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Abstract. In this article, given some positive Borel measure µ, we define two
integration operators to be

Iµ(f)(z) =

∫
D

f(w)K(z, w)e−2ϕ(w) dµ(w)

and

Jµ(f)(z) =

∫
D

∣∣f(w)K(z, w)
∣∣e−2ϕ(w) dµ(w).

We characterize the boundedness and compactness of these operators from the
Bergman space Ap

ϕ to Lq
ϕ for 1 < p, q < ∞, where ϕ belongs to a large class W0,

which covers those defined by Borichev, Dhuez, and Kellay in 2007. We also
completely describe those µ’s such that the embedding operator is bounded or
compact from Ap

ϕ to Lq
ϕ(dµ), 0 < p, q < ∞.

1. Introduction

Let D be the unit disk in the complex plane, and let dA be the normalized area
measure on D. Denote by C0 the set of all continuous functions ρ on D satisfying
lim|z|→1 ρ(z) = 0. Suppose that ρ is a real-valued function on D. If ρ ∈ C0 with

‖ρ‖L = sup
z,w∈D,z 6=w

|ρ(z)− ρ(w)|
|z − w|

< ∞,
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then we say that ρ belongs to the class L. Let L0 consist of those ρ ∈ L with the
property that for each ε > 0 there is a compact subset E ⊂ D with∣∣ρ(z)− ρ(w)

∣∣ ≤ ε|z − w|

whenever z, w ∈ D \ E. The class W0 is the family of all real-valued functions
ϕ ∈ C2(D) such that

∆ϕ > 0 and ∃ρ ∈ L0 such that
1√
∆ϕ

' ρ.

Here and throughout, A ' B means there exists some constant C > 0, indepen-
dent of the variables being considered, such that C−1A ≤ B ≤ CA.

Two classes of weight functions closely related to ours merit discussion. Pre-
cisely, Olĕınik [11] and Olĕınik and Perel’man [12] considered ϕ ∈ C2(D) such
that ∆ϕ > 0 and ρ = 1√

∆ϕ
, where ρ satisfies that there are constants a, C1, C2 > 0

and C3 ∈ (0, 1) such that∣∣ρ(z)− ρ(w)
∣∣ ≤ C1|z − w| for all z, w ∈ D,

ρ(z) ≤ C2

(
1− |z|

)
for all z, w ∈ D,

and

ρ(w) ≤ ρ(z) + C3|z − w| for z, w ∈ D.

For such ϕ, we denote ϕ ∈ OP for short. As discussed in [8, Section 2],

W0 \ OP 6= ∅ and OP \W0 6= ∅.

In 2007, Borichev, Dhuez, and Kellay [4] studied the radial weight ϕ ∈ C2(D)
satisfying

∆ϕ ≥ 1, ρ(r) ↘ 0 as r → 1, lim
r→1

ρ′(r) = 0.

Furthermore, either

ρ(r)(1− r)−C increases for some constant C and r close to 1,

or

lim
r→1

ρ′(r) log
1

ρ(r)
= 0.

Using BDK to denote the class of the weights satisfying Borichev, Dhuez, and
Kellay’s conditions, as mentioned in [8, Section 2], we have

BDK ⊂ W0 and W0 \ BDK 6= ∅.

Given ϕ ∈ W0 and 0 < p < ∞, the space Lp
ϕ consists of all Lebesgue measurable

functions f on D satisfying

‖f‖p,ϕ =
(∫

D

∣∣f(z)e−ϕ(z)
∣∣p dA(z))1/p

< ∞.

