ω) = 0 for all z /∈ Λ. (1.4)

We continue by stating our standing assumptions. In the sequel let ei denote the ith unit vector in Zd (i = 1, . . . , d),
and let ‖ · ‖2 denote the Euclidean norm on Rd .

Assumptions.

(a) The probability measure P is invariant and ergodic with respect to each of the subgroups (Tzei
)z∈Z (i = 1, . . . , d).

(b) The random variable M is bounded away from 0 and ∞, i.e. there exist constants 0 < c ≤ C < ∞ such that
c ≤ M(ω) ≤ C for all ω ∈ Ω .

(c) The RWRE is strongly irreducible, uniformly in ω, i.e. there exist ε > 0 and N ∈ N such that for all x ∈ Zd , for
all ω ∈ Ω and for all e ∈ Zd with ‖e‖2 = 1, we have Px,ω(Xn = x + e) ≥ ε for some n ≤ N .

Remarks.
Observe that Assumption (a) entails the following weaker condition:

(a′) The probability measure P is invariant and ergodic with respect to the group (Tx)x∈Zd .
Also, due to (1.4), Assumption (c) is equivalent to the following condition:

(c′) There exist ε0 > 0 and N ∈ N such that for all x ∈ Zd , for all ω ∈ Ω and for all e ∈ Zd with ‖e‖2 = 1, there exist
n ≤ N and z0, . . . , zn ∈ Zd with z0 = x, zn = x + e and pzi−zi−1(Tzi−1ω) ≥ ε0 for all i = 1, . . . , n.

In particular, this holds under the following stronger condition that the RWRE is uniformly elliptic:
(c′′) The set Λ defined in (1.3) generates Zd , and there exists a constant ε0 > 0 such that infz∈Λ pz(ω) ≥ ε0 for all

ω ∈ Ω .

However, see Example (c) below.

Examples.

(a) The random conductance model. Take K = d and Ci = (0, ei,0) (i = 1, . . . ,K), and suppose that the random
variables Wi take values in [a, b] (i = 1, . . . ,K) for some 0 < a < b < ∞. Then Assumptions (b) and (c′′) are
clearly satisfied.
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(b) The uniformly elliptic case. Suppose that the cycles Ci are such that Λ generates Zd and that the random variables
Wi take values in [a, b] (i = 1, . . . ,K) for some 0 < a < b < ∞. Then Assumptions (b) and (c′′) are clearly
satisfied. For the case where the random variable M is constant, this model has been introduced in Section 4.3 in
[7] (see also pp. 124–125 in [8]).

(c) The square triangle model. Take d = 2, K = 2, C1 = ((0,0), (1,0), (1,1), (0,1), (0,0)), C2 = ((0,0), (1,0),

(1,1), (0,0)), and suppose that the random variables Wi take values in {0,1} such that W1(ω) + W2(ω) = 1 for
all ω ∈ Ω and that the random vectors (W1 ◦ Tx,W2 ◦ Tx), x ∈ Z2, are i.i.d. It is obvious that this model satisfies
Assumptions (b) and (c) (with N = 2), but not Assumption (c′′).

(d) The triangle triangle model. Take d = 2, K = 2, C1 = ((0,0), (1,1), (0,1), (0,0)), C2 = ((0,0), (1,0), (1,1),

(0,0)), and suppose that the random variables Wi take values in {0,1} such that W1(ω) + W2(ω) = 1 for all
ω ∈ Ω and that the random vectors (W1 ◦ Tx,W2 ◦ Tx), x ∈ Z2, are i.i.d. It is obvious that this model satisfies
Assumption (b), but not Assumption (c), as it contains “corridors” of arbitrary length. Thus it does not fit into our
framework.

(e) The random walk on the supercritical percolation cluster. Take K = d and Ci = (0, ei ,0) (i = 1, . . . ,K), suppose
that the random variables Wi are independent with P(Wi = 1) = p = 1 − P(Wi = 0) for some p ∈ (pcrit,1),
where pcrit denotes the critical percolation probability, and condition upon the event that the origin belongs to
the unique infinite open cluster. Clearly, this model does not fit into our framework either.

In the study of the random walk (Xn)n∈N, one usually distinguishes between “quenched” results relating to the
probability measures P0,ω , for any ω ∈ Ω , and “annealed” results relating to the averaged probability measure given
by

(P ◦ P0,·)(A) :=
∫

Ω

P0,ω(A) P(dω), A ∈ G.

Quenched results are usually harder to prove, but they are also more relevant.
We are interested in the question whether the RWRE satisfies the quenched Invariance Principle. More precisely,

for N ≥ 1, set

βN := the polygonal interpolation of
k

N

→ Xk√

N
, k ≥ 0,

and note that βN is a random variable taking values in C([0,∞[;Rd), the space of continuous functions on [0,∞[
taking values in Rd endowed with the topology of uniform convergence on compact intervals. The quenched Invari-
ance Principle states that for P-a.e. ω ∈ Ω , under the probability measure P0,ω , the random variables βN converge in
distribution to a d-dimensional Brownian motion with a zero mean and a non-trivial covariance matrix.
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For model (a), the quenched Invariance Principle has recently been established by Sidoravicius and Sznitman (see
Theorem 1.1 and Remark 1.3 in [14]). The main aim of this paper is to extend their result to the more general case of
a RWRE admitting a bounded cycle representation:

Theorem 1.1. Suppose that the RWRE admits a bounded cycle representation. Then, for P-a.e. ω ∈ Ω , under the
probability measure P0,ω , the random variables βN converge in distribution to a d-dimensional Brownian motion
with mean zero and non-degenerate covariance matrix A as in (4.1) below.

For model (b), in the special case where the random variable M is constant, it follows from a recent result by Ko-
morowski and Olla [7] that (already under the weaker assumption (a′)) the RWRE satisfies the annealed Central Limit
Theorem, i.e. under the probability measure P ◦ P0, · , the random vectors ZN := XN/

√
N converge in distribution to

a d-dimensional Gaussian random variable with a zero mean and a non-trivial covariance matrix (see Theorem 2.2
and Example 4.3 in [7]). The above theorem shows that (under the stronger assumption (a)) the RWRE also satisfies
the quenched Central Limit Theorem, i.e. for P-a.e. ω ∈ Ω , under the probability measure P0,ω , the random vec-
tors ZN := XN/

√
N converge in distribution to a d-dimensional Gaussian random variable with a zero mean and a

non-trivial covariance matrix.
Furthermore, for model (e), the quenched invariance principle has recently been proved by Sidoravicius and Sznit-

man [14] in dimension d ≥ 4, and by Berger and Biskup [1], Mathieu and Piatnitski [13] in dimension d ≥ 2. Here
one can take advantage of very precise results on the transition kernel of the random walk on the infinite percolation
cluster.

