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Abstract. In this paper we completely characterize the norm attainment
set of a bounded linear operator between Hilbert spaces. In fact, we obtain
two different characterizations of the norm attainment set of a bounded linear
operator between Hilbert spaces. We further study the extreme contractions
on various types of finite-dimensional Banach spaces, namely Euclidean spaces,
and strictly convex spaces. In particular, we give an elementary alternative
proof of the well-known characterization of extreme contractions on a Euclidean
space, which works equally well for both the real and the complex case. As an
application of our exploration, we prove that it is possible to characterize real
Hilbert spaces among real Banach spaces, in terms of extreme contractions on
their 2-dimensional subspaces.

1. Introduction and preliminaries

The purpose of the present article is to explore the norm attainment set of
a bounded linear operator between Hilbert spaces. We also study the extreme
contractions on a finite-dimensional Banach space, from the point of view of
operator-norm attainment. Let us first establish the relevant notation and termi-
nologies.
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Let X, Y denote Banach spaces defined over K, the field of scalars. In this
article, unless otherwise stated, K can be either the field of real numbers R or
the field of complex numbers C. Let BX and SX denote the unit ball and the
unit sphere of X, respectively (i.e., BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈
X : ‖x‖ = 1}). We reserve the symbol H for Hilbert spaces. It is rather obvious
that H is also a Banach space, with respect to the usual norm induced by the
inner product 〈, 〉 on H. For any two elements x and y in X, x is said to be
orthogonal to y in the sense of Birkhoff and James in [1], [4], [5], written as
x ⊥B y, if ‖x + λy‖ ≥ ‖x‖ for all scalars λ. If the norm on X is induced by an
inner product, then Birkhoff–James orthogonality coincides with the usual inner
product orthogonality (i.e., x ⊥B y if and only if 〈x, y〉 = 0).

Let B(X,Y) denote the Banach space of all bounded linear operators from X
to Y, endowed with the usual operator norm. We write B(X,Y) = B(X) if X = Y.
For T ∈ B(X,Y), let MT denote the set of unit vectors at which T attains norm,
that is,

MT =
{
x ∈ SX : ‖Tx‖ = ‖T‖

}
.

In this paper, in the context of Hilbert spaces H1, H2, we completely characterize
MT for any T ∈ B(H1,H2). In fact, we obtain two different characterizations,
arising out of different motivations, of the norm attainment set of a bounded linear
operator between Hilbert spaces. This answers a question raised very recently in
[8], for the special case of Hilbert spaces.

It is easy to observe that for a nonzero T ∈ B(X,Y), T is a scalar multiple
of an isometry if and only if MT = SX. It follows from the works of Koldobsky
[7] and Blanco and Turnšek [2] that a nonzero T ∈ B(X,Y) is a scalar multiple
of an isometry if and only if T preserves Birkhoff–James orthogonality. In par-
ticular, it follows that a nonzero scalar multiple of an isometry always takes an
orthogonal basis to an orthogonal basis (in the sense of Birkhof–James). In this
paper, we observe an analogous result for any bounded linear operator defined
on a finite-dimensional Hilbert space. We would like to add here that Wójcik
made a detailed study of this remarkable property of bounded linear operators
on a Hilbert space in [11] and [12]. Indeed, it follows from his works that if H
is a finite-dimensional Hilbert space, then, given any T ∈ B(H), there exists an
orthonormal basis S of H such that T preserves orthogonality on S.