LetH(D) be the set of holomorphic functions onD. The Bergman space is defined
by

Ap
ϕ = Lp

ϕ ∩H(D).
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For ϕ ∈ OP , the Bergman space Ap
ϕ has been studied in [2], [3], [9], [11], and

[12]. The Bergman space Ap
ϕ with ϕ ∈ BDK has been considered by many authors

(see, e.g., [1], [4]–[6], [13], [14]).
For ϕ ∈ W0, denote by K(·, ·) the Bergman kernel for A2

ϕ. As mentioned in [8,
Corollary 4.2],

K = span
{
K(·, z) : z ∈ D

}
is dense in Ap

ϕ under the Ap
ϕ-norm for all p ≥ 1. The orthogonal projection

P : L2
ϕ → A2

ϕ is defined by

Pf(z) =

∫
D

f(w)K(z, w)e−2ϕ(w) dA(w), z ∈ D.

Suppose that µ is a positive Borel measure on D (denoted as µ ≥ 0) satisfying
the condition ∫

D

∣∣K(z, w)
∣∣2e−2ϕ(w) dµ(w) < ∞ (1.1)

for all z ∈ D. Then the integral operators on Ap
ϕ (p ≥ 1) can be densely defined

to be

Iµ(f)(z) =

∫
D

f(w)K(z, w)e−2ϕ(w) dµ(w) (1.2)

and

Jµ(f)(z) =

∫
D

∣∣f(w)K(z, w)
∣∣e−2ϕ(w) dµ(w), (1.3)

since Iµ and Jµ are well defined on K, which follows from (1.1) and the Cauchy–
Schwarz inequality. If dµ = dA, then the operator Iµ is just the Bergman pro-
jection which has been studied on Lp

ϕ for some restricted ϕ and p > 1 (see, e.g.,
[2], [5], [10], [16]). In 2016, Peláez and Rättyä [15] considered the boundedness
of these two operators for dµ = dA on Lp

φ for some different weights ϕ and φ for
p > 1.

The purpose of this article is to study the boundedness and compactness of two
types of integration operators from Ap

ϕ to Lq
ϕ for 1 < p, q < ∞. In Section 2, we

completely describe those positive Borel measures µ on D such that the embed-
ding operator i is bounded (or compact) from Ap

ϕ to Lq
ϕ(dµ), 0 < p, q < ∞.

Section 3 is devoted to a discussion on the boundedness and compactness of
these integral operators in terms of Carleson measures. We can obtain the main
result as follows.

Theorem 1.1. Let 1 < p, q < ∞, let ϕ ∈ W0, and let µ ≥ 0 with hypothesis
(1.1). Set 1/s = 1− 1/q + 1/p. Then the following statements are equivalent:

(A) Iµ : Ap
ϕ → Aq

ϕ is bounded (or compact),
(B) Jµ : Ap

ϕ → Lq
ϕ is bounded (or compact),

(C) µ is an s-Carleson measure (or vanishing s-Carleson measure).

In what follows, we always assume that ϕ ∈ W0. We use C, C1, C2 and c1, c2
to denote positive constants whose value may change from line to line, but do
not depend on the variables being considered.
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2. Carleson measures

In this section, we give the characterizations on Carleson measures for Bergman
spaces. We begin with some notation and preliminaries. For z ∈ D and r > 0, set

D(z, r) =
{
w ∈ D : |w − z| < r

}
and Dr(z) = D

(
z, rρ(z)

)
.

Regarding this disk, we have the following lemma which can be found in [8,
Lemmas 3.1, 3.2].

Lemma 2.1. Let ρ ∈ L be positive. Then there exists α > 0 with the following
properties.

(1) There exist constants C1 and C2 such that

C1ρ(w) ≤ ρ(z) ≤ C2ρ(w)

for z ∈ D and w ∈ Dα(z).
(2) There exists a constant B > 0 such that

Dr(z) ⊆ DBr(w), Dr(w) ⊆ DBr(z) (2.1)

for w ∈ Dr(z) and 0 < r ≤ α.

Throughout this article, we always assume α to be chosen as in Lemma 2.1.
Then there is some s > 0 such that for 0 < r ≤ α, there exists a sequence
{zn}n≥1 ⊂ D satisfying

(1) D =
⋃

n≥1D
r(zn),

(2) Dsr(zn) ∩Dsr(zm) = ∅ for m 6= n.