Finally, let it be mentioned that Mathieu [12] and Biskup and Prescott [2] have very recently proved the quenched
invariance principle for certain variants of model (a) in which the random variables Wi need not be bounded away
from 0.

In proving the above theorem, we will closely follow the approach of Sidoravicius and Sznitman [14] for the
random conductance model (see Section 1 in [14]). To this end, we need two basic ingredients:

• We introduce the so-called corrector function χ : Zd × Ω −→ Rd , for which the process (Mω
n )n∈N defined by

Mω
n := Xn + χ(Xn,ω), n ∈ N,

is a martingale under P0,ω , for P-almost each ω ∈ Ω .
• We establish the upper Gaussian bound

Px,ω(Xn = y) ≤ C0n
−d/2 exp

(
−‖x − y‖2

2

C0n

)
, n ≥ 1, x, y ∈ Zd,

on the transition kernel of the random walk under P0,ω , for each ω ∈ Ω . Here C0 > 0 is a constant not depending
on ω.

In Sidoravicius and Sznitman [14] (and also in Berger and Biskup [1] and Mathieu and Piatnitski [13]), the con-
struction of the corrector function relies on the reversibility of the so-called chain of environments viewed from the
particle (see Section 3 for further details). Unfortunately, this property is generally lost in case that the RWRE admits
a bounded cycle representation when one of the representing cycles Ci has length ni ≥ 3. We therefore have to take
a somewhat different approach when constructing the corrector function, using ideas from the theory of (asymmetric)
exclusion processes (see e.g. [9,10,15]).

We have the following upper Gaussian bound on the transition kernel of the random walk:

Proposition 1.2. Suppose that the RWRE admits a bounded cycle representation. There exists a constant C0 > 0 (not
depending on ω) such that for all n ≥ 1 and all x, y ∈ Zd ,

Px,ω(Xn = y) ≤ C0n
−d/2 exp

(
−‖y − x‖2

2

C0n

)
.
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Such upper Gaussian bounds are well known for reversible random walks (see e.g. Section 14 in [16]), but they
generally fail for non-reversible random walks. Now a RWRE admitting a bounded cycle representation is generally
not reversible when one of the representing cycles Ci has length ni ≥ 3, but it belongs to the class of so-called
centered random walks (see Section 2 for further details). For this class, it has recently been shown by Mathieu
[11] that the “off-diagonal” upper bound on the transition kernel follows from the “on-diagonal” upper bound on the
transition kernel, which will be obtained by means of a Nash inequality. However, also in this context, there are some
complications arising from the lack of reversibility.

This paper is structured as follows. In Section 2 we give the proof of Proposition 1.2. In Section 3 we construct the
corrector function. After these preparations, the proof of Theorem 1.1 is virtually identical to that of Theorem 1.1 in
[14]; Section 4 contains some relevant comments. Finally, Appendices A and B contain a number of auxiliary results
which seem either quite standard or very similar to existing results and which have been included for the sake of
completeness.

2. The upper Gaussian bound on the transition kernel of the random walk

A centered random walk as introduced in Definition 2.1 in [11] is an irreducible Markov chain (Xn)n∈N taking values
in Zd for which there exist a collection of cycles (Ci)i∈N of bounded length, a collection of weights (wi)i∈N and a
positive measure π on Zd (a so-called centering measure) such that for all n ∈ N and for all x, y ∈ Zd ,

P(Xn+1 = y|Xn = x) = 1

π({x}) ·
∑
i∈N

wi · 1{(x,y)∈Ci }.

It is immediate from our definitions that for each ω ∈ Ω , the random walk (Xn)n∈N under P0,ω is a centered random
walk in this sense. More precisely, the measure on Zd given by

πω

({x}) := M(Txω), x ∈ Zd ,

is a centering measure, and hence also an invariant measure (see Lemma 2.5 in [11]), for the random walk (Xn)n∈N

under P0,ω . Moreover, by our Assumption (b), we have

inf
x∈Zd

πω

({x}) ≥ inf
ω∈Ω

M(ω) ≥ c > 0, (2.1)

as required for most of the results in [11].
As already mentioned, the Markov chain (Xn)n∈N under P0,ω is generally not reversible (with respect to πω) when

one of the representing cycles Ci has length ni ≥ 3. At least, we have an explicit description of the time-reversed
Markov chain in this case: It is given by the “reversed” cycles.

More precisely, for any cycle C = (x0, x1, . . . , xn), the reversed cycle is given by C∗ = (xn, xn−1, . . . , x0). Let
C∗

1 , . . . ,C∗
K be the reversed cycles belonging to the cycles C1, . . . ,CK , and let W1, . . . ,WK and M be the same as

before. Then we clearly have

M(ω) =
K∑

i=1

∑
x∈Zd

Wi(Txω) · 1{0∈C∗
i +x}

for any ω ∈ Ω , so that we may introduce the probabilities p∗
z (ω) (defined analogously to the probabilities pz(ω)) and

the probability measures P ∗
0,ω (defined analogously to the probability measures P0,ω). As observed in Section 2.2 in

[11], the Markov chain (Xn)n∈N under P ∗
0,ω is then linked to the time-reversed Markov chain of the Markov chain

(Xn)n∈N under P0,ω . That is, it also has πω as an invariant measure, and

p∗
z (Tyω) = M(Ty+zω)

M(Tyω)
· p−z(Ty+zω) (2.2)

for all y, z ∈ Zd .
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In particular, the time-reversed Markov chain is of the same type as the original Markov chain. This observation
plays a crucial role in the derivation of the upper Gaussian bound in Theorem 2.10 in [11], and also in the derivation
of the bound (2.3).

