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Abstract. We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge
times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab. 31 (2003)) which gave a
variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol
(Ann. Probab. 35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput. 16 (2007)).

Résumé. On obtient une nouvelle inégalité de concentration exponentielle pour la percolation de premier passage, valable pour
une large classe de distributions des temps d’arêtes. Ceci améliore et étend un résultat de Benjamini, Kalai et Schramm (Ann.
Probab. 31 (2003)) qui donnait une borne sur la variance pour des temps d’arêtes suivant une loi de Bernoulli. Notre approche
se fonde sur des inégalités fonctionnelles étendant les travaux de Rossignol (Ann. Probab. 35 (2006)), Falik et Samorodnitsky
(Combin. Probab. Comput. 16 (2007)).
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1. Introduction

First passage percolation was introduced by Hammersley and Welsh [10] to model the flow of a fluid in a randomly
porous material (see [12] for a recent account on the subject). We will consider the following model of first passage
percolation in Zd , where d ≥ 2 is an integer. Let E = E(Zd) denote the set of edges in Zd . The passage time of the
fluid through the edge e is denoted by xe and is supposed to be nonnegative. Randomness of the porosity is given
by a product probability measure on RE+. Thus, RE+ is equipped with the measure μ = ν⊗E , where ν is a probability
measure on R+ according to which each passage time is distributed, independently from the others. If u,v are two
vertices of Zd , the notation α: {u,v} means that α is a path with end points u and v. When x ∈ RE+, dx(u, v) denotes
the first passage time, or equivalently the distance from u to v in the metric induced by x,

dx(u, v) = inf
α: {u,v}

∑
e∈α

xe.
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The study of dx(0, nu) when n is an integer which goes to infinity is of central importance. Kingman’s subadditive
ergodic theorem implies the existence, for each fixed u, of a “time constant” t (u) such that:

dx(0, nu)

n

ν-a.s.−→
n→+∞ t (u).

It is known (see [15], pages 127 and 129) that if ν({0}) is strictly smaller than the critical probability for Bernoulli
bond percolation on Zd , then t (u) is positive for every u distinct from the origin. Under such an assumption, one can
say that the random variable dx(0, nu) is located around nt (u), which is of order O(|nu|), where we denote by | · | the
L1-norm of vertices in Zd . In this paper, we are interested in the fluctuations of this quantity. Precisely, we define, for
any vertex v,

∀x ∈ RE+, fv(x) = dx(0, v).

It is widely believed that the fluctuations of fv are of order |v|1/3 when d = 2. Apart from some predictions made
by physicists, this faith relies on recent results for related growth models [2,13,14]. Until recently, the best results
rigourously obtained for the fluctuations of fv were some moderate deviation estimates of order O(|v|1/2) (see [16,
24]). In 1993, Kesten [16] proved that

Varμ(fv) = O
(|v|),

provided ν admits a finite second-order moment. If, furthermore, ν admits a finite moment of exponential order, there
exist two constants C1 and C2 such that for any t ≤ |v|,

ν
(∣∣fv − E(fv)

∣∣ > t
√|v|) ≤ C1e−C2t . (1)

Later, Talagrand improved the right-hand side of the above inequality to exp(−C2t
2). In 2003, Benjamini, Kalai and

Schramm [5] proved that for Bernoulli edge times bounded away from 0, the variance of fv is of order O(|v|/ log |v|),
and therefore, the fluctuations are of order O(|v|1/2/(log |v|)1/2).

It is natural to ask whether the work of Benjamini, Kalai and Schramm [5] can be extended to other distributions,
notably continuous distributions which are not bounded away from zero. This has been done in a preliminary version
of the present paper [4] by extending the tools of [5], namely a modified Poincaré inequality due to Talagrand. It is also
natural, and even more desirable, to try to improve the result of Benjamini, Kalai and Schramm [5] into an exponential
inequality in the spirit of (1), with

√|v|/ log |v| instead of
√|v|. In this article, we show that some different modified

Poincaré inequalities arising from the context of “threshold phenomena” for Boolean functions (see [9,21]) may be
used successfully instead of Talagrand-type inequalities from [4,23]. This is the main result of this paper stated in
Theorem 5.4. Whereas we focused on the percolation setting, the argument is fairly general and we present also an
abstract exponential concentration result, Theorem 4.2, which is very likely to have applications outside the setting of
percolation.

This article is organized as follows. In Section 2, we extend the modified Poincaré inequalities of Falik and
Samorodnitsky [9] to non-Bernoulli and countable settings where logarithmic Sobolev inequalities are available, no-
tably to a countable product of Gaussian measures. Section 3 is devoted to the obtention of similar inequalities for
other continuous measures by a simple mean of change of variable. In Section 4, we show how to deduce new general
exponential concentration bounds from the modified Poincaré inequalities of Section 2. This allows us to obtain in
Section 5 an exponential version of the bound of Benjamini et al. in some continuous and discrete settings.

Notation. Given a probability space (X,X ,μ) and a real valued measurable function f defined on X we let

‖f ‖p,μ =
(∫

|f |p dμ

)1/p

∈ [0,∞],

and Lp(μ) denote the set of f such that ‖f ‖p,μ < ∞. The mean of f ∈ L1(μ) is denoted

Eμ(f ) =
∫

f dμ,
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the variance of f ∈ L2(μ) is

Varμ(f ) = ∥∥f − Eμ(f )
∥∥2

2,μ
,

and the entropy of any positive measurable function f is

Entμ(f ) =
∫

f logf dμ −
∫

f dμ log
∫

f dμ.

When the choice of μ is unambiguous we may write ‖f ‖p (respectively Lp , E(f ), Var(f ) and Ent(f )) for ‖f ‖p,μ

(respectively Lp(μ), Eμ(f ), Varμ(f ) and Entμ(f )).

2. Logarithmic Sobolev and modified Poincaré inequalities on RN

The relevance of a “modified Poincaré inequality” due to Talagrand [23] in the context of first passage percolation
was shown by Benjamini, Kalai and Schramm [5]. Let us explain this point a little bit more. A classical Poincaré
inequality has the following form:

Varμ(f ) ≤ CEμ(f ),

where C is a constant, and Eμ(f ) is an “energy” of f , that is, usually, the mean against μ of the square of some kind of
gradient. There is a good theory for this in the context of Markov semi-groups (see [1,3], for instance). By “modified
Poincaré inequality,” we mean a functional inequality which improves upon the classical Poincaré inequality for a
certain class of functions f . This is usually achieved through a hypercontrativity property (see [4] and [19]).

In this section, we will show how to build a modified Poincaré inequality on a product of probability spaces each of
which satisfies a Sobolev logarithmic inequality. This approach was initiated independently by Rossignol [21], Falik
and Samorodnitsky [9] in the Bernoulli setting.

We shall need some notation for tensorisation. Suppose that we are given a countable collection of probability
spaces (Xi ,Xi ,μi)i∈I . If i belongs to I , and x−i is an element of

∏
j∈I,j �=i Xj , then for every xi in Xi , we denote by

(x−i , xi) the element x of
∏

j∈I Xj . For every function f from
∏

i∈I Xi to R, every j ∈ I , and every x−j in
∏

i �=j Xi ,

we denote by fx−j the function from Xj to R obtained from f by keeping x−j fixed:

∀xj ∈ Xj , fx−j (xj ) = f (x).

Now, suppose that we are given a collection (Ai )i∈I of linear subspaces, Ai ⊂ L2(Xi ,μi), containing the constant
functions. Then, we introduce

AI =
{
f ∈ L2

(∏
i∈I

Xi ,
⊗
i∈I

μi

)
s.t. ∀j ∈ I, fx−j ∈Aj for

⊗
i �=j

μi-a.e. x−j

}
.

An operator Rj from Aj to L2(Xj ,μj ) is naturally extended on AI , “acting only on coordinate j”:

∀f ∈ AI ,∀x ∈
∏
i∈I

Xi , Rj (f )(x) := Rj (fx−j )(xj ).

Proposition 2.1. Let (Xi ,Xi ,μi)i∈I , be a sequence of probability spaces. Let (Ai )i∈I be a collection of sets such
that for every i, Ai is a linear subspace of L2(Xi ,μi) which contains the constant functions. Suppose that for every i

in I , μi satisfies a logarithmic Sobolev inequality of the following form:

∀f ∈ Ai , Entμi

(
f 2) ≤ Eμi

(
Ri(f )2),
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where Ri is a linear operator from Ai to L2(μi) with value zero on any constant function. Furthermore, suppose that
the following commutation property holds:

∀i,∀f ∈ AI ,

∫
f d

⊗
j �=i

μj ∈Ai and Ri

(∫
f d

⊗
j �=i

μj

)
=

∫
Ri(f )d

⊗
j �=i

μj .

Then, μI = ⊗
i∈I μi satisfies the following modified Poincaré inequality:

∀f ∈ AN, VarμI (f ) log
VarμI (f )∑

i∈I ‖Δif ‖2
μI ,1

≤
∑
i∈I

EμI

(
Ri(f )2),

where Δi is the following operator on L2(μI ):

∀f ∈ L2(μI
)
, Δif = f −

∫
f dμi.