With these two hypotheses, it is easy to check that

(3) there exists a positive integer N depending only on B, r such that

1 ≤
∞∑
k=1

χDBr(ak)(z) ≤ N for z ∈ D,

where χE is the characteristic function of set E. A sequence {zn} satisfying (1)–(3)
will be called a (ρ, r)-lattice. The (ρ, r)-lattice exists (see [8, Lemma 3.2] for
details).

Let ϕ ∈ W0 with ρ ' 1√
∆ϕ

. The distance dρ between z and w is defined by

dρ(z, w) = inf
γ

∫ 1

0

∣∣γ′(t)
∣∣ dt

ρ(γ(t))
,

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → D with
γ(0) = z and γ(1) = w. DenoteKz(·) = K(·, z), and denote by kp,z the normalized
Bergman kernel for Ap

ϕ; that is, kp,z = Kz/‖Kz‖p,ϕ. We have the following lemma.

Lemma 2.2. The Bergman kernel for Ap
ϕ satisfies the following properties.

(1) There exist positive constants σ,C such that∣∣K(z, w)
∣∣ ≤ C

eϕ(z)+ϕ(w)

ρ(z)ρ(w)
e−σdρ(z,w) for z, w ∈ D. (2.2)
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(2) There exist some constants C > 0 such that∣∣K(z, w)
∣∣ ≥ C

eϕ(z)eϕ(w)

ρ(z)ρ(w)
for dρ(z, w) ≤ α. (2.3)

(3) For 0 < p < ∞, there is

‖Kz‖p,ϕ ' eϕ(z)ρ(z)
2
p
−2, z ∈ D. (2.4)

(4) For 0 < p < ∞, kp,z → 0 uniformly on any compact subsets of D as
|z| → 1.

Proof. The estimates of (2.2), (2.3), and (2.4) can be found in [8, Section 3].
Since ϕ ∈ W0, there exists r ∈ (0, 1) such that |ρ(z) − ρ(w)| ≤ ε|z − w| for
z, w ∈ D \D(0, r). Letting w → z

|z| , by ρ ∈ C0 we have

ρ(z) ≤ ε
(
1− |z|

)
.

Fixing M > 0 with 1 +M − 2/p > 0, (2.4) and Theorem 3.3 in [8, Theorem 3.3]
show that ∣∣kp,z(w)∣∣ ≤ Ceϕ(w)ρ(w)−1ρ(z)1−2/p

(min{ρ(z), ρ(w)}
|z − w|

)M

.

If w is in any compact subset of D and |z| tends to 1, there is some C > 0
independent of z such that∣∣kp,z(w)∣∣ ≤ Cρ(z)1+M−2/p ≤ C

(
1− |z|

)1+M−2/p → 0.

The proof is completed. �

Suppose that µ ≥ 0. Given any t > 0, the t-Berezin transform of µ is defined
to be

µ̃t(z) =

∫
D

∣∣kt,z(w)∣∣te−tϕ(w) dµ(w), z ∈ D.

Note that µ̃2 is just the classical Berezin transform. For 0 < r ≤ α, the average
of µ at the point z ∈ D is defined as

µ̂r(z) = µ
(
Dr(z)

)
/A

(
Dr(z)

)
.

Lemma 2.3. Let 0 < p < ∞. There exist positive constants α and C such that,
for 0 < r ≤ α and f ∈ H(D),

(1) ∣∣f(z)e−ϕ(z)
∣∣p ≤ C

A(Dr(z))

∫
Dr(z)

∣∣f(w)e−ϕ(w)
∣∣p dA(w), (2.5)

(2) ∫
D

∣∣f(z)e−ϕ(z)
∣∣p dµ(z) ≤ C

∫
D

∣∣f(z)e−ϕ(z)
∣∣pµ̂r(z) dA(z) (2.6)

for µ ≥ 0.
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Proof. Estimate (2.5) can be found in [8, Lemma 3.3]. By (2.5) and (2.1), there
is B > 0 such that∫

D

∣∣f(z)e−ϕ(z)
∣∣p dµ(z)

≤ C

∫
D

1

A(DBr(z))

∫
DBr(z)

∣∣f(w)e−ϕ(w)
∣∣p dA(w) dµ(z)

'
∫
D

∣∣f(w)e−ϕ(w)
∣∣p ∫D χDr(w)(z) dµ(z)

A(Dr(w))
dA(w)

=

∫
D

∣∣f(w)e−ϕ(w)
∣∣pµ̂r(w) dA(w).