We now explain how to prove Proposition 1.2. Suppose that there is a constant C1 > 0 (not depending on ω) such
that

Px,ω(Xn = y) ≤ C1M(Tyω)n−d/2 (2.3)

for all n ≥ 1 and all x, y ∈ Zd . Then, by Theorem 2.10 in [11], there is a constant C2 > 0 depending only on c (from
(2.1)), max{n1, . . . , nK} (from Section 1) and C1 such that

Px,ω(Xn = y) ≤ C2 M(Tyω)n−d/2 exp

(
−d(x, y)2

C2n

)
(2.4)

for all n ≥ 1 and all x, y ∈ Zd . Here, d(x, y) denotes the natural graph distance associated with the random walk
(Xn)n∈N under the probability measure P0,ω (see Section 2.1 in [11]). Since the latter has bounded range B (with
respect to the Euclidean distance), uniformly in ω ∈ Ω , it is related to the Euclidean distance by the inequality
d(x, y) ≥ ‖y − x‖2 /B . Also, by our Assumption (b), the factor M(Tyω) is bounded above by the constant C, uni-
formly in ω ∈ Ω . Thus, there is a constant C3 > 0 depending only on B , C and C2 such that

Px,ω(Xn = y) ≤ C3 n−d/2 exp

(
−‖y − x‖2

2

C3n

)
(2.5)

for all n ≥ 1 and all x, y ∈ Zd . In particular, C3 is independent of ω.
To complete the proof of Proposition 1.2, it remains to verify (2.3). This will be done by means of a Nash inequality.

To this end, we introduce some more notation. Given a transition kernel Q on Zd with (positive) invariant measure π ,
let

EQ(f,f ) := 1

2

∑
x,y

(
f (y) − f (x)

)2
π(x)Q(x, y) = 〈

f, (I − Q)f
〉
π

denote the associated Dirichlet form, where 〈 · , · 〉π denotes the scalar product in L2(π). Furthermore, let Q∗ denote
the adjoint of Q with respect to π , i.e. let

Q∗(x, y) := π({y})
π({x}) · Q(y,x)

for any x, y ∈ Zd . Finally, let �0(Z
d) denote the set of functions on Zd with finite support.

Proposition 2.1. Let (Xn)n∈N be a random walk on Zd with transition kernel Q and invariant measure π for which
there exist constants 0 < c ≤ C < ∞ with c ≤ π({x}) ≤ C for all x ∈ Zd . Suppose that the transition kernel Q is
strongly irreducible, i.e.

∃ε > 0, ∃N ∈ N, ∀x ∈ Zd, ∀e ∈ Zd : ‖e‖2 = 1, ∃n ≤ N, Qn(x, x + e) ≥ ε,

and of bounded range, i.e.

∃B > 0, ∀x, y ∈ Zd, ‖y − x‖2 > B �⇒ Q(x,y) = 0.

Then there exists a number m ≥ 1 such that the transition kernel (Qm)∗Qm satisfies the d-dimensional Nash inequal-
ity, i.e.

∃κ > 0, ∀f ∈ �0
(
Zd

)
, E(Qm)∗Qm(f,f ) ≥ κ‖f ‖2+4/d

L2(π)
‖f ‖−4/d

L1(π)
.

More precisely, m and κ are constants depending only on c, C, ε, N and B .
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Although we think that this result should be well known, we are not aware of a suitable reference in the literature.
(Most of the existing accounts of Nash inequalities seem to concentrate on reversible Markov chains.) A full proof of
Proposition 2.1 is therefore given in Appendix A of this paper.

Besides that, we will need the following result (see also Theorem 4.1 in [4]):

Proposition 2.2. Let (Xn)n∈N be a random walk on Zd with transition kernel Q and invariant measure π , for which
there exist constants 0 < c ≤ C < ∞ with c ≤ π({x}) ≤ C for all x ∈ Zd . Suppose that the transition kernel Q∗Q
satisfies the d-dimensional Nash inequality, i.e.

∃κ > 0, ∀f ∈ �0
(
Zd

)
, EQ∗Q(f,f ) ≥ κ‖f ‖2+4/d

L2(π)
‖f ‖−4/d

L1(π)
.

Then there exists a constant C0 (depending only on c, C and κ) such that

∥∥Qn
∥∥2

L1(π)→L2(π)
≤ C0 n−d/2

for all n ≥ 1.

As the proof of Proposition 2.2 is a straightforward adaption of that of Theorem 4.1 in [4], it is also deferred to
Appendix A of this paper. A similar result for non-reversible Markov chains on a finite state space can also be found
in [5].

We now explain how to establish the upper bound (2.3). Fix ω ∈ Ω , and let Qω and Q∗
ω denote the transition kernel

of the random walk under P0,ω and P ∗
0,ω , respectively. By (1.4) and our standing Assumptions (b) and (c), the random

walk under P0,ω clearly satisfies the assumptions of Proposition 2.1, the constants c, C, ε, N and B not depending
on ω. Hence, by Propositions 2.1 and 2.2, there exist m ≥ 1 and C0 > 0 not depending on ω such that

∥∥(Qω)mn
∥∥2

L1(πω)→L2(πω)
≤ C0 n−d/2

for all n ≥ 1. Since Qω is a contraction on L2(πω), this implies that

∥∥(Qω)n
∥∥2

L1(πω)→L2(πω)
≤ C′

0 n−d/2

for all n ≥ m, where C′
0 := C0 (m + 1)d/2. Moreover, since the random walk under P ∗

0,ω is of the same type as the
random walk under P0,ω , we also have

∥∥(
Q∗

ω

)n∥∥2
L1(πω)→L2(πω)

≤ C′
0 n−d/2

for all n ≥ m, possibly after replacing C′
0 and m with some larger constants. Therefore, for n = 2k even (k ≥ m), it

follows that

sup
x,y

Q2k
ω (x, y)

πω({y}) = sup
x,y

〈Q2k
ω δy, δx〉πω

πω({x})πω({y})

= sup
x,y

〈(Qω)kδy, (Q
∗
ω)kδx〉πω

πω({x})πω({y})

≤ sup
x,y

‖(Qω)kδy‖L2(πω)‖(Q∗
ω)kδx‖L2(πω)

‖δx‖L1(πω)‖δy‖L1(πω)

≤ C′
0 k−d/2,

where the first inequality follows from the Cauchy–Schwarz inequality. Also, for n = 2k + 1 odd (k ≥ m), it follows
that

sup
x,y

Q2k+1
ω (x, y)

πω({y}) = sup
x,y

∑
z

Qω(x, z)
Q2k

ω (z, y)

πω({y}) ≤ C′
0 k−d/2.
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Thus, there is a constant C1 such that (2.3) holds for all n ≥ 2m, for any ω ∈ Ω . By our Assumption (b), replacing C1
with a larger constant if necessary, (2.3) also holds for n = 1, . . . ,2m − 1, for any ω ∈ Ω . This establishes the desired
bound.

3. The construction of the corrector function

For each ω ∈ Ω , the chain of environments viewed from the particle is the (Ω,F)-valued process (ωn)n∈N defined by

ωn := TXnω, n ∈ N.