Proof. To shorten the notations, we shall write μ instead of μI .
First, suppose that I is finite, I = {1, . . . , n}. The tensorisation property of the entropy (see [1] or [17], Proposi-

tion 5.6, page 98, for instance) states that for every positive measurable function g,

Entμ(g) ≤
n∑

i=1

Eμ

(
Entμi

(g)
)
.

Thus, the logarithmic Sobolev inequalities for each μi imply that:

∀g ∈An, Entμ
(
g2) ≤

n∑
i=1

Eμ

(
Ri(g)2). (2)

Now, let f be a function in An. Following Rossignol [21], Falik and Samorodnitsky [9], we write f − Eμ(f ) as a
sum of martingale increments, and apply the logarithmic Sobolev inequality (2) to each increment:

n∑
j=1

Entμ
(
V 2

j

) ≤
n∑

j=1

n∑
i=1

Eμ

(
Ri(Vj )

2), (3)

where

f − Eμ(f ) =
n∑

j=1

Vj ,

and

Vj =
∫

f dμ1 ⊗ · · · ⊗ dμj−1 −
∫

f dμ1 ⊗ · · · ⊗ dμj =
∫

Δjf dμ1 ⊗ · · · ⊗ dμj−1.

The following inequality, which is a clever application of Jensen’s inequality, is shown in [9] and is cleaner than the
corresponding one in [21]:

n∑
j=1

Entμ
(
V 2

j

) ≥ Varμ(f ) log
Varμ(f )∑n
j=1 ‖Vj‖2

μ,1

.

Jensen’s inequality implies that:

n∑
j=1

Entμ
(
V 2

j

) ≥ Varμ(f ) log
Varμ(f )∑n

j=1 ‖Δjf ‖2
μ,1

. (4)
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On the other hand, for every i, the term Eμ(Ri(g)2) in (2) is called an “energy” for g, and we claim that the sum of
the energies of the increments of f equals the energy of f :

∀i ∈ {1, . . . , n},
n∑

j=1

Eμ

(
Ri(Vj )

2) = Eμ

(
Ri(f )2). (5)

Indeed, since Ri is linear, using the commutation hypothesis, and the fact that Ri(f ) is zero on any function f which
is constant on coordinate i, we get:

∀i < j, Ri(Vj ) = 0,

Ri(Vi) =
∫

Ri(f )dμ1 ⊗ · · · ⊗ dμi−1,

and

∀i > j, Ri(Vj ) =
∫

Ri(f )dμ1 ⊗ · · · ⊗ dμj−1 −
∫

Ri(f )dμ1 ⊗ · · · ⊗ dμj .

Therefore,

n∑
j=1

Eμ

(
Ri(Vj )

2) =
i−1∑
j=1

Eμ

(
Ri(Vj )

2) + Eμ

(
Ri(Vi)

2) = Eμ

(
Ri(f )2).

Now, claim (5) is proved and the result follows from (3), (4) and (5), at least when I is finite.
Now, suppose that I is strictly countable, let us say I = N, and let Fn be the σ -algebra generated by the first n

coordinate functions in RN. Let f ∈ AN and fn = E(f |Fn) be the conditional expectation of f with respect to Fn.
Then, the commutation property tells us that fn belongs to AN, and Ri(fn) = E(Ri(f )|Fn). Therefore, we can apply
the first part of Proposition 2.1, the one that we just proved:

Varμn(fn) log
Varμn(fn)∑n

i=1 ‖Δifn‖2
μn,1

≤
n∑

i=1

Eμn

(
Ri(fn)

2).
This may be written as:

VarμN(fn) log
VarμN(fn)∑n

i=1 ‖Δifn‖2
μn,1

≤
n∑

i=1

EμN

(
E

(
Ri(f )|Fn

)2)
.

Obviously, Δifn = E(Δi(f )|Fn). Therefore, Jensen’s inequality implies:

VarμN(fn) log
VarμN(fn)∑n

i=1 ‖Δif ‖2
μn,1

≤
n∑

i=1

EμN

((
Ri(f )

)2)
.

Of course, fn converges to f in L2(μN), and we may let n tend to infinity in the last inequality to get the desired
result. �

Remark 1. Actually, a logarithmic Sobolev inequality associated to a probability measure μi which is reversible with
respect to an operator L may always be written in the form of Proposition 2.1. Indeed, such an inequality may be
written as:

∀f ∈ Ai , Entμi

(
f 2) ≤ cEμi

(−f Lf ),
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where c is a positive constant. Since L is a self-adjoint operator in L2(μi), it admits a spectral representation (see
[27], page 313). It is easy to show that its eigenvalues are nonnegative (see, for instance [3], page 7). The spectral
decomposition of −L may, therefore, be written as:

−L =
∫ ∞

0
λdE(λ),

and a suitable candidate for Ri may be deduced from it:

Ri =
∫ ∞

0

√
cλdE(λ). (6)

Nevertheless, in the applications which follow, it is essential that the operator Ri is nice enough to allow the quantity∑n
i=1 Ri(f )2 to be easily controlled, and the one given in (6) may not be appropriate for this. Another candidate,

which we shall see to be the right one for certain continuous probability measures, is the square root of the “carré du
champ” operator Γ 1/2(f,f ), where:

Γ (f,g) = 1

2
(Lfg − f Lg − gLf ).

But in the discrete case, this is not the most natural choice. Therefore, we prefer not to try to generalize any longer,
and rather give some examples.

2.1. Examples

Not surprisingly, we start to illustrate Proposition 2.1 with the Bernoulli and Gaussian cases. Our choice to present
them “mixed” might look a little weird at first sight, but this will prove to be useful in the percolation context (see
Section 5).

Example 1 (The Bernoulli and Gaussian cases). We let

βp = (1 − p)δ0 + pδ1

be the Bernoulli measure with parameter p on {0,1}. If p belongs to ]0,1[, βp (see, for instance [22], Theorem 2.2.8,
page 336, or [1]) satisfies the following logarithmic Sobolev inequality: for any function f from {0,1} to R,

Entβp

(
f 2) ≤ cLS(p)Eβp

(
(Δf )2),

where

cLS(p) = logp − log(1 − p)

p − (1 − p)

and

Δf = f −
∫

f dβp.

If S is a countable set, for any s in S, let Xs be a copy of {0,1}, As be the set of functions from Xs to R, and Rs be
the operator Δ acting on As . We denote also a product measure λS

p on {0,1}S : λS
p = β⊗S

p .
Now we introduce the Gaussian setting. Let

γ (dy) = 1√
2π

e−y2/2 dy
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denote the standard Gaussian measure on R. A map f is said to be weakly differentiable provided there exists a
locally integrable function denoted f ′(x) such that∫

f ′(x)g(x)dx = −
∫

g′(x)f (x)dy

for every smooth function g : R �→ R with compact support. The weighted Sobolev space H 2
1 (γ ) is defined to be the

space of weakly differentiable functions f on R such that

‖f ‖2
H 2

1
= ‖f ‖2

2 + ∥∥f ′∥∥2
2 < ∞.

It is well known that γ (see, for instance [18], Theorem 5.1, page 92) satisfies the following logarithmic Sobolev
inequality: for any function f in H 2

1 (γ ),

Entγ
(
f 2) ≤ 2Eγ

((
f ′(x)

)2)
.

For any i in N, let Xi be a copy of R, Ai a copy of H 2
1 (γ ) and Ri the derivation operator on Ai . We let γ N = γ ⊗N

denote the standard Gaussian measure on RN.
The set AS∪N thus defined is the so-called weighted Sobolev space H 2

1 (λS
p ⊗ γ N), which contains the functions

f ∈ L2(λS
p ⊗ γ N) verifying the following condition. For all i ∈ N, there exists a function hi in L2(λS

p ⊗ γ N) such that

−
∫

R

g′(yi)f (x, y)dyi =
∫

R

g(yi)hi(x, y)dyi, λS
p ⊗ γ N a.s.

for every smooth function g : R �→ R having compact support. The function hi is called the partial derivative of f with
respect to yi , and is denoted by ∂f

∂yi
.

Thus, we deduce from Proposition 2.1 the following result.

Corollary 2.2. For any p ∈]0,1[, and any f ∈ H 2
1 (λS

p ⊗ γ N),

Var(f ) log
Var(f )∑

s∈S ‖Δsf ‖2
1 + ∑

i∈N
‖Δif ‖2

1

≤ cLS(p)
∑
s∈S

E
(
(Δsf )2) + 2

∑
i∈N

E

((
∂f

∂xi

)2)
.

Example 2 (The gamma case (associated to the Laguerre generator)). We let

νa,b(dy) = ba

Γ (a)
ya−1e−by1y>0 dy

denote the gamma probability measure with parameters a and b. This measure is the invariant distribution of the
Laguerre semi-group, with generator:

La,bf (x) = bxf ′′(bx) − (a − bx)f ′(bx).

When a ≥ 1/2 and b = 1, it can be easily seen that this generator satisfies the CD(ρ,∞) curvature inequality:

Γ2(f ) ≥ 1

2
Γ (f ).

This implies that νa,b satisfies the following logarithmic Sobolev inequality (see Definition 3.1, page 28 and Theo-
rem 3.2, page 29 in [3], see also [1]). For any weakly differentiable function f ∈ L2(νa,b), if a ≥ 1/2,

Entνa,b

(
f 2) ≤ 4

b
Eνa,b

((√
xf ′(x)

)2)
.