We also explore extreme contractions on various types of finite-dimensional
Banach spaces—namely, Euclidean spaces and strictly convex spaces. We con-
sider T ∈ B(X,Y) a contraction if ‖T‖ ≤ 1. If, in addition, T is also an extreme
point of the unit ball of B(X,Y), then T is said to be an extreme contraction
between X and Y. Extreme contractions of B(H), where H is a complex Hilbert
space, have been completely characterized by Kadison in [6] as isometries or
coisometries. Interestingly enough, for real Hilbert spaces, the same characteri-
zation of extreme contractions was obtained much later on by Grzaślewicz in [3].
In the present work, we give an elementary alternative proof of the same, for the
case of finite-dimensional Hilbert spaces. We would like to emphasize that while
our proof is essentially finite-dimensional, it works all the same for both real and
complex Hilbert spaces.
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A Banach space X is considered strictly convex if, for any two elements x, y ∈ X,
‖x+y‖ = ‖x‖+‖y‖ implies that y = kx for some k ≥ 0. Equivalently, X is strictly
convex if and only if every point of SX is an extreme point of the unit ball BX. We
study extreme contractions on finite-dimensional strictly convex Banach spaces.
We prove that if X is an n-dimensional Banach space and Y is any strictly convex
Banach space, then T ∈ B(X,Y) is an extreme contraction if ‖T‖ = 1 and MT

contains n linearly independent vectors. As an application of this result, we prove
that it is possible to characterize real Hilbert spaces among real Banach spaces,
in terms of extreme contractions on 2-dimensional subspaces of it.

2. Main results

As promised in the Introduction, we would like to begin this section with a com-
plete characterization of the norm attainment set of a bounded linear operator
between Hilbert spaces. We will see that preservation of Birkhoff–James orthog-
onality by a bounded linear operator at certain points plays a pivotal role in the
whole scheme of things. Let us also observe that the following result answers an
open question raised in [8] for the special case of Hilbert spaces.

Theorem 2.1. Let H1, H2 be Hilbert spaces and let T ∈ B(H1,H2). Given any
x ∈ SH1, x ∈ MT if and only if the following two conditions are satisfied:

(i) 〈x, y〉 = 0 implies that 〈Tx, Ty〉 = 0,
(ii) sup{‖Ty‖ : ‖y‖ = 1, 〈x, y〉 = 0} ≤ ‖Tx‖.

Proof. Let us first prove the necessary part of the theorem. Let x ∈ MT . It follows
from the definition of ‖T‖ that (ii) holds true. We also note that every Hilbert
space is smooth. Since Birkhoff–James orthogonality coincides with usual inner
product orthogonality in a Hilbert space, it follows from Theorem 2.2 of [8] that
(i) holds true. This completes the proof of the theorem in one direction.

Let us now prove the sufficient part. Let x ∈ SH1 be such that (i) and (ii)
are satisfied. Let z ∈ SH1 be chosen arbitrarily. It is easy to see that z can be
written as z = αx + h, where 〈x, h〉 = 0 and α is a scalar. If h = 0, then
1 = ‖z‖ = |α|. Therefore, ‖Tz‖ = |α|‖Tx‖ = ‖Tx‖. Let h 6= 0. We have,
1 = ‖z‖2 = 〈αx+ h, αx+ h〉 = |α|2 + ‖h‖2, since 〈x, h〉 = 0. Now, by virtue of (i)
and (ii), we have,

‖Tz‖2 = 〈αTx+ Th, αTx+ Th〉
= |α|2‖Tx‖2 + ‖Th‖2

= |α|2‖Tx‖2 + ‖h‖2
∥∥∥T( h

‖h‖

)∥∥∥2

≤ |α|2‖Tx‖2 + ‖h‖2‖Tx‖2

= ‖Tx‖2.

This proves that, given any z ∈ SH1 , ‖Tz‖ ≤ ‖Tx‖. In other words, it must be
true that x ∈ MT . This completes the proof of the sufficient part and establishes
the theorem. �
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While Theorem 2.1 completely characterizes MT for T ∈ L(H1,H2), it does
not say anything regarding a very significant aspect of operator-norm attain-
ment between Hilbert spaces. It follows from Theorem 2.2 of [10] that, for T ∈
B(H1,H2), MT is always the unit sphere of some subspace of H1. Indeed, this
observation is a characteristic property of Hilbert spaces and illustrates an impor-
tant operator-theoretic difference between the geometries of Hilbert spaces and
Banach spaces. It is therefore apparent that information regarding the dimension
of the subspace, whose unit sphere is MT , is extremely valuable in the study of
the possible norm attainment set of a bounded linear operator between Hilbert
spaces. Unfortunately, Theorem 2.1, at least in its explicit form, does not provide
us with any clue in this regard. We next obtain another complete characterization
of the norm attainment set of a bounded linear operator between Hilbert spaces,
that effectively addresses this question.