This completes the proof. �

Denote by Lp the usual pth-Lebesgue space, that is,

Lp =
{
f is Lebesgue measurable on D : ‖f‖Lp =

(∫
D

∣∣f(z)∣∣p dA(z))1/p

< ∞
}
.

Define the operator T to be

Tf(z) = e−ϕ(z)

∫
D

∣∣K(z, w)
∣∣f(w)e−ϕ(w) dA(w), z ∈ D. (2.7)

We can get the boundedness of T on Lp as follows.

Lemma 2.4. Suppose that 1 < p < ∞. Then the operator T is bounded on Lp.

Proof. It is trivial that T is well defined on Lp by Hölder’s inequality and (2.4).
For f ∈ Lp, there holds

‖Tf‖pLp ≤
∫
D

e−pϕ(z)
(∫

D

∣∣K(z, w)f(w)
∣∣e−ϕ(w) dA(w)

)p

dA(z)

≤
∫
D

∫
D

∣∣f(w)∣∣p∣∣K(z, w)
∣∣e−ϕ(w) dA(w)‖Kz‖p−1

1,ϕ e−pϕ(z) dA(z)

≤ C

∫
D

e−ϕ(z)

∫
D

∣∣f(w)∣∣p∣∣K(z, w)
∣∣e−ϕ(w) dA(w) dA(z)

≤ C

∫
D

∣∣f(w)∣∣pe−ϕ(w) dA(w)

∫
D

∣∣K(z, w)
∣∣e−ϕ(z) dA(z)

≤ C‖f‖pLp ,

which follows from (2.4), Hölder’s inequality, and Fubini’s theorem. The proof is
completed. �

Lemma 2.5. Let {ak}k be a (ρ, r)-lattice, 0 < r ≤ α, and let 0 < p < ∞. For
{λk}k ∈ lp, set

f(z) =
∞∑
k=1

λkkak(z)ρ(ak)
1− 2

p , z ∈ D.

Then f ∈ Ap
ϕ and ‖f‖p,ϕ ≤ C‖{λk}k‖lp.
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Proof. From (2.4), there holds

‖f‖pp,ϕ ≤
∞∑
k=1

|λk|pρ(ak)p−2‖kak‖pp,ϕ '
∞∑
k=1

|λk|p

if 0 < p ≤ 1. For 1 < p < ∞, define F (z) =
∑∞

k=1 |λk|ρ(ak)−
2
pχDr(ak)(z). It is

clear that

‖F‖pLp ≤
∞∑
k=1

|λk|p < ∞.

With (2.5), we get

∣∣f(z)∣∣e−ϕ(z) ≤ Ce−ϕ(z)

∞∑
k=1

|λk|ρ(ak)2−
2
p

∣∣K(z, ak)
∣∣e−ϕ(ak) ≤ CTF (z),

where T is defined as in (2.7). By Lemma 2.4, we see that

‖f‖p,ϕ ≤ C‖TF‖Lp ≤ C‖F‖Lp ≤ C
∥∥{λk}k

∥∥
lp
.

This completes the proof. �

Carleson measures have been extensively applied to various problems in holo-
morphic function spaces. In the setting of classical Bergman spaces, Carleson
measures have been well studied (see, e.g., [17], [18]). As in [7], we will introduce
Carleson measures for the weighted Bergman space Ap

ϕ.
Let 0 < p, q < ∞, and let µ ≥ 0. We call µ a (p, q)-Carleson measure if the

embedding operator i : Ap
ϕ → Lq

ϕ(dµ) is bounded, where Lq
ϕ(dµ) consists of all

µ-measurable functions f on D for which

‖f‖q,ϕ,µ =
(∫

D

∣∣f(z)e−ϕ(z)
∣∣q dµ(z))1/q

< ∞.