Therefore, we deduce the following result from Proposition 2.1.
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Corollary 2.3. Suppose that a ≥ 1/2, b > 0, and let R+∗
N be equipped with the product measure νN

a,b . For any weakly

differentiable function f in L2(νN

a,b), define

∇if (x) = ∂f

∂xi

(x)
√

xi.

Suppose that,

∀i ∈ N, ∇if ∈ L2(νN

a,b

)
.

Then,

Var(f ) log
Var(f )∑

i∈N
‖Δif ‖2

1

≤ 4

b

∑
i∈N

E
(
(∇if )2).

Remark that when a ∈]0,1/2[, νa,b still satisfies a logarithmic Sobolev inequality with a positive constant Ca,b

instead of 4/b, but the precise value of Ca,b is not known; see [20]. This gives the analogue of Corollary 2.3 for
a ∈]0,1/2[, with Ca,b instead of 4/b.

Example 3 (The uniform case). We let

λ(dy) = 10≤y≤1 dy

denote the uniform probability measure on [0,1]. It is known that λ satisfies the following logarithmic Sobolev inequal-
ity (it is a direct consequence of the logarithmic Sobolev inequality on the circle [8]). For any weakly differentiable
function f in L2(λ),

Entλ
(
f 2) ≤ 2

π2
Eλ

((
f ′(x)

)2)
.

Corollary 2.4. Let [0,1]N be equipped with the product measure λN. Suppose that,

∀i ∈ N,
∂f

∂xi

∈ L2(λN
)
.

For any weakly differentiable function f in L2(λN),

Var(f ) log
Var(f )∑

i∈N
‖Δif ‖2

1

≤ 2

π2

∑
i∈N

E

((
∂f

∂xi

)2)
.

We shall see in Section 3 that λ satisfies another logarithmic Sobolev inequality with an energy whose form “looks
like” the energy appearing in the gamma case.

3. Extension from the Gaussian case to other measures

As usual, we can deduce from Corollary 2.2 other inequalities by mean of change of variables. To make this precise,
let Ω be a measurable space and Ψ : RN �→ Ω a measurable isomorphism (meaning that Ψ is one to one with Ψ and
Ψ −1 measurables). Let Ψ ∗γ N denote the image of γ N by Ψ . That is, Ψ ∗γ N(A) = γ N(Ψ −1(A)). For g :S × Ω �→ R

such that g ◦ (Id,Ψ ) ∈ H 2
1 (λ ⊗ γ N), one obviously has

Varλ⊗Ψ ∗γ N(g) = Varλ⊗γ N(g ◦ Ψ )
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and

‖∂i,Ψ g‖p,Ψ ∗γ N =
∥∥∥∥∂g ◦ Ψ

∂yi

∥∥∥∥
p,γ N

,

where ∂i,Ψ g is defined as

∂i,Ψ g(x,ω) = ∂(x ◦ Ψ )

∂yi

(
q,Ψ −1(ω)

)
.

Hence inequality in Corollary 2.2 for f = g ◦ (Id,Ψ ) transfers to the same inequality for g provided ∂f
∂yi

is replaced
by ∂i,Ψ g.

Example 4. Let k ≥ 2 be an integer, Sk−1 ⊂ Rk the unit k − 1 dimensional sphere, Ω = (R+∗ × Sk−1)N, and let
E = (Rk∗)N. A typical point in Ω will be written as (ρ, θ) = (ρi, θ i) and a typical point in E as y = (yj ). Now
consider the change of variables Ψ :E �→ Ω given by Ψ (y) = (Ψ (y)j ) with

Ψ j (y) =
(∥∥yj

∥∥2
,

yj

‖yj‖
)

.

The image of (γ k)N = γ N by Ψ is the product measure γ̃ N where γ̃ is the probability measure on R+∗ × Sk−1 defined
by

γ̃ (dt dv) = 1

rk
e−t/2tk/2−11t>0 dt dv.

Here rk = ∫ ∞
0 e−t/2tk/2−1 dt , and dv stands for the uniform probability measure on Sk−1. For g : {0,1}S × Ω �→ R

with g ◦ (Id,Ψ ) ∈ H 2
1 (λ ⊗ γ N), let(

∂g

∂ρj
(x,ρ, θ),∇θj g(x,ρ, θ)

)
∈ R × Tθi Sk−1 ⊂ R × Rk

denote the partial gradient of g with respect to the variable (ρi, θ i), where Tθi Sk−1 ⊂ Rk stands for the tangent space
of Sk−1 at θi . It is not hard to verify that for all i ∈ N and j ∈ {1, . . . , k},

∂i,j,Ψ g(x,ρ, θ) = 2
∂g

∂ρi
(x,ρ, θ)

√
ρiθ i

j + 1√
ρi

[∇θi g(x,ρ, θ)
]
j
. (7)

As a consequence, we may recover in this way Corollary 2.3 when the parameter a equals k/2 − 1, with k an integer.
Indeed, this follows from (7) applied to the map (x,ρ, θ) → g(

ρ
2α

). Concentrating on the angular part instead of the
radial one, we obtain the following modified Poincaré inequality on the sphere.

Corollary 3.1 (Uniform distribution on Sn). Let dvn denote the normalized Riemannian probability measure on
Sn ⊂ Rn+1. For g ∈ H 1

2 (dvn) and i = 1, . . . , n + 1 let ∇ig(θ) denote the ith component of ∇g(θ) in Rn+1 (we see
TθSn as the vector space of Rn+1 consisting of vector that are orthogonal to θ ). Then, for n ≥ 2,

Var(g) log
Var(g)∑

N

i=1 ‖Δig‖2
1

≤ 1

n − 1

∑
i∈N

E
(
(∇ig)2). (8)

Proof. follows from (7) applied to the map (x,ρ, θ) → g(θ). Details are left to the reader. �
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Example 5. If one wants to get a result similar to Corollary 2.2 with γ replaced by another probability measure ν,
one may of course perform the usual change of variables through inverse of repartition function. In the sequel, we
denote by

g(x) = 1√
2π

e−x2/2 (9)

the density of the normalized Gaussian distribution, and by

G(x) =
∫ x

−∞
g(u)du (10)

its repartition function. For any function φ from R to R, we shall note φ̃ the function from RN to RN such that
(φ̃(x))j = φ(xj ).

Corollary 3.2 (Unidimensional change of variables). Let ν be a probability on R+ absolutely continuous with
respect to the Lebesgue measure, with density h and repartition function

H(t) =
∫ t

0
h(u)du.

Let {0,1}S ×Rn be equipped with the probability measure λS
p ⊗ ν⊗N. Then, for every function f on {0,1}S ×Rn such

that f ◦ (Id, H̃−1 ◦ G) ∈ H 2
1 (λS

p ⊗ γ N),

Var(f ) log
Var(f )∑

s∈S ‖Δsf ‖2
1 + ∑

i∈N
‖Δif ‖2

1

≤ cLS(p)
∑
s∈S

E
(
(Δsf )2) + 2

∑
i∈N

E
(
(∇if )2),

where for every integer i,

∇if (x, y) = ψ(yi)
∂f

∂yi

(x, y),

and ψ is defined on I = {t ≥ 0 s.t. h(t) > 0}:

∀t ∈ I, ψ(t) = g ◦ G−1(H(t))

h(t)
.

Proof. It is a straightforward consequence of Corollary 2.2, applied to f ◦ (Id, H̃−1 ◦ G). �

4. A general exponential concentration inequality

In this section, we show how one can deduce from Proposition 2.1 an exponential concentration inequality for a
function F of independent variables. We shall prove in Section 5, in the context of first passage percolation, that
this new general concentration inequality may in certain cases improve on the ones due to Talagrand [24–26], or
Boucheron et al. [7]. The reason why we can get stronger results is that Proposition 2.1 is generally stronger than
a simple Poincaré inequality, and it is well known (see [17], Corollary 3.2, page 49 and Theorem 3.3, page 50) that
a Poincaré inequality for a measure μ implies an exponential concentration inequality for any Lipschitz function of a
random variable with distribution μ. This can be achieved through applying the Poincaré inequality to exp(θf ), and
then performing some recurrence. This last step is essentially contained in the following simple version, adapted to
our case, of Corollary 3.2, page 49 in [17].
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Lemma 4.1. Let f be a measurable real function on a probability space (X,X ,μ), and K a positive constant.
Suppose that for any real number θ < 1

2
√

K
, the function x �→ eθf (x) is in L1(μ), and:

Var
(
eθf /2) ≤ Kθ2E

(
eθf

)
.

Then,

∀t ≥ 0, μ

(
f −

∫
f dμ > t

√
K

)
≤ 4e−t

and

∀t ≥ 0, μ

(
f −

∫
f dμ < −t

√
K

)
≤ 4e−t .

Now, we can state our general concentration inequality. For any function F on a product space (Xi ,Xi ,μi)i∈I , we
define the following quantities, which play an important role in Theorem 4.2 (the notation is that of Section 2).

Wi,+(x) =
∫ (

F
(
x−i , yi

) − F(x)
)
+ dμi(yi),

where h+ = sup{h,0}.

W+(x) =
∑
i∈I

Wi,+.