It is easy to check that for each ω ∈ Ω , under the probability measure P0,ω , (ωn)n∈N is a Markov chain with transition
kernel

Rf (ω) :=
∑
z∈Λ

f (Tzω)pz(ω)

and initial distribution

P0,ω(ω0 = ω) = 1

(see e.g. Proposition 1.1 in [3]). Similarly, under the product measure P × P0, · , (ωn)n∈N is a Markov chain with
transition kernel R and initial distribution P (see e.g. Proposition 1.1 in [3]). It is well known that in many interesting
“applications,” there exists a probability measure Q on (Ω,F) which is equivalent to P and which is invariant for R,
i.e. we have∫

Rf (ω)Q(dω) =
∫

f (ω)Q(dω)

for all bounded measurable functions f . The existence of such a probability measure Q is often a prerequisite for the
closer investigation of the RWRE.

For a RWRE admitting a bounded cycle representation, such an invariant probability measure Q for the chain of
environment is given by Q(dω) := Z−1 M(ω)P(dω), where M is the positive random variable from the Introduction
and Z := ∫

Ω
M(ω)P(dω) is a normalization factor. In the random conductance model considered by Sidoravicius and

Sznitman [14] (see Example (a) in the Introduction), the chain of environment is even reversible with respect to Q.
However, for a general RWRE admitting a bounded cycle representation, reversibility is usually lost when one of the
underlying cycles Ci has length ni ≥ 3. At least, we have an explicit description of the time-reversed process: It is
induced by the reversed cycles.

Indeed, from the discussion in Section 2, it is clear that the chain of environments associated with the time-reversed
RWRE has the transition kernel

R∗f (ω) :=
∑
z∈Λ∗

f (Tzω)p∗
z (ω),

where p∗
z (ω) is defined analogously to pz(ω) and Λ∗ is defined analogously to Λ. To prove that R∗ is in fact the

adjoint of R in L2(Q), we have to check that〈
R∗f,g

〉
Q

= 〈f,Rg〉Q (3.1)

for all non-negative measurable functions f,g, where 〈 · , · 〉Q denotes the scalar product in L2(Q). (Note that this also
proves our claim that Q is an invariant measure both for R and for R∗.) Now,

〈f,Rg〉Q = Z−1 ·
∑
z∈Λ

∫
f (ω)g(Tzω)pz(ω)M(ω)P(dω),



582 J.-D. Deuschel and H. Kösters

〈
R∗f,g

〉
Q

= Z−1 ·
∑
z∈Λ∗

∫
f (Tzω)g(ω)p∗

z (ω)M(ω)P(dω)

= Z−1 ·
∑
z∈Λ∗

∫
f (ω)g(T−zω)p∗

z (T−zω)M(T−zω)P(dω),

where the last step uses the translation invariance of P. In view of Λ∗ = −Λ and (2.2), this proves (3.1).
Thus, for a RWRE admitting a bounded cycle representation, there always exists an invariant probability measure

Q ∼ P for the transition kernel R. By a straightforward adaption of the proof of Theorem 1.2 in [3] (making use of our
standing assumptions (a′) and (c)), this implies that the Markov chain with transition kernel R and initial distribution
Q is ergodic, and there exists at most one invariant probability measure Q ∼ P for the transition kernel R. We will
therefore call Q the invariant probability measure in the sequel.

A quite general approach to deriving invariance principles for RWRE’s, which is also used in Sidoravicius and
Sznitman [14] and which goes back to [6], is as follows: One constructs a corrector function χ : Zd × Ω → Rd such
that for P-a.e. ω ∈ Ω , the process (Mω

n )n∈N defined by

Mω
n := Xn + χ(Xn,ω), n ∈ N,

is a martingale under P0,ω . Then one applies the invariance principle for martingales to (Mω
n )n∈N, and the (demanding)

rest of the proof consists in showing that the contribution of the corrector function is negligible in the limit.
Since the arguments for the construction of the corrector function used in [14] heavily rely on the reversibility of the

chain of environments with respect to its invariant distribution Q, they do not apply in the case of a RWRE admitting
a bounded cycle representation. We therefore use some different arguments, taken from the field of (asymmetric)
exclusion processes (see [9,10,15]).

For any λ > 0, let uλ denote the solution of the resolvent equation

(λ − L)uλ = d0. (3.2)

Here, L := R − I is the (discrete-time) generator of the chain of environments, and d0 is the local drift at the origin,
which is given by

d0(ω) :=
∑
z∈Λ

zpz(ω), ω ∈ Ω.

Note that uλ is a well-defined element of L2(Q), since d0 is an element of L2(Q) (being bounded) and the operator
λ − L is invertible in L2(Q) for any λ > 0.

Also note that, due to our assumption (b), we have(
c

C

)∫
f dP ≤

∫
f dQ ≤

(
C

c

)∫
f dP (3.3)

for any measurable function f ≥ 0. In particular, we have L2(Q) = L2(P), and convergence in L2(Q) and convergence
in L2(P) are equivalent. Furthermore, since P is translation invariant, we have

∫
f ◦ Tx dQ ≤

(
C

c

)∫
f ◦ Tx dP =

(
C

c

)∫
f dP ≤

(
C

c

)2 ∫
f dQ (3.4)

for any measurable function f ≥ 0 and any x ∈ Zd . Thus, f ∈ L2(Q) implies f ◦ Tx ∈ L2(Q) for any x ∈ Zd .

Lemma 3.1. For each x ∈ Zd with ‖x‖2 = 1, the limit

lim
λ→0

(uλ ◦ Tx − uλ)

exists in L2(Q).
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Proof. Since L2(Q) is complete, it suffices to show that

lim
λ1→0
λ2→0

∥∥(uλ1 ◦ Tx − uλ1) − (uλ2 ◦ Tx − uλ2)
∥∥

L2(Q)
= 0.

Note that the norm can be rewritten as ‖(uλ1 − uλ2) ◦ Tx − (uλ1 − uλ2)‖L2(Q). We therefore derive an upper bound
for ‖f ◦ Tx − f ‖L2(Q), where f ∈ L2(Q) is arbitrary. By our standing assumption (c) or (c′), for each ω ∈ Ω , there
exist 1 ≤ n(ω) ≤ N and (pairwise different) x0(ω), x1(ω), . . . , xn(ω)(ω) ∈ Zd such that x0(ω) = 0, xn(ω)(ω) = x and
pxi(ω)−xi−1(ω)(Txi−1(ω)ω) ≥ ε0 for i = 1, . . . , n(ω). Thus we obtain

(
(f ◦ Tx − f )(ω)

)2 =
(

n(ω)∑
i=1

(f ◦ Txi(ω) − f ◦ Txi−1(ω))(ω)

)2

≤ n(ω)

n(ω)∑
i=1

(
(f ◦ Txi(ω) − f ◦ Txi−1(ω))(ω)

)2

≤ Nε−1
0

n(ω)∑
i=1

(
(f ◦ Txi(ω) − f ◦ Txi−1(ω))(ω)

)2 · pxi(ω)−xi−1(ω)(Txi−1(ω)ω)

≤ Nε−1
0

∑
‖z‖∞≤NB

∑
z′∈Λ

(
(f ◦ Tz+z′ − f ◦ Tz)(ω)

)2 · pz′(Tzω).