Also, we call µ a vanishing (p, q)-Carleson measure if

lim
j→∞

∫
D

∣∣fj(z)e−ϕ(z)
∣∣q dµ(z) = 0

whenever {fj}∞j=1 is a bounded sequence in Ap
ϕ that converges to 0 uniformly on

any compact subset of D as j → ∞.
Similar to the proof in [7, Section 3], we can characterize (vanishing) (p, q)-Carleson

measures for all possible 0 < p, q < ∞ in terms of Berezin transforms and average
functions, which follows from Lemmas 2.1–2.5.

Theorem 2.6. Let 0 < p ≤ q < ∞, and let µ ≥ 0. Set s = p/q. Then the
following statements are equivalent:

(A) µ is a (p, q)-Carleson measure,
(B) µ̃tρ

2(1−1/s) is bounded on D for some (or any) t > 0,
(C) µ̂δρ

2(1−1/s) is bounded on D for some (or any) δ ∈ (0, α],
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(D) {µ̂r(ak)ρ(ak)
2(1−1/s)}∞k=1 is bounded for some (or any) (ρ, r)-lattice

{ak}∞k=1, r ∈ (0, α]. Furthermore,

‖i‖q
Ap

ϕ→Lq
ϕ(dµ)

' ‖µ̃tρ
2(1−1/s)‖L∞ ' ‖µ̂δρ

2(1−1/s)‖L∞

'
∥∥{µ̂r(ak)ρ(ak)

2(1−1/s)
}
k

∥∥
l∞
.

Theorem 2.7. Let 0 < p ≤ q < ∞, and let µ ≥ 0. Set s = p/q. Then the
following statements are equivalent:

(A) µ is a vanishing (p, q)-Carleson measure,
(B) µ̃t(z)ρ(z)

2(1−1/s) → 0 as z → ∞ for some (or any) t > 0,
(C) µ̂δ(z)ρ(z)

2(1−1/s) → 0 as z → ∞ for some (or any) δ ∈ (0, α],
(D) µ̂r(ak)ρ(ak)

2(1−1/s) → 0 as k → ∞ for some (or any) (ρ, r)-lattice {ak}∞k=1,
r ∈ (0, α].

Theorem 2.8. Let 0 < q < p < ∞, and let µ ≥ 0. Set s = p/q, and let s′ denote
the conjugate index of s. Then the following statements are equivalent:

(A) µ is a (p, q)-Carleson measure,
(B) µ is a vanishing (p, q)-Carleson measure,
(C) µ̃t ∈ Ls′ for some (or any) t > 0,
(D) µ̂δ ∈ Ls′ for some (or any) δ ∈ (0, α],
(E) {µ̂r(ak)ρ(ak)

2/s′}∞k=1 ∈ ls
′
for some (or any) (ρ, r)-lattice {ak}∞k=1, r ∈

(0, α] and furthermore,

‖i‖q
Ap

ϕ→Lq
ϕ(dµ)

' ‖µ̃t‖Ls′ ' ‖µ̂δ‖Ls′ '
∥∥{µ̂r(ak)ρ(ak)

2/s′
}
k

∥∥
ls′
.

Remark 2.9. For ϕ ∈ BDK, Pau and Peláez [13] considered the embedding oper-
ator from Ap

ϕ to Lq
ϕ(dµ). The theorems above generalize their results. By Theo-

rems 2.6, 2.7, and 2.8, we show that (vanishing) (p, q)-Carleson measures depend
only on the value of p/q. For simplicity, we call them (vanishing) p/q-Carleson
measures instead of (vanishing) (p, q)-Carleson measures, and we denote

‖µ‖p/q = ‖i‖
A

p/q
ϕ →L1

ϕ(dµ)
.