Remark that similar quantities are involved in the work of Boucheron et al. [6,7].

Theorem 4.2. Let (Xi ,Xi ,μi)i∈I , (Ai )i∈I and (Ri)i∈I be as in Proposition 2.1, and satisfying all the hypotheses
therein. Let F be a function in L2(

∏
i∈I Xi ). Define

r = sup
i∈I

√
E

(
W 2

i,+
)
,

s =
√

E
(
W 2+

)
.

Define, for every real number K > ers:

l(K) = K

log(K/(rs log(K/(rs))))
.

Suppose that there exists a real number K > ers such that, for every θ such that |θ | ≤ 1
2
√

l(K)
, e(θ/2)F belongs to AI ,

and: ∑
i∈I

E
(
Ri

(
e(θ/2)F

)) ≤ Kθ2E
(
eθF

)
. (11)

Then, denoting μ = ⊗
i∈I μi , for every t > 0:

μ
(
F − E(F ) ≥ t

√
l(K)

) ≤ 4e−t ,

μ
(
F − E(F ) ≤ −t

√
l(K)

) ≤ 4e−t .
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Proof. For any function f in L1(
∏

i∈I Xi ), any i ∈ I , x ∈ ∏
i∈I Xi and yi ∈ Xi ,

‖Δif ‖1 =
∫ ∣∣∣∣∫ (

f (x) − f
(
x−i , yi

))
dμi(yi)

∣∣∣∣dμ(x)

≤
∫ ∫ ∣∣f (x) − f

(
x−i , yi

)∣∣dμ(x)dμi(yi)

= 2
∫ ∫ (

f (x) − f
(
x−i , yi

))
+ dμ(x)dμi(yi)

= 2
∫ ∫ (

f (x) − f
(
x−i , yi

))
− dμ(x)dμi(yi),

where h− = sup{−h,0}. On the other hand,(
e(θ/2)F (x−i ,yi ) − e(θ/2)F (x)

)
+ = e(θ/2)F (x)

(
e(θ/2)(F (x−i ,yi )−F(x)) − 1

)
+

≤ e(θ/2)F (x)

(
θ

2

(
F

(
x−i , yi

)
(x) − F(x)

))
+

=
{ |θ |

2 e(θ/2)F (x)
(
F

(
x−i , yi

) − F(x)
)
+ if θ > 0,

|θ |
2 e(θ/2)F (x)

(
F

(
x−i , yi

) − F(x)
)
− if θ < 0.

Therefore,

(
e(θ/2)F (x−i ,yi ) − e(θ/2)F (x)

)
+ ≤

{ |θ |
2 e(θ/2)F (x)

(
F

(
x−i , yi

) − F(x)
)
+ if θ > 0,

|θ |
2 e(θ/2)F (x−i ,yi )

(
F(x) − F

(
x−i , yi

))
+ if θ < 0.

Since F(x) and F(x−i , yi) have the same distribution under μ ⊗ μi , we get, for any real number θ ,∥∥Δie
θF/2

∥∥
1 ≤ |θ |

∫ ∫ (
F

(
x−i , yi

) − F(x)
)
+ dμi(yi)e

(θ/2)F (x) dμ(x).

And, using Cauchy–Schwarz inequality,∑
i∈I

∥∥Δie
θF/2

∥∥
1 ≤ |θ |

√
E

(
W 2+

)
E

(
eθF

)
.

But we also have, again using Cauchy–Schwarz inequality,∥∥Δie
θF/2

∥∥
1 ≤ |θ |

√
E

(
W 2

i,+
)
E

(
eθF

)
.

Therefore,∑
i∈I

∥∥Δie
θF/2

∥∥2
1 ≤ θ2rsE

(
eθF

)
. (12)

Inequality (12), the Poincaré inequality for eθF (Proposition 2.1) and hypothesis (11) imply that:

∀|θ | ≤ 1

2
√

l(K)
, Var

(
e(θ/2)F

)
log

Var(e(θ/2)F )

θ2rsE(eθF )
≤ Kθ2E

(
eθF

)
. (13)

Therefore, we are left in front of the following alternative:

• either Var(eθF/2) ≤ θ2 K
log(K/(rs))

E(eθF ),
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• or Var(eθF/2) > θ2 K
log(K/(rs))

E(eθF ). But in this case, plugging this minoration into the logarithm of inequality (13)
leads to:

Var
(
eθF/2) ≤ θ2 K

log(K/(rs log(K/(rs))))
E

(
eθf̃

)
.

In any case, for any |θ | ≤ 1
2
√

l(K)
,

Var
(
eθF/2) ≤ θ2l(K)E

(
eθf̃

)
.

The result follows from Lemma 4.1. �

Remark 2. It is well known, through Herbst’s argument (see, e.g., [18], Theorem 5.3, page 95), that condition (11)
implies a subexponential concentration inequality of the form:

μ
(∣∣F − E(F )

∣∣ ≥ 2t
√

K
) ≤ 2e−t2

.

In the applications to follow, K/(rs) is big, and therefore l(K) is small compared to K . Therefore, at the price of
trading the sub-Gaussian behavior against a subexponential one, Theorem 4.2 shows that when K/(rs) is big; the
fluctuations of F are lower than

√
l(K), which is small compared to

√
K .

Let us give a closer look at the case where for every i, μi is the invariant measure of a diffusion process with carré
du champ Γi . Naturally associated with this diffusion process, a Sobolev logarithmic inequality for μi has the form
(if it exists):

Entμi

(
f 2) ≤ ciEμi

(
Γi(f,f )

)
,

where ci is a positive constant. Furthermore, we have the following property:

Γi

(
Φ(f ), g

) = Φ ′(f )Γi(f, g),

which leads to:

Ri

(
e(θ/2)F

)2 = ciΓi

(
e(θ/2)F , e(θ/2)F

) = ci

θ2

4
eθF Γi(F,F ).

Therefore, condition (11) becomes:

E

(
e(θ/2)F

∑
i∈I

ciΓi(F,F )

)
≤ 4KE

(
eθF

)
.

The main work to satisfy condition (11) is to bound from below, and somewhat independently from e(θ/2)F , the
quantity

∑
i∈I Γi(F,F ). In some particular cases, and notably percolation, this quantity is upperbounded by F itself.

And it is possible to show, following Boucheron et al. [7], that, at least for small θ , E(F eθF ) is upper bounded by a
constant times E(F )E(eθF ). More generally, one can state the following result.

Corollary 4.3. Let (Xi ,Xi ,μi)i∈I , (Ai )i∈I and (Ri)i∈I be as in Proposition 2.1, and satisfying all the hypotheses
therein. Let F be a function in L2(

∏
i∈I Xi ). Define

r = sup
i∈I

√
E

(
W 2

i,+
)
,

s =
√

E
(
W 2+

)
.
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Define, for every real number K > ers:

l(K) = K

log(K/(rs log(K/(rs))))
.

Suppose that there exists two constants C and D such that, denoting:

ACD = 4CE(F ) + D

(
1 + 2

C

)
,

we have

(i) C ≤ √
l(ACD),

(ii) ACD4CE(F ) + D(1 + 2
C

) ≥ ers,
(iii) for every θ such that |θ | ≤ 1

2
√

l(ACD)
, eθF belongs to AI , and:∑

i∈I

E
(
Ri

(
e(θ/2)F

)) ≤ Cθ2E
(
F eθF

) + Dθ2E
(
eθF

)
. (14)

Then, denoting μ = ⊗
i∈I μi , for every t > 0:

μ
(
F − E(F ) ≥ t

√
l(ACD)

) ≤ 4e−t ,

μ
(
F − E(F ) ≤ −t

√
l(ACD)

) ≤ 4e−t .

Proof. The only thing to prove is that condition (11) holds with K = 4CE(F ) + D(1 + 2
C

). This will follow from
condition (14) and a variation on the theme of Herbst’s argument due to Boucheron et al. [7]. Indeed, recall that using
the tensorisation of entropy, the logarithmic Sobolev inequalities for each μi imply that:

∀g ∈AI , Entμ
(
g2) ≤

∑
i∈I

Eμ

(
Ri(g)2).

Let us apply this inequality to g = e(θ/2)F , and use condition (14). For every θ such that |θ | ≤ 1
2
√

l(4CE(F ))
,

Entμ
(
eθF

) ≤ Cθ2E
(
F eθF

)
.

This may be written as:

θE
(
F eθF

) − E
(
eθF

)
log E

(
eθF

) ≤ Cθ2E
(
F eθF

) + Dθ2E
(
eθF

)
. (15)

First, suppose that θ is positive. The proof of Theorem 5 in [7] shows that, for every θ < 1
C

,

logE
(
eθF

) ≤ θ

1 − θC
E(F ) + D

θ2

1 − θC
,

and Eq. (15) implies that, for every θ < 1
C

,

E
(
F eθF

) ≤ E(F ) + Dθ

(1 − θC)2
E

(
eθF

)
.