Here, ‖z‖∞ := maxi=1,...,d |zi |, and B := max{‖z‖∞: z ∈ Λ}. Taking norms and using (3.4), it follows that

‖f ◦ Tx − f L2(Q)‖2 ≤ Nε−1
0

∑
‖z‖∞≤NB

∫ ∑
z′∈Λ

(f ◦ Tz+z′ − f ◦ Tz)
2 · pz′(Tz)dQ

≤ Nε−1
0 (2NB + 1)d

(
C

c

)2 ∫ ∑
z′∈Λ

(f ◦ Tz′ − f )2 · pz′ dQ.

Since Q is an invariant measure for R, we have

∫ ∑
z∈Λ

(f ◦ Tz)
2 · pz dQ =

∫
Rf 2 dQ =

∫
f 2 dQ =

∫ ∑
z∈Λ

f 2 · pz dQ,

so that the last integral can be rewritten as

∫ ∑
z∈Λ

(f ◦ Tz − f )2 · pz dQ = 2
∫ ∑

z∈Λ

f · (f − f ◦ Tz) · pz dQ = 2
〈
f, (−L)f

〉
Q
.

It therefore remains to show that

lim
λ1→0
λ2→0

〈
(uλ1 − uλ2), (−L)(uλ1 − uλ2)

〉
Q

= 0.

By Lemma 2.5.1 in [9], this is true if

d0 ∈ H−1 and sup
λ>0

‖Luλ‖−1 < ∞. (3.5)
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We refer to Chapters 1 and 2 in [9] for the definitions of the Hilbert spaces H+1 and H−1 and their respective norms
‖ · ‖+1 and ‖ · ‖−1. By Sections 2.4 and 2.6 in [9], if the chain of environments satisfies the sector condition, i.e. there
exists a constant C0 ∈ (0,∞) such that

〈
f, (−L)g

〉2
Q

≤ C0 · 〈f, (−L)f
〉
Q

· 〈g, (−L)g
〉
Q

for all f,g ∈ L2(Q), then the second condition in (3.5) already follows from the first condition in (3.5). The proof is
therefore completed by the subsequent two lemmas. �

Lemma 3.2. Suppose that the RWRE admits a bounded cycle representation. Then the chain of environments satisfies
the sector condition, i.e. there exists a constant C0 ∈ (0,∞) such that

〈
f, (−L)g

〉2
Q

≤ C0 · 〈f, (−L)f
〉
Q

· 〈g, (−L)g
〉
Q

for all f,g ∈ L2(Q).

Lemma 3.3. Suppose that the RWRE admits a bounded cycle representation. Then d0 ∈ H−1.

Since the calculations needed for the proof of these lemmas are very similar to those in Section 7.5 in [9] (who
treat the special case that the random variable M is constant), they are deferred to Appendix B.

We have just seen that the limits limλ→0(uλ ◦ Tx − uλ) (x ∈ Zd , ‖x‖2 = 1) exist in L2(Q), and therefore also
in L2(P). Furthermore, since d0 ∈ H−1 by Lemma 3.3, it follows from resolvent equation (3.2) that limλ→0(λuλ) = 0
in L2(Q) (see Eq. (2.4.3) in [9]), and therefore also in L2(P). Hence, by considering a suitable subfamily (λ′) instead
of (λ), we may assume that the limits

lim
λ′→0

(
λ′uλ′(ω)

) = 0

and

lim
λ′→0

(
uλ′(Txω) − uλ′(ω)

) =: Gx(ω), x ∈ Zd,‖x‖2 = 1,

exist for P-almost all ω ∈ Ω . The random variables Gx thus defined have the following important properties (see also
p. 224 in [14]):

Lemma 3.4. The random variables Gx have the following properties:

(a) For each x ∈ Zd with ‖x‖2 = 1,∫
Gx dP = 0.

(b) If (x0, x1, . . . , xn) is a sequence in Zd such that ‖xi − xi−1‖2 = 1 for all i = 1, . . . , n,

n∑
i=1

Gxi−xi−1 ◦ Txi−1 = lim
λ′→0

(uλ′ ◦ Txn − uλ′ ◦ Tx0) P-a.s.

Proof. Part (a) follows from the facts that, by translation invariance of P, we have∫
(uλ′ ◦ Tx − uλ′)dP = 0

for all λ′ > 0 and that we have convergence in L2(P).
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Part (b) follows from the facts that we have

n∑
i=1

(uλ′ ◦ Txi−xi−1 − uλ′) ◦ Txi−1 = uλ′ ◦ Txn − uλ′ ◦ Tx0

for all λ′ > 0 and that we have almost sure convergence. �

We now turn to the construction of the corrector function. For each x ∈ Zd and each ω ∈ Ω , set

χ(x,ω) :=
n∑

i=1

Gxi−xi−1 ◦ Txi−1 ,

where (x0, . . . , xn) is an arbitrary sequence such that x0 = 0, xn = x, and ‖xi − xi−1‖2 = 1 for all i = 1, . . . , n. It
follows from Lemma 3.4(b) that χ(x, · ) is a well-defined random variable. The corrector function has the following
important properties (see also p. 224 in [14]):

Lemma 3.5. The corrector function has the following properties:

(a) For P-almost all ω ∈ Ω , χ(x + y,ω) = χ(x,ω) + χ(y,Txω) for all x, y ∈ Zd .
(b) For P-almost all ω ∈ Ω ,

∑
z∈Λ χ(z,ω)pz(ω) = −d0(ω).

(c) For P-almost all ω ∈ Ω , the process Mω
n := Xn + χ(Xn,ω) is a martingale under P0,ω .

Proof. In view of the definition of the corrector function and Lemma 3.4(b), parts (a) and (b) follow from the relations

(uλ ◦ Tx+y − uλ ◦ T0) = (uλ ◦ Tx − uλ ◦ T0) + (uλ ◦ Ty − uλ ◦ T0) ◦ Tx

and ∑
z∈Λ

(uλ ◦ Tz − uλ ◦ T0)pz = Luλ = λuλ − d0.