Theorem 2.2. Let H1, H2 be Hilbert spaces and let T ∈ B(H1,H2). Given any x ∈
SH1, x ∈ MT if and only if 〈Tx, Ty〉 = ‖T‖2〈x, y〉 for every y ∈ H1. Consequently,
the dimension of the subspace, whose unit sphere is MT , is equal to the geometric
multiplicity of the greatest eigen value (which is equal to ‖T‖2) of T ∗T .

Proof. The sufficient part of the theorem follows trivially, by choosing y = x.
Let us now prove the necessary part of the theorem. Suppose that x ∈ MT .
We claim that x ∈ MT ∗T . Indeed, 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 = ‖T‖2. We
also have, 〈T ∗Tx, x〉 ≤ ‖T ∗Tx‖‖x‖ ≤ ‖T ∗T‖ = ‖T‖2. Therefore, it follows that
‖T ∗Tx‖ = ‖T ∗T‖ (i.e., x ∈ MT ∗T ) and completes the proof of our claim. Since
we have, 〈T ∗Tx, x〉 = ‖T ∗Tx‖‖x‖, it follows from the equality condition of the
Cauchy–Schwarz inequality that T ∗Tx = λx, for some λ ≥ 0. We now observe
the chain of equalities |λ| = ‖λx‖ = ‖T ∗Tx‖ = ‖T ∗T‖ = ‖T‖2, to conclude that
T ∗Tx = ‖T‖2x. Therefore, given any y ∈ H1, we have

〈Tx, Ty〉 = 〈T ∗Tx, y〉 =
〈
‖T‖2x, y

〉
= ‖T‖2〈x, y〉.

This completes the proof of the necessary part.
The last part of the theorem follows directly from our observation that x ∈ MT

if and only if x is an eigen vector of the bounded linear operator T ∗T , corre-
sponding to its greatest eigen value ‖T‖2. This establishes the theorem in its
entirety. �

Remark 2.3. In view of Theorem 2.1 and Theorem 2.2, we would like to remark
that, for a bounded linear operator T between general Banach spaces X, Y, obtain-
ing a complete characterization of MT seems to be much more difficult. To the
best of our knowledge, this problem remains open.

Next, following the study done by Wójcik in [11] and [12], we observe that, if
H is a finite-dimensional Hilbert space, then given any T ∈ B(H), there exists an
orthonormal basis S of H such that T preserves orthogonality on S. The proof of
the following result was given by Wójcik in Theorem 2.1 of [11] and Theorem 2.2
of [12] in two different ways.
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Theorem 2.4. Let H be a finite-dimensional Hilbert space and let T ∈ B(H).
Then there exists an orthonormal basis S = {x1, x2, . . . , xn} of H such that T
preserves orthogonality on S (i.e., 〈Txi, Txj〉 = 0, whenever i 6= j).

Remark 2.5. Although T preserves orthogonality on the orthonormal basis S of
H, it is not necessarily true that T (S) is an orthonormal basis of H. Indeed, T (S)
may not be a basis of H at all. However, if T is invertible then T (S) is also an
orthogonal basis of H. If, in addition, T is an isometry then certainly T (S) is an
orthonormal basis of H.

Our next goal is to study extreme contractions on Banach spaces and Hilbert
spaces. Let us begin with an easy but useful proposition.

Proposition 2.6. Let X be an n-dimensional Banach space and let Y be any
Banach space. Let T ∈ B(X,Y) be such that ‖T‖ = 1, T attains norm at n
linearly independent unit vectors x1, x2, . . . , xn, and each Txi is an extreme point
of BY. Then T is an extreme contraction in B(X,Y).