If θ is negative, eθF is decreasing in F , and it follows from Chebyshev’s association inequality that (see, e.g., [11],
page 43):

E
(
F eθF

) ≤ E(F )E
(
eθF

)
.
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Now, we gather the case where θ is positive and the case where it is negative. Condition (i) implies that 1
2C

≥
1

2
√

l(4CE(F ))
, and therefore, for every θ such that |θ | ≤ 1

2
√

l(4CE(F ))
,

∑
i∈I

E
(
Ri

(
e(θ/2)F

)) ≤ Cθ2E
(
F eθF

) + Dθ2E
(
eθF

) ≤
(

4CE(F ) + D

(
1 + 2

C

))
θ2E

(
eθF

)
,

and the result follows from Theorem 4.2. �

The main lesson that we can remember from Corollary 4.2 is the following (very) informal statement.

If F is a Lipschitz function of a large number of variables, each of which contributes at most to an amount δ, then

F has fluctuations of order O(

√
E(F )/ log 1

δ
), and there is an exponential control for these fluctuations.

5. Application to first passage percolation

5.1. Continuous edge-times distributions

It turns out that Corollary 4.3 is particularly well suited to adapt the argument of Benjamini, Kalai and Schramm [5]
to show that the passage time from the origin to a vertex v satisfies an exponential concentration inequality at the
rate O(

√|v|/ log |v|) when the edges have a �(a, b) distribution with a ≥ 1/2. This includes the important case of
exponential distribution, for which first passage percolation becomes equivalent to a version of Eden growth model
(see for instance [15], page 130). We do not want to restrict ourselves to those distributions. Nevertheless, due to the
particular strategy that we adopt, we can only prove our result for some continuous edge times distributions which
behave roughly like a gamma distribution. Please note that the definition given below differs (one assumption is
removed) from the definition of a nearly gamma distribution that was stated in the preliminary paper [4].

Definition 5.1. Let ν be a probability on R+ absolutely continuous with respect to the Lebesgue measure, with
density h and repartition function

H(t) =
∫ t

0
h(u)du.

Define:

I = {
t ≥ 0 such that h(t) > 0

}
,

and ψ : I �→ R the map:

ψ(y) = g ◦ G−1(H(y))

h(y)
.

Let A be a positive real number. The probability measure ν will be said to be nearly gamma provided it satisfies the
following set of conditions:

(i) I is an interval;
(ii) h restricted to I is continuous;

(iii) There exists a positive real number A such that

∀y ∈ I, ψ(y) ≤ A
√

y.

If we want to emphasize the dependance on A in the above definition, we shall say that ν is nearly gamma with
bound A. In Definition 5.1, Condition (iii) is of course the most tedious to check. A simple sufficient condition for
a probability measure to be nearly gamma will be given in Lemma 5.3, the proof of which relies on the following
asymptotics for the Gaussian repartition function G.
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Lemma 5.2. As x tends to −∞,

G(x) = g(x)

(
1

|x| + o

(
1

x

))
,

and as x tends to +∞,

G(x) = 1 − g(x)

(
1

x
+ o

(
1

x

))
.

Consequently,

g ◦ G−1(y)
y→0∼ y

√−2 logy,

and

g ◦ G−1(y)
y→1∼ (1 − y)

√−2 log(1 − y).

Proof. A simple change of variable u = x − t in G gives:

G(x) = g(x)

∫ +∞

0
e−t2/2+xt dt.

Integrating by parts, we get:

G(x) = g(x)

(
− 1

x
+ 1

x

∫ +∞

0
te−t2/2+xt dt

)
= g(x)

(
1

|x| + o

(
1

x

))
,

as x goes to −∞. Since G(−x) = 1 − G(x), we get that, as x goes to +∞:

G(x) = 1 − g(x)

(
1

x
+ o

(
1

x

))
.

Let us turn to the asymptotic of g ◦ G−1(y) as y tends to zero. Let x = G−1(y), so that “y tends to zero” is equivalent
to “x tends to −∞.” One has therefore,

G(x) = g(x)

|x|
(
1 + o(1)

)
,

logG(x) = logg(x) − log |x| + o(1) = −x2

2
− log |x| + O(1),

logG(x) = −x2

2

(
1 + o(1)

)
,

|x| = √−2 logG(x).

Since g(x) = |x|G(x)(1 + o(1)),

g(x) = G(x)
√−2 logG(x)

(
1 + o(1)

)
,

and therefore,

g ◦ G−1(y) = y
√−2 logy

(
1 + o(1)

)
,

as y tends to zero. The asymptotic of g ◦ G−1(y) as y tends to 1 is derived in the same way. �
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Given two functions r and l, we write l(x) = Θ(r(x)) as x goes to x∗ provided there exist positive constants
C1 ≤ C2 such that

C1 ≤ lim inf
x→x∗

r(x)

l(x)
≤ lim sup

x→x∗
r(x)

l(x)
≤ C2.

Lemma 5.3. Assume that conditions (i) and (ii) of Definition 5.1 hold. Let 0 ≤ ν < ν ≤ ∞ denote the endpoints of I .
Assume furthermore condition (iii) is replaced by conditions (iv) and (v) below.

(iv) There exists α > −1 such that as x goes to ν,

h(x) = Θ
(
(x − ν)α

)
,

(v) ν < ∞ and there exists β > −1 such that as x goes to ν,

h(x) = Θ
(
(ν − x)β

)
,

or ν = ∞ and

∃A > ν,∀t ≥ A, C1h(t) ≤
∫ ∞

t

h(u)du ≤ C2h(t),

where C1 and C2 are positive constants.

Then, ν is nearly gamma.

Proof. Since h is a continuous function on ]ν, ν[, it attains its minimum on every compact set included in ]ν, ν[. The
minimum of h on [a, b] is, therefore, strictly positive as soon as ν < a ≤ b < ν. In order to show that condition (iii)
holds, we thus have to concentrate on the behaviour of the function ψ near ν and ν. Condition (iv) implies that, as x

goes to ν,

H(x) = Θ
(
(x − ν)α+1). (16)

This, via Lemma 5.2, leads to

ψ(x) = Θ
(
(x − ν)

√− log(x − ν)
)
, (17)

as x goes to ν. Similarly, if ν < ∞, condition (v) implies that, as x goes to ν,

H(x) = Θ
(
(ν − x)β+1), (18)

which leads via Lemma 5.2 to

ψ(x) = Θ
(
(ν − x)

√− log(ν − x)
)
, (19)

as x goes to ν. Therefore, if ν < ∞, condition (iii) holds.
Now, suppose that ν = ∞. Condition (v) implies:

∀t ≥ A,
1

C2
≤ h(t)∫ ∞

t
h(u)

du ≤ 1

C1
.

Integrating this inequality between A and y leads to the existence of three positive constants B , C′
1 and C′

2 such that:

∀y ≥ B, C′
1y ≤ log

1

1 − H(y)
≤ C′2y.
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Thus,

∀y ≥ B, C1

√
C′

1y ≤ ψ(y) ≤ C2

√
C′

2y. (20)

This, combined with Eq. (17) proves that condition (iii) holds and concludes the proof of Lemma 5.3. �

Remark 3. With the help of Lemma 5.3, it is easy to check that most usual distributions are nearly gamma. This
includes all gamma and beta distributions, as well as any probability measure whose density is bounded away from 0
on its support, and notably the uniform distribution on [a, b], with 0 ≤ a < b. Nevertheless, remark that some distrib-
utions which have a sub-exponential upper tail may not satisfy the assumptions of Lemma 5.3, and be nearly gamma,
though. For example, this is the case of the distribution of |N |, where N is a standard Gaussian random variable.

Now, we can state the main result of this article.

Theorem 5.4. Let ν be a nearly gamma probability measure with an exponential moment, i.e. we suppose that there
exists δ > 0 such that:∫

eδx dν(x) < ∞.

Let μ denote the measure ν⊗E . Then, there exist two positive constants C1 and C2 such that, for any |v| ≥ 2, and any
positive real number t ≤ |v|,

μ

(∣∣∣∣dx(0, v) −
∫

dx(0, v)dμ(x)

∣∣∣∣ > t

√
|v|

log |v|

)
≤ C1e−C2t .

Proof. What we present here borrows many ideas from Kesten [16] and of course Benjamini et al. [5]. We would

like to apply Corollary 4.3 to the function eθfv , for θ ≤
√

log |v|
|v| . In fact, we will be able to use Corollary 4.3, but not

exactly for fv , and not exactly for any nearly gamma distribution. The first step is indeed to work with a version of ν

with bounded support. Precisely, we shall use the following lemma which is an easy adaptation of Kesten’s Lemma 1,
page 309 in [16].

Lemma 5.5. Let ν be a nearly gamma distribution with bound A. Suppose that ν admits an exponential moment, that
is, there exists δ > 0 such that:∫

eδx dν(x) < ∞.

Then there exists a sequence of probability measures (νk)k≥2, positive constants C3,C4,C5 and a positive integer kν

with the following properties:

(i) For every k, the support of νk is included in [0,C5 logk].
(ii) If k ≥ kν , νk is a nearly gamma distribution with bound A.

(iii) If k = |v| and k ≥ 2, for every t greater than 2C3

√
log |v|

|v| ,

ν

(∣∣dx(0, v) − Eν

(
dx(0, v)

)∣∣ > t

√
|v|

log |v|

)

≤ 3e−C3|v| + C4e−(γ /8)t
√|v|/log |v| + ν̃

(∣∣dx(0, v) − Eν̃

(
dx(0, v)

)∣∣ >
t

4

√
|v|

log |v|

)
.