For part (c), first note that, by (a), for P-almost all ω ∈ Ω ,

Mω
n+1 − Mω

n = Xn+1 − Xn + χ(Xn+1,ω) − χ(Xn,ω)

= Xn+1 − Xn + χ(Xn+1 − Xn,TXnω).

Thus, using (b), it follows that for P-almost all ω ∈ Ω ,

E0,ω

(
Mω

n+1 − Mω
n |X0, . . . ,Xn

) =
∑
z∈Λ

(
z + χ(z,TXnω)

)
pz(TXnω)

=
∑
z∈Λ

zpz(TXnω) +
∑
z∈Λ

χ(z,TXnω)pz(TXnω)

= d0(TXnω) − d0(TXnω)

= 0. �

4. Proof of the main theorem

A detailed analysis of the proof of Theorem 1.1 in [14] reveals that it does not use any special properties of the random
conductance model (in particular, it does not use reversibility), but only

• the properties (1.10)–(1.14) concerning the corrector function,
• the upper Gaussian bound (1.16) for the transition kernel,
• the Markov property and the bounded range of the random walk,
• the Markov property and the ergodicity of the chain of environments,
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• the assumption (a).

(See also Remark 1.3 in [14].) Therefore, since we have seen in the preceding sections that these statements remain
true for a RWRE admitting a bounded cycle representation, it follows that the proof also applies to this model.

In particular, the limit distribution is also a d-dimensional Brownian motion with mean zero and covariance matrix

A =
(∫ ∑

z∈Λ

pz(ω)
〈
z + χ(z,ω), ei

〉 〈
z + χ(z,ω), ej

〉
Q(dω)

)
i,j

(4.1)

(see Eq. (1.15) in [14]). Here 〈· , ·〉 denotes the scalar product in Rd . Naturally, in contrast to the random conductance
model with i.i.d. couplings, the covariance matrix need not be of the form σ 2I with σ 2 ≥ 0 anymore. The non-
degeneracy of the covariance matrix follows from a similar argument as in Remark 1.2 in [14].

Indeed, let x ∈ Rd \ {0}. Then there exists a vector e ∈ Zd with ‖e‖2 = 1 such that 〈e, x〉 > 0. By Lemma 3.4(a), it
follows that∫ 〈

e + χ(e,ω), x
〉
P(dω) > 0,

so that

P
({

ω:
〈
e + χ(e,ω), x

〉
> 0

})
> 0.

By our standing assumption (c) or (c′), it further follows that there exist n ∈ N and z0, . . . , zn ∈ Zd such that z0 = 0,
zn = e and

P
({

ω:
〈
e + χ(e,ω), x

〉
> 0 and pzi−zi−1(Tzi−1ω) > ε0 ∀i = 1, . . . , n

})
> 0.

Since

e + χ(e,ω) =
n∑

i=1

(zi − zi−1) + χ(zi − zi−1, Tzi−1ω)

by Lemma 3.5(a), it follows that

P
({

ω:
〈
zi − zi−1 + χ(zi − zi−1, Tzi−1ω), x

〉
> 0 and pzi−zi−1(Tzi−1ω) > ε0

})
> 0

for some i = 1, . . . , n. By translation invariance of P, this reduces to

P
({

ω:
〈
z + χ(z,ω), x

〉
> 0 and pz(ω) > ε0

})
> 0

for some z ∈ Λ. We may therefore conclude that

xT Ax =
∫ ∑

z∈Λ

pz(ω)
∣∣〈z + χ(z,ω), x

〉∣∣2
Q(dω) > 0,

which proves the non-degeneracy of A.

Appendix A. The Nash inequality

This section is devoted to the proofs of Propositions 2.1 and 2.2 from Section 2. We will find it convenient to work
with the maximum norm ‖ · ‖∞ instead of the Euclidean norm ‖ · ‖2.

Our results are based on the following assumption on a transition kernel Q on Zd :

Assumption A.1. There exist K ∈ N and δ > 0 such that for all x, y ∈ Zd with ‖y − x‖∞ ≤ 3K + 1, there exists
y′ ∈ Zd with ‖y′ − y‖∞ ≤ K and Q(x,y′) ≥ δ.
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Proposition 2.1 will follow immediately from the next two lemmas:

Lemma A.2. Let (Xn)n∈N be a random walk on Zd with transition kernel Q and invariant measure π for which there
exist constants 0 < c ≤ C < ∞ with c ≤ π({x}) ≤ C for all x ∈ Zd . Suppose that the transition kernel Q is strongly
irreducible, i.e.

∃ε > 0, ∃N ∈ N, ∀x ∈ Zd, ∀e ∈ Zd : ‖e‖2 = 1, ∃n ≤ N, Qn(x, x + e) > ε,

and of bounded range, i.e.

∃B > 0, ∀x, y ∈ Zd, ‖y − x‖∞ > B �⇒ Q(x,y) = 0.

Then there exists an m ≥ 1 (depending only on c, C, ε, N and B) such that the transition kernel (Qm)∗(Qm) satisfies
Assumption A.1.

Proof. First of all, observe that the adjoint Q∗ of Q with respect to π is also strongly irreducible and of finite range,
since

(
Q∗)n

(x, y) = π({y})
π({x})Q

n(y, x) ∈
[

c

C
Qn(y, x); C

c
Qn(y, x)

]

for all n ≥ 1, x ∈ Zd , y ∈ Zd . Hence, replacing ε by some smaller constant ε′ if necessary, we may assume that the
assumptions of the lemma are satisfied both for Q and for Q∗.

It follows from the assumptions that for all x ∈ Zd and for all y ∈ Zd with ‖y‖2 = 1, there exist n ≤ N and a
sequence (x0, . . . , xn) in Zd such that x0 = x, xn = x + y and Q(xi−1, xi) ≥ ε0 := ε/(2B + 1)dN for all i = 1, . . . , n.
Such a sequence will also be called an ε0-path from x to x + y. By replacing N with 2N , we may also assume that
for each x ∈ Zd , there exists an ε0-cycle for x (i.e. an ε0-path from x to x).