3. Integration operators

Recall that K(·, ·) is the Bergman kernel for A2
ϕ. Given µ ≥ 0 with hypothesis

(1.1), the integral operators Iµ and Jµ as in (1.2) and (1.3) can be densely defined
on Ap

ϕ for p > 1. In this section, we focus on discussing the boundedness and
compactness of these two operators from Ap

ϕ to Lp
ϕ for all 1 < p, q < ∞ in terms

of Carleson measures, and we obtain Theorem 1.1 as our main result. To prove
it, we will divide Theorem 1.1 into two separate theorems.

In the case of p > q, we need Khintchine’s inequality. Let γk be the Rademacher
function defined by

γ0(t) =

{
1 if 0 ≤ t− [t] < 1

2
,

−1 if 1
2
≤ t− [t] < 1
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and γk(t) = γ0(2
kt) for k = 1, 2, . . . , where [t] denotes the largest integer less

than or equal to t. For 0 < p < ∞, there exist two positive constants C1 and C2

depending only on p such that

C1

( m∑
k=1

|bk|2
)p/2

≤
∫ 1

0

∣∣∣ m∑
k=1

bkγk(t)
∣∣∣p dt ≤ C2

( m∑
k=1

|bk|2
)p/2

for all m ≥ 1 and complex numbers b1, b2, . . . , bm.

Theorem 3.1. Let 1 < p, q < ∞, and let µ ≥ 0 with hypothesis (1.1). Set
1/s = 1− 1/q + 1/p. Then the following statements are equivalent:

(A) Iµ : Ap
ϕ → Aq

ϕ is bounded;
(B) Jµ : Ap

ϕ → Lq
ϕ is bounded;

(C) µ is an s-Carleson measure and furthermore,

‖Iµ‖Ap
ϕ→Aq

ϕ
' ‖Jµ‖Ap

ϕ→Lq
ϕ
' ‖µ‖s. (3.1)

Proof. The implication (B) ⇒ (A) is trivial and

‖Iµ‖Ap
ϕ→Aq

ϕ
≤ ‖Jµ‖Ap

ϕ→Lq
ϕ
. (3.2)

We only need to show that (A) ⇒ (C) and (C) ⇒ (B).
First, we deal with the case p ≤ q. To prove (A) ⇒ (C), we assume that

Iµ : Ap
ϕ → Aq

ϕ is bounded. For any z ∈ D, by (2.5) and (2.4) we have

µ̃2(z)ρ(z)
2(p−q)/pq ≤ Cρ(z)2/q

∣∣Iµkp,z(z)∣∣e−ϕ(z)

≤ C
(∫

Dα(z)

∣∣Iµkp,z(w)e−ϕ(w)
∣∣q dA(w))1/q

≤ C‖Iµ‖Ap
ϕ→Aq

ϕ
‖kp,z‖p,ϕ.

This shows that

sup
z∈D

µ̃2(z)ρ(z)
2(p−q)/pq ≤ C‖Iµ‖Ap

ϕ→Aq
ϕ
. (3.3)

Note that s ≤ 1 and that 1− 1/s = 1/q− 1/p = (p− q)/pq. By Theorem 2.6 and
(3.3), µ is an s-Carleson measure and

‖µ‖s ≤ C‖Iµ‖Ap
ϕ→Aq

ϕ
. (3.4)

To show (C) ⇒ (B), we suppose that µ is an s-Carleson measure. Since s ≤ 1,
Theorem 2.6 tells us that µ̂δρ

2(p−q)/pq is bounded on D. We claim that there is
some positive constant C such that∥∥Jµ(f)∥∥q

q,ϕ
≤ C

∫
D

∣∣f(w)∣∣qe−qϕ(w)µ̂δ(w)
q dA(w) (3.5)

for f ∈ Ap
ϕ. In fact, using (2.5), Hölder’s inequality, and (2.4), we obtain∣∣Jµf(z)∣∣qe−qϕ(z)