(iv) If k ≥ 2, νk is stochastically smaller than νk+1 and ν.
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Proof. Kesten’s argument in [16] is simply to consider the truncated edge times at C5 log |v|. We cannot use this
directly because we have to deal with continuous distribution. Instead, we can repatriate the mass beyond 2C5 log |v|,
and spread it continuously over [C5 log |v|,2C5 log |v|]. This mass is small, of course. Precisely, thanks to the expo-
nential moment assumption, for every positive number c,

ν
([

c log |v|,+∞[) ≤
∫

eδx dν(x)
1

|v|δc .

Let u be a continuous density on the real line with support included in [0,1] and C5 a positive constant to be fixed
later. We define νk to be the continuous distribution on the real line with density:

∀x ∈ R, hk(x) =
(

h(x) + u

(
x − C5 logk

C5 logk

)
ν([2C5 logk,+∞[)

C5 logk

)
1x≤2C5 log k.

Statements (i) and (iv) are obvious. To see that (ii) holds, let Hk be the repartition function of νk . Obviously,

∀x ≤ C5 log |v|, hk(x) = h(x),

∀x ≤ 2C5 log |v|, hk(x) ≥ h(x),

∀x ≥ C5c log |v|, hk(x) = 0,

and therefore,

∀x ≤ C5 log |v|, Hk(x) = H(x),

∀x ∈ R, Hk(x) ≥ H(x),

∀x ≥ 2C5 log |v|, Hk(x) = 1.

Observe now that g ◦ G−1 is decreasing on [1/2,1], and that

∀x ≥ C5 logk, Hk(x) ≥ H(x) ≥ 1 −
∫

eδx dν(x)
1

kδC5
.

Therefore, let kν = �(2 ∫
eδx dν(x))1/(δC5)�,

∀k ≥ kν,∀x ≤ 2C5 logk,
g ◦ G−1(Hk(x))

hk(x)
≤ ψ(x).

This implies that the distributions (νk)k≥kν are all nearly gamma with the same bound A.
It remains to prove (iv). We define the following coupling πk of (ν, νk):∫

g(x, y)dπk(x, y) =
∫

g
(
x,H−1

k

(
H(x)

))
dν(x).

Denote by γ = γ (x̃) the (ν⊗E
k a.s. unique) x̃-geodesic from 0 to v. The following inequalities hold for πk-almost

every (x, x̃).

0 ≤ dx(0, v) − dx̃(0, v) ≤
∑
e∈γ

xe −
∑
e∈γ

x̃e ≤
∑
e∈γ

xe1xe>C5 log k.

Now, if k = |v|, we choose to take C5 = 4d
δ

, and the end of the proof follows exactly Kesten’s Lemma 1, page 309
in [16]. �

Now, we suppose that k = |v| ≥ kν and we shall work with νk , whose support is included in [0,2C5 log |v|]. Let
us define μk = ν⊗E

k . In the whole proof, Y shall denote a random variable with distribution ν. Remark that, thanks to
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part (iv) of Lemma 5.5∫
eδx dνk(x) ≤

∫
eδx dν(x) = E

(
eδY

)
,

and, for any positive real number α,∫
xα dνk(x) ≤

∫
xα dν(x) = E

(
Yα

)
.

A crucial idea in the work of Benjamini Kalai and Schramm is to work with a randomised version of fv in order to
take a full benefit of Corollary 3.2. This randomisation trick relies on the following lemma:

Lemma 5.6. There exists a constant c > 0, such that, for every m ∈ N∗, there exists a function gm from {0,1}m2
to

{0, . . . ,m} such that:

max
y∈{0,...,m}

λ
(
x s.t. gm(x) = y

) ≤ c

m
,

and

∀q ∈ {
1, . . . ,m2}, ∇qgm ∈ {0,1},

where

∇qg(x) = g(x1, . . . , xq−1,1, xq+1, . . . , xm2) − g(x1, . . . , xq−1,0, xq+1, . . . , xm2).

Since Benjamini et al. do not give a full proof for this lemma, we offer the following one.

Proof. From Stirling’s formula,(
m2

�m2/2�
)

.
m

2m2

n→∞−→ 1√
2π

,

and this implies that the following supremum is finite:

c1 = sup

{
2

(
m2

�m2/2�
)

.
m

2m2 s.t. m ∈ N∗
}
.

Notice also that c1 ≥ 1. Now, let � denote the alphabetical order {0,1}m2
, and let us list the elements in {0,1}m2

as
follows:

(0,0, . . . ,0) = x1 � x1 � · · · � x
2m2 = (1,1, . . . ,1).

For any m in N∗, we define the following integer:

k(m) =
⌈

2m2

m

⌉
,

and the following function on {0,1}m2
:

∀i ∈ {
1, . . . ,2m2}

, gm(xi) =
⌊

i

k(m)

⌋
.

Remark that gm(x
2m2 ) ≤ m/c1 ≤ 1. Therefore, g is a function from {0,1}m2

to {0, . . . ,m}. Now, suppose that xi and
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xl differ from exactly one coordinate. Then,

|i − l| ≤
(

m2

i

)
+

(
m2

l

)
≤ 2

(
m2

�m2/2�
)

≤ c1
2m2

m
≤ k(m).

Consequently,

gm(xi) − gm(xl) ≤
⌊

l

k(m)
+ 1

⌋
−

⌊
l

k(m)

⌋
= 1,

which implies that ∇qgm ∈ {0,1}. Finally, for any y ∈ {0, . . . ,m}, g takes the value y at most k(m) times, and

λ
(
x s.t. gm(x) = y

) ≤ k(m)

2m2 ≤ c1

m
+ 1

2m2 ≤ 2c1

m
.

So the lemma holds with c = 2c1. �

Now, we define our randomised version of fv as follows. Let m be a positive integer, to be fixed later, and S =
{1, . . . , d} × {1, . . . ,m2}. Let c > 0 and gm be as in Lemma 5.6. As in [5], for any a = (ai,j )(i,j)∈S ∈ {0,1}S , let

z = z(a) =
d∑

i=1

gm(ai,1, . . . , ai,m2)ei ,

where (e1, . . . , ed) denotes the standard basis of Zd . We now equip the space {0,1}S × RE+ with the probability
measure λ ⊗ μk , where λ := λS

1/2 is the uniform measure on {0,1}S , and we define the following function f̃ on

{0,1}S × RE+:

∀(a, x) ∈ {0,1}S × RE+, f̃ (a, x) = dx

(
z(a), v + z(a)

)
.

When m is not too big, f and f̃ are not too far apart.

Lemma 5.7. For any positive real number t ,

μk

(∣∣f − E(f )
∣∣ > t

) ≤ λ ⊗ μk

(∣∣f̃ − E(f̃ )
∣∣ >

t

2

)
+ e−δt/(4m)E

(
eδY

)
.

Proof. Let α(a) be a path from 0 to z(a), such that |α(a)| = |z(a)| (here, |α| is the number of edges in α). Let β(a)

denote a path disjoint from α(a), which goes from v to v + z(a). Then,∣∣f̃ (a, x) − f (x)
∣∣ ≤ dx

(
0, z(a)

) + dx

(
v, v + z(a)

) ≤
∑

e∈α(a)

xe +
∑

e∈β(a)

xe,

which is stochastically dominated by a sum of 2m independent variables Y1, . . . , Y2m with distribution ν. Remark that,
due to the translation invariance of the distribution of f under μk , f and f̃ have the same mean against λ⊗μk . Thus,
using |z| ≤ m, we have:

μk

(∣∣f − E(f )
∣∣ > t

) ≤ λ ⊗ μk

(∣∣f̃ − E(f̃ )
∣∣ >

t

2

)
+ λ ⊗ μk

(
|f − f̃ | > t

2

)
.

Now, by Markov’s inequality, we get that for any positive real number t ,

λ ⊗ μk

(
|f − f̃ | > t

2

)
≤ P

(
2m∑
i=1

Yi >
t

2

)
= P

(
δ

2m

2m∑
i=1

Yi >
δt

4m

)

≤ e−δt/(4m)E
(
e(δ/(2m))Y

)2m ≤ e−δt/(4m)E
(
eδY

)
.
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This concludes the proof of this lemma. �

It remains to bound λ ⊗ μk(|f̃ − E(f̃ )| > t). To this end, we will use an adaptation of Corollary 4.3, applied to
F = f̃ . Denote, for any s in S and any e in E,

Ws,+ =
∫ (

F
(
x−s , ys

) − F(x)
)
+ dβ1/2(ys),

and

WS,+ =
∑
s∈S

Ws,+,

We,+ =
∫ (

F
(
x−e, ye

) − F(x)
)
+ dνk(ye),

and

WE,+ =
∑
e∈E

We,+.

Applying Corollary 3.2 with p = 1/2 (note that cLS(1/2) = 2), we can get the following minor adaptation of Corol-
lary 4.3. The notations are those of Corollary 3.2 and Definition 5.1.

Proposition 5.8. Let ν be a probability on R+ absolutely continuous with respect to the Lebesgue measure, with
density h and repartition function

H(t) =
∫ t

0
h(u)du.