Pick K := NB and L := 3K + 1. Then, for all x, y ∈ Zd with ‖y − x‖∞ ≤ L, there is an ε0-path from x to y

of length ≤ dLN . (Indeed, there is certainly a nearest-neighbor path from x to y of length ≤ dL, and by strong
irreducibility, each step of this path can be replaced with at most N steps of the random walk associated with Q.)
As ε0-paths can be extended by adding ε0-cycles, there is also an ε0-path from x to x + y of length ∈ {dLN +
1, . . . , dLN + N}. If we cut the path immediately after step dLN (at site y′, say) we have ‖y′ − y‖∞ ≤ NB (because
we get to site y exactly after at most N additional steps, each of which has size ≤ B) and QdLN(x, y′) ≥ εdLN

0 . The
same argument applied to Q∗ yields a site y′′ such that ‖y′′ −y‖∞ ≤ NB and (Q∗)dLN(y′, y′′) ≥ εdLN

0 . Summarizing,
we have ‖y′′ − y‖∞ ≤ NB and QdLN(QdLN)∗(x, y′′) ≥ ε2dLN

0 . Putting m := dLN and δ := ε2dLN
0 and exchanging

the roles of Q and Q∗ completes the proof. �

To see the connection to the next lemma, note that the transition kernel (Qm)∗Qm constructed above has π as an
invariant and reversible measure.

Lemma A.3. Suppose that Q is a transition kernel satisfying Assumption A.1 and that π is an invariant and reversible
measure for Q such that there exist constants 0 < c ≤ C < ∞ with c ≤ π({x}) ≤ C for all x ∈ Zd . Then the transition
kernel Q satisfies the d-dimensional isoperimetric inequality

∃κ > 0, ∀A ⊂finite Zd ,
(
π(A)

)1−1/d ≤ κa(∂A)

and therefore the d-dimensional Nash inequality

∃κ ′ > 0, ∀f ∈ �0
(
Zd

)
, EQ(f,f ) ≥ κ ′‖f ‖2+4/d

L2(π)
‖f ‖−4/d

L1(π)
.

More precisely, κ and κ ′ are constants depending only on c and C as well as on K and δ (from Assumption A.1).

Here, we set π(A) := ∑
x∈A π({x}), a(x, y) := π(x)Q(x, y) = π(y)Q(y, x), ∂A := the set of edges having one

endpoint in A and one endpoint in Zd \ A, a(∂A) := ∑
e∈∂A a(e), �0(Z

d) := the set of functions on Zd with finite
support. See Sections 4 and 14 in [16] for further details.
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Proof of Lemma A.3. By Proposition 14.1 in [16], it suffices to establish the d-dimensional isoperimetric inequality.
To this end, we compare the random walk associated with Q (or, more precisely, some kind of renormalization of it)
to the standard random walk on Zd , for which the d-dimensional isoperimetric inequality is known to hold (see p. 45
in [16]).

Take L := 2K + 1 (where K is the constant from Assumption A.1), and partition Zd into d-dimensional cubes of
length L. The cube containing x will be denoted by C(x), and the set of all cubes will be denoted by C(Zd). Write
C(x) ∼ C(y) if C(x) and C(y) have a common “face,” and observe that the graph C(Zd) thus obtained is isomorphic
to Zd with the nearest-neighbor topology.

Let π denote the uniform measure on C(Zd), let Q be the transition kernel on C(Zd) corresponding to the standard
random walk on Zd , and let a denote the associated conductance. Then the d-dimensional isoperimetric inequality for
the standard random walk on Zd (see above) states that

∃κ > 0, ∀A ⊂finite C
(
Zd

)
,

(
π(A)

)1−1/d ≤ κa(∂A).

Now consider A ⊂finite Zd for the random walk with transition kernel Q. Then A := {C(x) ∈ C(Zd): x ∈ A} is a
finite subset of C(Zd), and clearly

π(A) ≤ C · Ld · π(A),

C denoting the upper bound on π({x}), x ∈ Zd .
Now let e = (x, y) ∈ ∂A, where x ∈ A and y ∈ C(Zd) \ A, say. Let x ∈ x ∩ A, and pick y ∈ y ⊂ Zd \ A such that

Q(x,y) ≥ δ. Such a vertex y exists by our assumption on Q. Indeed, since x has ‖ · ‖∞-distance ≤ K from the center
of x and therefore ‖ · ‖∞-distance ≤ 3K + 1 from the center of y, our assumption on Q ensures the existence of an
element y ∈ Zd with ‖ · ‖∞-distance ≤ K from the center of y (i.e. y ∈ y) and Q(x,y) ≥ δ. Applying this argument
to any e ∈ ∂A, it follows that

c · δ · a(∂A) ≤ a(∂A),

c denoting the lower bound on π({x}), x ∈ Zd .
Putting the preceding inequalities together, it follows that the random walk associated with Q satisfies the d-di-

mensional isoperimetric inequality. �

Remark A.4. It follows from the preceding results that for a random walk as in Lemma A.2, the d-dimensional Nash
inequality holds for the transition kernel (Qm)∗Qm, for a suitable m ≥ 1. We mention without proof that one can easily
construct (non-reversible and non-translation-invariant) random walks for which the assumptions of Lemma A.2 are
satisfied, but for which the d-dimensional Nash inequality does not hold for the transition kernel Q∗Q.

We now turn to the proof of Proposition 2.2:

Proof of Proposition 2.2. The proof is a straightforward adaption of the proof of Theorem 4.1 in [4].
It is easy to see that if the Nash inequality holds for all f ∈ �0(Z

d), then it also holds for all f ∈ L2(π). Thus, we
have ∥∥Qn+1f

∥∥2
L2(π)

− ∥∥Qnf
∥∥2

L2(π)
= 〈

Qnf ,Q∗QQnf
〉
π

− 〈
Qnf ,Qnf

〉
π

= −EQ∗Q
(
Qnf,Qnf

)
≤ −κ

∥∥Qnf
∥∥−4/d

L1(π)

∥∥Qnf
∥∥2+4/d

L2(π)

for all n ∈ N. Hence, if f ∈ L1+(π) with ‖f ‖L1(π) = 1 and un := ‖Qnf ‖2
L2(π), n ∈ N, we are led to the difference

equation/inequality

un+1 ≤ un − κu
1+2/d
n = un

(
1 − κ u

2/d
n

)
, n ∈ N.
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We must show that this implies

un ≤ C0/nd/2, n = 1,2, . . . , (A.1)

for some C0 ∈ (0,∞).
We can clearly find C0 > 0 (depending only on c, C and κ) such that

u1 ≤ C0 and

(
1 − κC

2/d

0

n + 1

)
≤

(
n

n + 1

)d/2

∀n ≥ 1.