Proof. If possible, suppose that T is not an extreme contraction. Then there
exists T1, T2 ∈ B(X,Y) such that T1, T2 6= T , ‖T1‖ = ‖T2‖ = 1, and T = tT1 +
(1 − t)T2, for some t ∈ (0, 1). Therefore, for each i ∈ {1, 2, . . . , n}, we have
Txi = tT1xi+(1− t)T2xi. We also note that T1xi, T2xi ∈ BY, as ‖T1‖ = ‖T2‖ = 1.
Since Txi is an extreme point of BY, it follows that T1xi = T2xi = Txi for each
i ∈ {1, 2, . . . , n}. However, this implies that T1, T2 agree with T on a basis of
X, and therefore, T1 = T2 = T . This contradicts our initial assumption that
T1, T2 6= T and completes the proof of the proposition. �

Since in a strictly convex space, every point of the unit sphere is an extreme
point of the unit ball, the proof of the following proposition is now immediate.

Proposition 2.7. Let X be an n-dimensional Banach space and let Y be any
strictly convex Banach space. Let T ∈ B(X,Y) be such that ‖T‖ = 1 and T
attains norm at n linearly independent unit vectors x1, x2, . . . , xn. Then T is an
extreme contraction in B(X,Y).

If H is a Hilbert space, then the extreme contractions in B(H) are precisely
isometries and coisometries. We invite the reader to look through [6] for the
complex case and [3] for the real case. Here we give an alternate elementary proof
of the same result, when the Hilbert space is finite-dimensional. We would like to
remark that our proof, besides being elementary, remains valid for both real and
complex cases. In order to prove the desired result, we require the following fact
from [8] (see [9] for the complex case).

Theorem 2.8. Let X, Y be smooth Banach spaces and let T ∈ B(X,Y). If x ∈
MT , then T preserves orthogonality at x (i.e., x ⊥B y if and only if Tx ⊥B Ty).

Now, we have the promised characterization of extreme contractions on finite-
dimensional Hilbert spaces, as follows.

Theorem 2.9. Let H be a finite-dimensional Hilbert space. Then T ∈ B(H) is
an extreme contraction if and only if T is an isometry.
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Proof. Let us first prove the easier sufficient part of the theorem. Let dimH = n.
Let T ∈ B(H) be an isometry. It is easy to see that ‖T‖ = 1 and that MT = SH.
Therefore, there exists n linearly independent unit vectors at which T attains
norm. Since every Hilbert space is strictly convex, it now follows from Proposi-
tion 2.7 that T is an extreme contraction in B(H). This completes the proof of
the sufficient part.

Let us now prove the comparatively trickier necessary part. Let T ∈ B(H) be
an extreme contraction. It is easy to observe that ‖T‖ = 1. Since H is finite-
dimensional, by the standard compactness argument, there exists a unit vector
x1 ∈ MT . Applying Theorem 2.4, let us construct an orthonormal basis S =
{x1, x2, . . . , xn} of H such that T preserves orthogonality on S (i.e., 〈Txi, Txj〉 =
0, whenever i 6= j). Note that without loss of generality, we may and do choose
that ‖Txi‖ ≥ ‖Txj‖ if i < j. If xi ∈ MT for each i ∈ {1, 2, . . . , n}, then applying
Theorem 2.2 of [10], it is easy to see that MT = SH. Since ‖T‖ = 1, it follows
that T is an isometry and we having nothing more to prove. Let us assume that
x1, . . . , xk ∈ MT and xk+1, . . . , xn /∈ MT . Let us now consider the following two
cases and reach a contradiction in each of the cases to complete the proof of the
theorem.

Case I : ‖Txk+1‖ > 0. Let us choose ε > 0 such that (1 + ε)2‖Txk+1‖2 < 1. We
would like to remark that since xk+1 /∈ MT , such a choice of ε is always possible.
Define a linear operator T1 ∈ B(H) in the following way:

T1xi = Txi for each i ∈ {1, . . . , k},
T1xk+i = (1 + ε)Txk+i for each i ∈ {1, . . . , n− k}.

Note that T1 6= T . We claim that ‖T1‖ = 1. Let z =
∑n

i=1 αixi ∈ SH, for some
scalars αi. We have,

∑n
i=1 |αi|2 = 1.