Let {0,1}S × Rn be equipped with the probability measure λS
p ⊗ ν⊗N. Let F be a function from {0,1}S × Rn to R.

Define

rS = sup
s∈S

√
E

(
W 2

s,+
)
,

sS =
√

E
(
W 2

S,+
)
,

rE = sup
e∈E

√
E

(
W 2

e,+
)
,

sE =
√

E
(
W 2

E,+
)
,

and

KES = rSsS + rEsE.

Define, for every real number K > eKES :

l(K) = K

log(K/(KES log(K/KES)))
.

Suppose that there exists three positive real numbers C, D and ACD such that:

(i) C ≤ √
l(ACD),
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(ii) ACD ≥ sup{eKES,4CE(F ) + D(1 + 2
C

)},
(iii) for every θ such that |θ | ≤ 1

2
√

l(ACD)
, eθF ◦ (Id, H̃−1 ◦ G) ∈ H 2

1 (λS
p ⊗ γ N) and:∑

s∈S

∥∥Δs

(
e(θ/2)F

)∥∥2
2 ≤ Dθ2E

(
eθF

)
(21)

and∑
e∈E

∥∥∇e

(
e(θ/2)F

)∥∥2
2 ≤ Cθ2E

(
F eθF

)
, (22)

where for every e in E,

∇ef (x, y) = ψ(ye)
∂f

∂ye

(x, y),

and ψ is defined on I = {t ≥ 0 s.t. h(t) > 0}:

∀t ∈ I, ψ(t) = g ◦ G−1(H(t))

h(t)
.

Then, denoting μ = λS ⊗ γ E , for every t > 0:

μ
(
F − E(F ) ≥ t

√
l(ACD)

) ≤ 4e−t ,

μ
(
F − E(F ) ≤ −t

√
l(ACD)

) ≤ 4e−t .

First, we need to prove that eθf̃ ◦ (Id, H̃−1 ◦ G) belongs to H 2
1 (λ ⊗ γ N) when ν is nearly gamma. This is the aim

of the following lemma.

Lemma 5.9. If ν is nearly gamma, and has bounded support, for any positive number θ , the function eθfv ◦ H̃−1 ◦ G

belongs to H 2
1 (γ N), eθf̃ ◦ (Id, H̃−1 ◦ G) belongs to H 2

1 (λ ⊗ γ N). Furthermore, conditionally to z, there is almost
surely only one x-geodesic from z to z + v, denoted by γx(z), and:

∂f̃

∂xe

(a, x) = 1e∈γx(z(a)).

Proof. The fact that eθfv ◦ H̃−1 ◦ G and eθf̃ ◦ (Id, H̃−1 ◦ G) are in L2 is obvious since ν has bounded support. We

shall prove that eθfv ◦ H̃−1 ◦ G satisfies the integration by part formula (a) of the definition of H 2
1 . The similar result

for eθf̃ is obtained in the same way. Now, we fix x−e in (R+)E(Zd )\{e}. We denote by ge the function defined on R+
by:

g(y) = fv

(
x−e, y

)
.

We will show that there is a nonnegative real number y∞ such that:{∀y ≤ y∞, g(y) = g(0) + y and
∀y > y∞, g(y) = g(y∞).

(23)

For any n ≥ |v|, let us denote by Γn the set of paths from 0 to v whose number of edges is not greater than n. We have:

g(y) = inf
n≥|v|gn(y),
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where

gn(y) = inf
γ∈Γn

∑
e′∈γ

(
x−e, y

)
e′ .

The functions gn form a nonincreasing sequence of nondecreasing functions:

∀n ≥ |v|,∀y ∈ R+,∀y′ ≥ y, gn+1(y) ≤ gn(y) ≤ gn

(
y′).

In particular, this implies that for every y in R+,

g(y) = lim
n→∞gn(y).

Now, we claim that, for every n ≥ |v| + 3, there exists yn ∈ R+ such that:{∀y ≤ yn, gn(y) = gn(0) + y and
∀y > yn, gn(y) = gn(yn),

(24)

and furthermore,

the sequence (yn)n≥|v|+3 is nonincreasing. (25)

Indeed, since Γn is a finite set, the infimum in the definition of gn is attained. Let us call a path which attains this
infimum an (n, y)-geodesic and let Γ̃ (n, y, e) be the set of (n, y)-geodesics which contain the edge e. Remark that
as soon as n ≥ |v| + 3, there exists a real number A such that e does not belong to any (n,A)-geodesic: it is enough
to take A greater than the sum of the length of three edges forming a path between the end-points of the edge e.
Therefore, the following supremum is finite:

yn = sup
{
y ∈ R+ s.t. Γ̃ (n, y, e) �= ∅}

.

Now, if e belongs to an (n, y)-geodesic γ , for any y′ ≤ y, γ is an (n, y′)-geodesic to which e belongs, and gn(y) −
gn(y

′) = y − y′. If Γ̃ (n, y, e) is empty, then for any y′ ≥ y, e does not belong to any (n, y′)-geodesic, and gn(y) =
gn(y

′). This proves that:

∀y < yn, gn(y) = gn(0) + y,

∀y, y′ > yn, gn(y) = gn

(
y′).

Since gn is continuous, we have proved claim (24). Now remark that if e does not belong to any (n, y)-geodesic, then
e does not belong to any (n + 1, y)-geodesic, since Γn ⊂ Γn+1. Therefore, yn+1 ≤ yn, and this proves claim (25).
Since (yn)n≥|v|+3 is nonnegative, it converges to a nonnegative number y∞ as n tends to infinity. Now, let n be a
integer greater than |v| + 3:

∀n ≥ N,∀y, y ′ > yn, gn(y) = gn

(
y′).

Since yn ≤ yN ,

∀n ≥ N,∀y, y′ > yN, gn(y) = gn

(
y′).

Letting n tend to infinity in the last equation, we get:

∀N ≥ |v| + 3,∀y, y′ > yN, g(y) = g
(
y′).

Therefore,

∀y, y′ > y∞, g(y) = g
(
y′).
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On the other side,

∀n ≥ |v| + 3,∀y ≤ yn, gn(y) = gn(0) + y.

Since yn ≥ y∞,

∀n ≥ |v| + 3,∀y ≤ y∞, gn(y) = gn(0) + y.

Letting n tend to infinity in the last expression, we get:

∀y ≤ y∞, g(y) = g(0) + y.

Finally, g is continuous. Indeed, the convergent sequence (gn) is uniformly equicontinuous, since all these functions
are 1-Lipschitz, and the continuity of g follows from Arzel–Ascoli theorem. We have proved claim (23). Remark that
y∞ = y∞(x−e) depends on x−e . We define, for any x−e,

he

(
x−e, xe

) =
{

1 if xe ≤ y∞
(
x−e

)
,

0 if xe > y∞
(
x−e

)
.

It is easy to see that, for any smooth function F : R → R having compact support, for any x−e ,

−
∫

R

F ′(xe)e
θfv(x−e,xe) dxe = θ

∫
R

F(xe)he

(
x−e, xe

)
eθfv(x

−e,xe) dxe. (26)

It is known that there is almost surely a geodesic from 0 to v (see [12] for instance), that is, the infimum in the
definition of fv is attained with probability 1. Furthermore, in this setting, where the distribution of the lengths is
continuous, there is almost surely only one unique x-geodesic from 0 to v. For any x, we shall denote by γx(0) the
unique x-geodesics from 0 to 0 + v. Then, with ν-probability 1, one can see from the definitions of yn and y∞ that:

he

(
x−e, xe

) = 1e∈γx(0). (27)

Performing the change of variable x �→ H̃−1 ◦ G in Eq. (26), one gets the integration by parts formula (a) for eθfv ◦
H̃−1 ◦ G, with the following partial derivative with respect to xe:

x �→ θψ(xe)he

(
H̃−1 ◦ G(x)

)
eθfv .

The expression of ∂f̃
∂xe

(a, x) is derived in the same way than (27). �

Now, we want to apply Proposition 5.8 to F = f̃ .
Bound on

∑
s∈S ‖Δs(e(θ/2)F )‖2

2. Here, we can perform a quite rough upper bound, since there are not many ele-
ments in S. For any a ∈ {0,1}S , and any q in S, denote by τqa the element of {0,1}S obtained from a by flipping the
coordinate q . Then, for any function g on {0,1}S ,

∥∥Δqeθg/2
∥∥p

p
= 1

4

∑
a∈{0,1}S

∣∣e(θ/2)g(a) − e(θ/2)g(τqa)
∣∣pλ(a)

= 1

2

∑
a: θg(a)>θg(τqa)

e(θp/2)g(a)
(
1 − e(θ/2)(g(τqa)−g(a))

)p
λ(a)

≤ |θ |p
2p+1

∑
a: θg(a)>θg(τqa)

e(θp/2)g(a)
∣∣g(a) − g(τqa)

∣∣pλ(a)
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≤ |θ |p
2p+1

∑
a∈{0,1}S

e(θp/2)g(a)
∣∣g(a) − g(τqa)

∣∣pλ(a)

= |θ |p
2

∥∥eθg/2Δqg
∥∥p

p
.

According to Lemma 5.6, for any q ∈ {0,1}m2
, ∇qgm ∈ {0,1}. Therefore, for any s = (i, q) ∈ S,

|Δsf̃ | ≤ 1

2
(x(z,z+e1) + x(z+v,z+v+e1)).