≤ C
(∫

D

µ̂δ(w)
∣∣f(w)∣∣∣∣K(w, z)

∣∣e−2ϕ(w)e−ϕ(z) dA(w)
)q
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≤ C

∫
D

∣∣f(w)∣∣qe−qϕ(w)µ̂δ(w)
q
∣∣K(w, z)e−ϕ(w)e−ϕ(z)

∣∣ dA(w)
×

(∫
D

∣∣K(w, z)e−ϕ(w)e−ϕ(z)
∣∣ dA(w))q/q′

≤ C

∫
D

∣∣f(w)∣∣qe−qϕ(w)µ̂δ(w)
q
∣∣K(w, z)e−ϕ(w)e−ϕ(z)

∣∣ dA(w).
Integrating both sides above and applying Fubini’s theorem and (2.4), we get
(3.5). Since p ≤ q, (3.5) and (2.5) imply that

‖Jµf‖qq,ϕ ≤ C

∫
D

∣∣f(w)∣∣pe−pϕ(w)µ̂δ(w)
q
(
ρ(w)−2/p‖f‖p,ϕ

)q−p
dA(w)

≤ C‖µ̂δρ
2(p−q)/pq‖qL∞‖f‖qp,ϕ

' ‖µ‖qs‖f‖qp,ϕ.

Therefore, Jµ is bounded from Ap
ϕ to Lq

ϕ and

‖Jµ‖Ap
ϕ→Lq

ϕ
≤ C‖µ‖s. (3.6)

For p > q, suppose that Iµ : Ap
ϕ → Aq

ϕ is bounded. For any (ρ, r)-lattice {ak}k
and sequence {λk}k ∈ lp, set f as

ft(z) =
∞∑
k=1

λkγk(t)kak(z)ρ(ak)
1−2/p,

where 0 < r ≤ α. Lemma 2.5 shows that f ∈ Ap
ϕ with ‖ft‖p,ϕ ≤ C‖{λk}k‖lp . The

boundedness of Iµ gives∥∥Iµ(ft)∥∥q

q,ϕ
≤ ‖Iµ‖qAp

ϕ→Aq
ϕ
‖ft‖qp,ϕ ≤ C‖Iµ‖qAp

ϕ→Aq
ϕ

∥∥{λk}k
∥∥q

lp
.

Note that Iµ(kak) ∈ H(D). Fubini’s theorem, Khintchine’s inequality, and (2.5)
yield ∫ 1

0

∥∥Iµ(ft)∥∥q

q,ϕ
dt

=

∫ 1

0

∫
D

∣∣∣ ∞∑
k=1

λkγk(t)ρ(ak)
1−2/pIµ(kak)(z)

∣∣∣qe−qϕ(z) dA(z) dt

=

∫
D

(∫ 1

0

∣∣∣ ∞∑
k=1

λkγk(t)ρ(ak)
1−2/pIµ(kak)(z)

∣∣∣q dt)e−qϕ(z) dA(z)

≥ C

∫
D

( ∞∑
k=1

|λk|2ρ(ak)2−4/p
∣∣Iµ(kak)(z)∣∣2)q/2

e−qϕ(z) dA(z)

= C

∞∑
j=1

∫
Dr(aj)

( ∞∑
k=1

|λk|2ρ(ak)2−4/p
∣∣Iµ(kak)(z)∣∣2)q/2

e−qϕ(z) dA(z)

≥ C
∞∑
j=1

|λj|qρ(aj)2+q−2q/p
∣∣Iµ(kaj)(aj)∣∣qe−qϕ(aj)
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≥ C
∞∑
j=1

|λj|qρ(aj)2+2q−2q/p
∣∣∣∫

Dr(aj)

∣∣K(w, aj)
∣∣2e−2ϕ(w) dµ(w)

∣∣∣qe−2qϕ(aj)

≥ C

∞∑
j=1

|λj|qµ̂r(aj)
qρ(aj)

2−2q/p,

where the last inequality follows from (2.3). Take βj = |λj|q. Then {βj}∞j=1 ∈ lp/q

with p/q > 1, and

∞∑
j=1

βjµ̂r(aj)
qρ(aj)

2−2q/p ≤ C‖Iµ‖qAp
ϕ→Aq

ϕ

∥∥{λj}j
∥∥q

lp

= C‖Iµ‖qAp
ϕ→Aq

ϕ

∥∥{βj}j
∥∥
lp/q

.