If αk+1 = · · · = αn = 0 then ‖T1z‖ = ‖Tz‖. On the other hand, if α1 = · · · =
αk = 0, then T1z =

∑n−k
i=1 αk+i(1 + ε)Txk+i. Therefore,

‖T1z‖2 =
n−k∑
i=1

(1 + ε)2|αk+i|2‖Txk+i‖2

≤
n−k∑
i=1

(1 + ε)2|αk+i|2‖Txk+1‖2

= (1 + ε)2‖Txk+1‖2 < ‖T‖2.

Let us assume that at least one of α1, . . . , αk (say α1) is nonzero and at least
one of αk+1, . . . , αn (say αk+1) is nonzero. Choosing w = −αk+1x1 + α1xk+1,
it is easy to see that 〈z, w〉 = 0. However, an easy computation reveals that
〈T1z, T1w〉 = −α1αk+1(1 − (1 + ε)2‖Txk+1‖2) 6= 0. This proves that T1 does not
preserve orthogonality at such a z, and therefore T1 cannot attain norm at such a
z. Since T1 must attain norm at some point of SH and ‖T1x1‖ = ‖Tx1‖ = ‖T‖ = 1,
we conclude that ‖T1‖ = 1.
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Let us now define another linear operator T2 ∈ B(H) in the following way:

T2xi = Txi for each i ∈ {1, . . . , k},
T2xk+i = (1− ε)Txk+i for each i ∈ {1, . . . , n− k}.

Clearly, T2 6= T . As in the case of T1, it is easy to prove that ‖T2‖ = 1. Therefore,
we have proved the following facts:

(i) ‖T1‖ = ‖T2‖ = ‖T‖ = 1,
(ii) T = 1

2
T1 +

1
2
T1,

(iii) T1, T2 6= T . However, this contradicts our initial assumption that T ∈
B(H) is an extreme contraction.

Case II : ‖Txk+1‖ = 0. It follows that ‖Txk+i‖ = 0 for each i ∈ {1, . . . , n− k}.
We observe that for each i ∈ {1, . . . , k}, (Txi)

⊥ = {y ∈ H : 〈Txi, y〉 = 0} is a

subspace of codimension 1 in H. Therefore, it is easy to deduce that
⋂k

i=1(Txi)
⊥ 6=

∅. Choose a fixed vector w ∈
⋂k

i=1(Txi)
⊥∩SH. Define a linear operator T1 ∈ B(H)

in the following way:

T1xi = Txi for each i ∈ {1, . . . , n} \ {k + 1}, T1xk+1 =
1

2
w.

Clearly, T1 6= T . We claim that ‖T1‖ = 1. Let z =
∑n

i=1 αixi ∈ SH, for some

scalars αi. We have
∑n

i=1 |αi|2 = 1. We also have ‖T1z‖2 =
∑k

i=1 |αi|2+ 1
4
|αk+1|2 ≤∑n

i=1 |αi|2 = 1. Since ‖T1x1‖ = ‖Tx1‖ = 1, we must have ‖T1‖ = 1. Define
another linear operator T2 ∈ B(H) in the following way:

T2xi = Txi for each i ∈ {1, . . . , n} \ {k + 1}, T2xk+1 = −1

2
w.

As in the case of T1, it is easy to observe that T2 6= T and that ‖T2‖ = 1.
Therefore, we have proved the following facts:

(i) ‖T1‖ = ‖T2‖ = ‖T‖ = 1,
(ii) T = 1

2
T1 +

1
2
T1,

(iii) T1, T2 6= T . However, this contradicts our initial assumption that T ∈
B(H) is an extreme contraction. This establishes the theorem. �

As an application of the results we obtained, we now obtain a characterization
of real Hilbert spaces among all real Banach spaces in terms of extreme con-
tractions. First, let us prove the following lemma in order to obtain the desired
characterization,

Lemma 2.10. Let X be a 2-dimensional real Banach space which is not strictly
convex. Then there exists a linear operator T ∈ B(X) such that T is an extreme
contraction in B(X) but T is not an isometry.