Then it follows by induction that (A.1) holds. Indeed, suppose that un ≤ C0/nd/2 for some n ≥ 1. If un ≤ C0/(n +
1)d/2, then un+1 ≤ C0/(n + 1)d/2. If un > C0/(n + 1)d/2, then

un+1 ≤ un

(
1 − κu

2/d
n

)
< un

(
1 − κC

2/d

0

n + 1

)
≤

(
C0

nd/2

)
·
(

n

n + 1

)d/2

= C0

(n + 1)d/2
.

This completes the proof. �

Appendix B. Some lengthy calculations

In this section we prove Lemmas 3.2 and 3.3. The calculations are almost the same as in Section 7.5 in [9], who treat
the special case that the random variable M is constant.

Proof of Lemma 3.2. It easily follows from our definitions that for all ω ∈ Ω and all z ∈ Λ,

pz(ω) = 1

M(ω)

K∑
i=1

ni∑
j=1

Wi(T−zi,j−1ω) · 1{zi,j −zi,j−1=z},

where Ci = (zi,0, . . . , zi,ni
). Hence, the generator for the chain of environments has the representation

Lf (ω) =
∑
z∈Λ

(
f (Tzω) − f (ω)

) · pz(ω)

= 1

M(ω)

K∑
i=1

ni∑
j=1

(
f (Tzi,j −zi,j−1ω) − f (ω)

) · Wi(T−zi,j−1ω),

and 〈
f, (−L)g

〉
Q

= −
∫

1

M(ω)

K∑
i=1

ni∑
j=1

f (ω)
(
g(Tzi,j −zi,j−1ω) − g(ω)

) · Wi(T−zi,j−1ω)dQ(ω)

= −
∫

1

M(ω)

K∑
i=1

ni∑
j=1

f (Tzi,j−1ω)
(
g(Tzi,j

ω) − g(Tzi,j−1ω)
) · Wi(ω)dQ(ω).

Here we have used the identity∫
f (ω)

M(ω)
dQ(ω) =

∫
f (Tzω)

M(ω)
dQ(ω),

which follows the translation invariance of P.
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In the special case f = g, we have

−
ni∑

j=1

f (Tzi,j−1ω)
(
f (Tzi,j

ω) − f (Tzi,j−1ω)
) = 1

2

ni∑
j=1

(
f (Tzi,j

ω) − f (Tzi,j−1ω)
)2

for all i = 1, . . . ,K , since {zi,1, . . . , zi,ni
} = {zi,0, . . . , zi,ni−1}, and therefore

〈
f, (−L)f

〉
Q

= 1

2

∫
1

M(ω)

K∑
i=1

ni∑
j=1

(
f (Tzi,j

ω) − f (Tzi,j−1ω)
)2 · Wi(ω)dQ(ω).

In the general case, we have

ni∑
j=1

f (Tzi,j−1ω)
(
g(Tzi,j

ω) − g(Tzi,j−1ω)
)

=
ni∑

j=1

(
f (Tzi,j−1ω) − f (Tzi,0ω)

)(
g(Tzi,j

ω) − g(Tzi,j−1ω)
)

for all i = 1, . . . ,K , since {zi,1, . . . , zi,ni
} = {zi,0, . . . , zi,ni−1}, and therefore, by the Cauchy–Schwarz inequality,

∣∣〈f, (−L)g
〉
Q

∣∣2 ≤
∫

1

M(ω)

K∑
i=1

ni∑
j=1

(
f (Tzi,j−1ω) − f (Tzi,0ω)

)2 · Wi(ω)dQ(ω)

×
∫

1

M(ω)

K∑
i=1

ni∑
j=1

(
g(Tzi,j

ω) − g(Tzi,j−1ω)
)2 · Wi(ω)dQ(ω).

The second factor equals 2 · 〈g, (−L)g〉Q. Moreover, since

ni∑
j=1

(
f (Tzi,j−1ω) − f (Tzi,0ω)

)2 =
ni∑

j=1

(
j−1∑
k=1

(
f (Tzi,k

ω) − f (Tzi,k−1ω)
))2

≤
ni∑

j=1

(j − 1) ·
j−1∑
k=1

(
f (Tzi,k

ω) − f (Tzi,k−1ω)
)2

≤ n2
i ·

ni∑
j=1

(
f (Tzi,j

ω) − f (Tzi,j−1ω)
)2

for all i = 1, . . . ,K , the first factor is bounded above by 2 · maxi=1,...,K n2
i · 〈f, (−L)f 〉Q. It follows that

∣∣〈f, (−L)g
〉
Q

∣∣2 ≤ 4 · max
i=1,...,n

n2
i · 〈f, (−L)f

〉
Q

· 〈g, (−L)g
〉
Q
.

This proves the lemma. �

Proof of Lemma 3.3. It follows from the definitions that a function V ∈ L2(Q) belongs to H−1 if and only if there
exists a constant C0 ∈ (0,∞) such that |〈V,f 〉Q|2 ≤ C0〈f, (−L)f 〉Q for all f ∈ L2(Q) ∩ H+1. (See Section 2.7
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in [9].) But now, by similar arguments as in the preceding proof, we have

∑
z∈Λ

zpz(ω) = 1

M(ω)

K∑
i=1

ni∑
j=1

(zi,j − zi,j−1)Wi(T−zi,j−1ω)

= 1

M(ω)

K∑
i=1

ni∑
j=1

zi,j

(
Wi(T−zi,j−1ω) − Wi(T−zi,j

ω)
)

and therefore, denoting the scalar product and the Euclidean norm in Rd by 〈· , ·〉 and ‖ · ‖2,

∣∣〈d0, f
〉
Q

∣∣2 =
(∫

1

M(ω)

K∑
i=1

ni∑
j=1

〈
zi,j , f (ω)

〉 · (Wi(T−zi,j−1ω) − Wi(T−zi,j
ω)

)
dQ(ω)

)2

=
(∫

1

M(ω)

K∑
i=1

ni∑
j=1

〈
zi,j , f (Tzi,j

ω) − f (Tzi,j−1ω)
〉 · Wi(ω)dQ(ω)

)2

≤
∫

1

M(ω)

K∑
i=1

ni∑
j=1

‖zi,j‖2
2 · Wi(ω)dQ(ω)

×
∫

1

M(ω)

K∑
i=1

ni∑
j=1

∥∥f (Tzi,j
ω) − f (Tzi,j−1ω)

∥∥2
2 · Wi(ω)dQ(ω)

≤ 2 · max
i=1,...,K

ni∑
j=1

‖zi,j‖2
2 · 〈f, (−L)f

〉
Q
.

This proves the lemma. �
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