

Ann. Funct. Anal. 10 (2019), no. 1, 97–105 https://doi.org/10.1215/20088752-2018-0011 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

UNITARY REPRESENTATIONS OF INFINITE WREATH PRODUCTS

ROBERT P. BOYER^{1^*} and YUN S. YOO^2

Communicated by M. de Jeu

ABSTRACT. Using C^* -algebraic techniques and especially AF-algebras, we present a complete classification of the continuous unitary representations for a class of infinite wreath product groups. These nonlocally compact groups are realized by a topological completion of the semidirect product of the countably infinite symmetric group acting on the countable direct product of a finite Abelian group.

1. Introduction

The continuous unitary representations for the unitary group U(H) (with the strong operator topology) of a separable Hilbert space H or the full symmetric group $\overline{S}(\infty)$ (with the topology of pointwise convergence) on a countable set are equivalent to the tame representations of dense direct limit subgroups. For U(H), the subgroup is $U(\infty)$, the inductive limit unitary group $\lim_{\to} U(n)$; while for $\overline{S}(\infty)$ it is $S(\infty)$, the group of finitely supported permutations on positive integers.

These results suggest the following general problem: if \overline{G} is a topological completion of a countable discrete subgroup G, determine the representation theory of

Copyright 2019 by the Tusi Mathematical Research Group.

Received Sep. 19, 2017; Accepted May 9, 2018.

First published online Nov. 17, 2018.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 22D25; Secondary 20C32, 20C99, 43A40, 46L05.

Keywords. wreath product, Littlewood–Richardson rule, group algebra, primitive ideal, postliminary.

G through the restriction of its representations to G. In this context, a tame representation of G is exactly the restriction of a continuous unitary representation of \overline{G} . In general, \overline{G} may not be locally compact.

In this article, we study the representation theory of an infinite wreath product group G relative to a fixed finite Abelian group A. The subgroup G is a countable locally finite group obtained as a canonical semidirect product of $S(\infty)$ with the countably infinite direct sum $\bigoplus A$. In Section 2.3, we give a natural topology on G whose completion \overline{G} is a nonlocally compact topological group.

We classify the tame representations of G, that is, the restriction to G of the continuous unitary representations of the completion group \overline{G} using C^* -algebraic techniques applied to the group algebra of G. Since the completion \overline{G} is not locally compact, classical methods do not directly apply. For the unitary group and the full symmetric group, Olshanski [8] introduced the method of semigroups to classify tame representations. The C^* -algebra approach we use here provides an alternative method to semigroups. (See [1], [2] for other applications of C^* -algebraic techniques to study the representation theory of nonlocally compact groups.)

2. Background

2.1. Wreath product representations. Let S(n) be the symmetric group on n letters. As usual we identify its irreducible representations $\lambda \in S(n)^{\wedge}$ (the dual space of S(n)) with the partitions of n; that is, $\lambda : \lambda_1 \geq \cdots \geq \lambda_\ell > 0$, where $\sum \lambda_j = n$ and ℓ is the number of parts of the partition. The representation λ has an alternate description as a shape or (Ferrers) diagram $D(\lambda)$, that is, a finite subset of \mathbb{N}^2 where $(i, j) \in D(\lambda)$ if and only if $1 \leq j \leq \lambda_i$, for $1 \leq i \leq \ell$. As a diagram, ℓ is the number of its rows. The diagram of the partition of 0 is simply \emptyset . Note that the trivial representation of S(n) is given by the diagram with a single row $(\ell = 1)$. The restriction of $\lambda \in S(n)^{\wedge}$ to S(n - 1) decomposes simply as a direct sum of $\mu \in S(n - 1)^{\wedge}$, where $|D(\lambda) \setminus D(\mu)| = 1$.