Proof. Since X is not strictly convex, the unit sphere SX contains a closed straight
line segment I. We note that I can be written as I = {x + λy : λ1 ≤ λ ≤ λ2},
where x is a fixed interior point of I, y is a fixed point on SX such that the
straight line joining θ and y is parallel to I and λ1, λ2 are two fixed real numbers,
one positive and the other negative. Moreover, assume that the segment I has
maximal length (i.e., x + λ1y := v1 and x + λ2y := v2 are extreme points of
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BX). From the description of y, it is quite clear that x ⊥B y. Let w be any fixed
extreme point of BX. Let us define a linear operator T ∈ B(X) in the following
way: Tx = w, Ty = 0.

We claim that ‖T‖ = 1. Clearly, ‖T‖ ≥ ‖Tx‖ = ‖w‖ = 1. On the other hand,
let z = αx + βy ∈ SX, where α, β are scalars. We have 1 = ‖αx + βy‖ ≥ |α|,
since x ⊥B y. Therefore, ‖Tz‖ = ‖αw‖ = |α| ≤ 1. This proves that ‖T‖ = 1. It is
now easy to observe that v1, v2 ∈ MT . We also note that v1, v2 must be linearly
independent and Tv1 = Tv2 = w. As w is an extreme point of BX, applying
Proposition 2.6 we obtain that T is an extreme contraction in B(X). However, T
cannot be an isometry, since ‖y‖ = 1 > 0 = ‖Ty‖. This completes the proof of
the lemma. �

Let us now proceed to establish the promised characterization of real Hilbert
spaces.

Theorem 2.11. A real Banach space X is a Hilbert space if and only if for every
2-dimensional subspace Y of X, isometries are the only extreme contractions in
B(Y).

Proof. Let us first prove the necessary part of the theorem. If X is a Hilbert space
then every 2-dimensional subspace Y of X is also a Hilbert space. Therefore, it
follows from Theorem 2.9 that isometries are the only extreme contractions in
B(Y).

Let us now prove the sufficient part. If possible, suppose that X is not a Hilbert
space. Then there exists a 2-dimensional subspace Y of X such that Y is not a
Hilbert space. Let us first assume that Y is strictly convex. As Y is not a Hilbert
space, it follows from Theorem 2.2 of [10] that there exists a linear operator
T ∈ B(Y) and two unit vectors e1, e2 ∈ SY such that T attains norm at e1, e2 ∈ SY
but T does not attain norm at every point of span{e1, e2} ∩ SY. It is immediate
that T must be nonzero. We also note that MT = M T

‖T‖
. Therefore, without loss

of generality, we may and do assume that ‖T‖ = 1. Since T does not attain
norm at every point of span{e1, e2} ∩ SY, it is easy to deduce that e1, e2 must be
linearly independent and that T cannot be an isometry. Since Y is strictly convex
and e1, e2 are linearly independent, it follows from Proposition 2.7 that T is an
extreme contraction in B(Y). However, this contradicts our hypothesis as T is
not an isometry.

Next, let us assume that Y is not strictly convex. Lemma 2.10 ensures that
there exists a linear operator T ∈ B(Y) such that T is an extreme contraction in
B(Y) but T is not an isometry. This, once again, is a contradiction to our initial
hypothesis. This establishes the theorem completely. �

As a concluding remark, we would like to add that while extreme contractions
between Hilbert spaces are well understood, the scenario is far from complete
in the more general setting of Banach spaces. In this paper, we have tried to
illustrate the pivotal role played by the norm attainment set of a bounded linear
operator in studying extreme contractions between Banach spaces. It is expected
that the study will be further continued, in order to have a better understanding
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of extreme contractions and the norm attainment set of a bounded linear operator
in the context of general Banach spaces.
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11. P. Wójcik, On certain basis connected with operator and its applications, J. Math.
Anal. Appl. 423 (2015), no. 2, 1320–1329. Zbl 1320.47002. MR3278201. DOI 10.1016/
j.jmaa.2014.10.075. 136, 138
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