Therefore, we get the following bounds:∑
s∈S

∥∥Δseθf̃ /2
∥∥2

2 ≤ θ2C2
5m

(
log |v|)2

E
(
eθf̃

)
. (28)

Bound on rS .

rS ≤ 2
√

E
(
Y 2

)
. (29)

Bound on sS .

rS ≤ 2m. (30)

Bound on
∑

e∈E ‖∇e(e(θ/2)F )‖2
2. Let A be as in Definition 5.1. Since νk is nearly gamma with bound A (see

Lemma 5.5),∑
e∈E

∥∥eθf̃ /2∇ef̃
∥∥2

2 ≤ AE
(
f̃ eθf̃

)
.

Bound on sE . Remark that:(
f̃

(
x−e, ye

) − f̃ (x)
)
+ ≤ ye1e∈γx(z),

and γx(z) is independent from ye. Therefore,

0 ≤ We,+ ≤ E(Y )1e∈γx(z), (31)

which leads to:

0 ≤ WE,+ ≤ E(Y )
∣∣γx(z)

∣∣,
and

sE ≤ E(Y )

√
E

(∣∣γx(z)
∣∣2)

.

Now, following Kesten [16], page 308, we claim that there exists some constant C6, depending only on ν (and not
on k) such that:

Eνk

(∣∣γx(z)
∣∣2) ≤ C6|v|2. (32)

Indeed, for any a > 0 and y > 0,

μk

(∣∣γx(0)
∣∣ ≥ y|v|)

≤ μk

(
fv ≥ ay|v|) + μk

(
∃ a self-avoiding path r starting at 0 of at least y|v| steps but with

∑
e∈r

xe < ay|v|
)

.
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Proposition 5.8 of [15] shows that for a suitable a > 0, the second term in the right-hand side of the above inequality
is at most Ce−C′y|v| for some constants C and C′. Further more, a, C and C′ do not depend on k: it suffices to
choose them for νkν , and the same constants work for any k ≥ kν (see part (iv) of Lemma 5.5 and the remark of
[16], page 309). On the other hand, fv is dominated by the sum of |v| independent variables with distribution ν,
X1, . . . ,X|v|. Thus,

E
(∣∣γx(z)

∣∣2) = E
(∣∣γx(z)

∣∣2)
= |v|2

∫ ∞

0
μ

(∣∣γx(0)
∣∣2

> y|v|2)dy

≤ |v|2
∫ ∞

0
μ

(( |v|∑
i=1

Xi

)2

≥ ay|v|2
)

+ |v|2C
∫ ∞

0
e−C′√y|v| dy

= 1

a2
E

(( |v|∑
i=1

Xi

)2)
+ 2C

∫ ∞

0
te−C′t dt

≤ C6|v|2.
This proves claim (32). Therefore,

sE ≤ √
C6E(Y )|v|.

Bound on rE . From inequality (31), we get:

rE ≤ E(Y )

√
sup
e∈E

P
(
e ∈ γx(z)

)
.

Now, we use the fact that for any fixed z, μ is invariant under translation by z.

P
(
e ∈ γx(z)

) = Eλ

(
Eμ(1e−z∈γx(0))

) = Eμ

( ∑
e′∈γx(0)

Eλ(1e−z=e′)

)
= Eμ

( ∑
e′∈γx(0)

Pλ

(
z = e − e′))

≤ sup
z0

P(z = z0)Eμ

(∣∣γx(0) ∩Qe

∣∣) ≤ sup
z0

P(z = z0)Eμ

(∣∣γx(0) ∩Be

∣∣),
where Qe = {e′ ∈ E(Zd) s.t. P(z = e − e′) > 0} ⊂ Be = e +B(0, dm). Using Lemma 5.6,

sup
z0

P(z = z0) ≤
(

c

m

)d

.

Now, we claim that

Eμk

(∣∣γx(0) ∩Be

∣∣) ≤ C7m
d−1. (33)

We proceed as we did to obtain (32). Indeed, for any a > 0 and y > 0,

μk

(∣∣γx(0) ∩Be

∣∣ ≥ ym
)

≤ μk

( ∑
e′∈γx(0)∩Be

xe′ ≥ ay|v|
)

+
∑

w∈∂Be

μk

(
∃ a self-avoiding path r starting at w of at least ym steps but with

∑
e∈r

xe < aym

)
.
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We use again the constants a, C and C′ arising from Proposition 5.8 of [15], and which depend on ν, but not on k.
Remark that there are at most (dm)d−1 vertices in ∂Be . On the other hand, let r be a deterministic path going through
every vertex of the surface of the ball Be, and such that there is a constant C′′ (depending only on d) such that
|r| ≤ C′′md−1. From the definition of a geodesic, we get:

fv ≤
∑
e′∈r

xe.

Thus,

E
(∣∣γx(0) ∩Be

∣∣) = m

∫ ∞

0
μk

(∣∣γx(0) ∩Be

∣∣ > ym
)

dy

≤ m

∫ ∞

0
μk

(∑
e′∈r

xe ≥ aym

)
+ m(dm)d−1

∫ ∞

0
e−C′ym dy

= 1

a
Eμk

(∑
e′∈r

xe

)
+ 2C

C′ (dm)d−1
∫ ∞

0
te−C′t dt

≤ C7m
d−1.

This proves claim (33). Therefore:

rE ≤ E(Y )

√(
c

m

)d

C7md−1,

rE ≤ C8

m1/2
. (34)

End of the proof. Now, we choose m = �|v|1/4�. Define C = A, D = C2
5m(log |v|)2. The bounds obtained before

lead to:

KES = O
(|v|7/8),

and:

4CE(F ) + D

(
1 + 2

C

)
= O

(|v|).
So we can choose ACD = C4|v|, with C4 a positive constant, such that (ii) of Proposition 5.8 applied to F = f̃ is
satisfied. It is clear that, for |v| large enough, conditions (i) and (iii) are also satisfied. Remark also that:

l(ACD) = O

( |v|
log |v|

)
.

Therefore, there exists a constant C12 such that for every t > 0:

μk

(
f̃ − E(f̃ ) > t

√
|v|

log |v|

)
≤ 4e−C12t (35)

and

μk

(
f̃ − E(f̃ ) < −t

√
|v|

log |v|

)
≤ 4e−C12t . (36)

Lemmas 5.7 and 5.5 conclude the proof of Theorem 5.4. �
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Remark 4. Inequalities (35), (36) and Lemma 5.7 imply, after integration, that the variance of fv is of order
O(|v|/ log |v|). Of course, we do not need the assumption that ν has a bounded support to obtain such a result.
Instead, we just need ν to have a second moment. The proof mimics [5], and the ideas presented here. Details may be
found in [4], which is a preliminary version of the present paper.

5.2. Bernoulli distributions

The method developed in Section 5.1 applies also to the case where the edge-times are distributed according to a
Bernoulli law ν = (1 − p)δa + pδb, and a is strictly positive. The proof follows exactly the same pattern as the proof
of the nearly gamma case, except that:

(1) one does not need Lemma 5.5, since ν has bounded support,
(2) the geodesic is not almost surely unique anymore,
(3) the energy

∑
e∈E E(Re(e(θ/2)f̃ )2) is different.

Point (1) is just good news. Point (2) is not a problem: the bounds on sE , sS , rE and rS remain valid if we choose for
γx(z) one geodesic among all the possible ones. So we shall only show how to circumvent point (3), that is, how one
can bound

∑
e∈E E(Re(e(θ/2)f̃ )2), where

Re(f ) = √
cLS(p)Δef.

First, imitating the proof of Theorem 4.2, we write:

∑
e∈E

E
(
Re

(
e(θ/2f̃

)2) ≤ cLS(p)
θ2

4
E

(
VE,+eθf̃

)
,

where:

VE,+ =
∑
e∈E

∫ (
f̃

(
x−e, ye

) − f̃ (x)
)2
+ dν(ye).

Now,

VE,+ ≤
∑
e∈E

∫
(b − a)21e∈γx(z) dν(ye) = (b − a)2

∣∣γx(z)
∣∣
1 ≤ (b − a)2

a
f̃ .

Therefore,

∑
e∈E

E
(
Re

(
e(θ/2)f̃

)2) ≤ cLS(p)
θ2

4

(b − a)2

a
E

(
f̃ eθf̃

)
. (37)

The bound (37) allows us to obtain the following equivalent of Theorem 5.4 in the case of Bernoulli distributions.

Proposition 5.10. Let a and b be two real numbers such that 0 < a < b. We define ν = (1−p)δa +pδp and μ = ν⊗E .
Then, there exist two positive constants C1 and C2 such that, for any |v| ≥ 2, and any positive real number t ,

μ

(∣∣∣∣dx(0, v) −
∫

dx(0, v)dμ(x)

∣∣∣∣ > t

√
|v|

log |v|

)
≤ C1e−C2t .

Remark 5. When a = 0, the previous argument does not work, and it is hard to compare VE,+ to f̃ itself. Although
the quantity VE,+ may be controlled when 1 − p < pc(Z

d) via Kesten’s work (see Proposition 5.8 in [15]), we do not
know how to adapt the entire proof to this case.
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