The duality argument shows that {µ̂r(aj)
qρ(aj)

2−2q/p}∞j=1 ∈ lp/p−q, and∥∥{µ̂r(aj)
qρ(aj)

2−2q/p
}
j

∥∥
lp/(p−q) ≤ C‖Iµ‖qAp

ϕ→Aq
ϕ
.

This gives ∥∥{µ̂r(aj)ρ(aj)
2(p−q)/pq

}
j

∥∥
lpq/(p−q) ≤ C‖Iµ‖Ap

ϕ→Aq
ϕ
. (3.7)

Note that the conjugate index of pq/(p− q) is s. From Theorem 2.8 and (3.7), we
know that µ is an s-Carleson measure and that (3.4) is true.

Assuming that µ is an s-Carleson measure, Theorem 2.8 gives µ̂δ ∈ Lpq/(p−q)

for some δ ∈ (0, α]. Since p/q > 1, (3.5) and the Hölder’s inequality imply that

‖Jµf‖qq,ϕ ≤ C
{∫

D

(∣∣f(w)∣∣qe−qϕ(w)
)p/q

dA(w)
}q/p{∫

D

µ̂δ(w)
pq/(p−q) dA(w)

}(p−q)/p

≤ C‖µ̂δ‖qLpq/(p−q)‖f‖qp,ϕ
for f ∈ Ap

ϕ. Hence, Jµ is bounded from Ap
ϕ to Lq

ϕ and (3.6) holds, which tells us
that (C) ⇒ (B) for p > q. The estimate (3.1) comes from (3.2), (3.4), and (3.6).
The proof is completed. �

Theorem 3.2. Let 1 < p, q < ∞, and let µ ≥ 0 with hypothesis (1.1). Set
1/s = 1− 1/q + 1/p. Then the following statements are equivalent:

(A) Iµ : Ap
ϕ → Aq

ϕ is compact,
(B) Jµ : Ap

ϕ → Lq
ϕ is compact,

(C) µ is a vanishing s-Carleson measure.

Proof. It is easy to check that (B) ⇒ (A). Suppose that Iµ is compact from Ap
ϕ

to Aq
ϕ. If p > q, then Theorem 3.1 implies that µ is an s-Carleson measure, where

s > 1. By Theorem 2.8, µ is also a vanishing s-Carleson measure. If p ≤ q, then
s ≤ 1. Similar to the proof in Theorem 3.1, by Lemma 2.2(4), there is

µ̃2(z)ρ(z)
2(p−q)/pq ≤ C

(∫
Dα(z)

∣∣Iµ(kp,z)(w)e−ϕ(w)
∣∣q dA(w))1/q

≤ C
∥∥Iµ(kp,z)∥∥q,ϕ

→ 0
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as |z| → 1. Hence,

lim
z→∞

µ̃2(z)ρ(z)
2(p−q)/pq = 0.

Theorem 2.7 shows that µ is a vanishing s-Carleson measure.
To show that (C) ⇒ (B), we assume that statement (C) is true. Given R ∈

(0, 1), µR is defined by

µR(E) = µ
(
E ∩D(0, R)

)
for E ⊆ D measurable.

It is easy to check that µ− µR ≥ 0 and that JµR
is compact from Ap

ϕ to Lq
ϕ. By

Theorems 2.7 and 2.8 and (3.6), we have

‖Jµ − JµR
‖Ap

ϕ→Lq
ϕ
≤ C‖µ− µR‖s → 0

as R → ∞. Therefore, Jµ is compact from Ap
ϕ to Lq

ϕ. The proof is completed. �
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