2.1.1. Classification. Let A be a finite Abelian group with dual group $\widehat{A} = \{\omega_1, \ldots, \omega_{|A|}\}$, where ω_1 denotes the trivial character which is identically 1. Let G(n) be the wreath product of S(n) with $\prod_{j=1}^n A$; that is, G(n) is the semidirect product of the natural action of the symmetric group S(n) on the product of Abelian groups. Explicitly, if $\sigma \in S(n)$ and $a = (a_1, \ldots, a_n) \in \prod_{j=1}^n A$, then $\sigma \cdot a = (a_{\sigma^{-1}(1)}, \ldots, a_{\sigma^{-1}(n)})$. The dual space $G(n)^{\wedge}$ of irreducible representations of G(n) is given by \widehat{A} -tuples $(\lambda(\omega) : \omega \in \widehat{A})$ such that $\lambda(\omega)$ is a partition of $|\lambda(\omega)|$ and $\sum\{|\lambda(\omega)| : \omega \in \widehat{A}\} = n$ (see [11]). We allow $|\lambda(\omega)| = 0$ which corresponds to a partition whose diagram $D(\lambda(\omega)) = \emptyset$. The restriction $\lambda \in G(n)^{\wedge}$ to G(n-1) decomposes without multiplicity; its components $\mu \in G(n-1)^{\wedge}$ must satisfy the following condition: there exists $\omega' \in \widehat{A}$ such that

$$\mu(\omega) = \begin{cases} \lambda(\omega), & \omega \neq \omega', \\ \mu(\omega'), & |D(\lambda') \setminus D(\omega')| = 1. \end{cases}$$

The trivial representation $1_{G(n)} = 1$ of G(n) has the form

$$1_{G(n)} = \begin{cases} \lambda_1(\omega), & \omega = \omega_1, \\ \emptyset, & \omega \neq \omega_1, \end{cases}$$

where ω_1 is the trivial character of A and the diagram $D(\lambda_1(\omega))$ consists of the single row: $\{(1, j) : 1 \le j \le n\}$.

2.1.2. Induction product. For a finite group H, we use the notation $\operatorname{Rep}(H)$ for the Grothendieck group generated by the unitary equivalence classes of finitedimensional representations of H. For the wreath product groups G(n), there is a natural induction product on $\bigoplus_{n=0}^{\infty} \operatorname{Rep}(G(n))$ given by

$$\mu \circ \nu = \operatorname{Ind}_{G(n_1) \times G(n_2)}^{G(n_1 + n_2)} (\mu \boxtimes \nu),$$

where $\mu \in \operatorname{Rep}(G(n_1))$, $\nu \in \operatorname{Rep}(G(n_2))$, \boxtimes denotes the outer tensor product of representations, and $G(n_1)$ and $G(n_2)$ are the natural subgroups of G(n). (We refer the reader to [11] for a detailed discussion.) If μ and ν are also irreducible, then there is an explicit irreducible decomposition of $\mu \circ \nu$,

$$\operatorname{Ind}_{G(n_1)\times G(n_2)}^{G(n_1+n_2)}(\mu\boxtimes\nu) = \bigoplus \big\{ c_{\mu,\nu}^{\gamma}\gamma : \gamma\in G(n_1+n_2)^{\wedge} \big\},$$

where the integers $c^{\gamma}_{\mu,\nu}$ are given by

$$c_{\mu,\nu}^{\gamma} = \prod \{ c_{\mu(\omega),\nu(\omega)}^{\gamma(\omega)} : \omega \in \widehat{A} \},$$

where $c_{\mu(\omega),\nu(\omega)}^{\gamma(\omega)}$ are the usual Littlewood–Richardson coefficients for the symmetric group induction product (see [4, Theorem 4.3]).

For m < n, let $G_m(n)$ be the subgroup of G(n) given by $S_m(n) \cdot \prod_{j=m+1}^n A$, where $S_m(n)$ is the centralizer of the natural copy of S(m) in S(n). Further, we set $G_m(\infty) = \bigcup_{n=m}^{\infty} G_m(n)$, the corresponding subgroup of the infinite wreath product G. If $\lambda \in G(n)^{\wedge}$ and $\mu \in G(m)^{\wedge}$ appears as an irreducible component of the restriction $\lambda | G(m)$, write $\mu < \lambda$.

2.2. AF C^* -algebras. Let $G = \bigcup_{n=0}^{\infty} G(n)$, the infinite wreath product group. Since G is a countable discrete locally compact group, its group C^* -algebra $C^*(G)$ is an approximately finite-dimensional (AF) C^* -algebra; that is, it is the inductive limit of $\lim_{\to} C^*(G(n))$ where each $C^*(G(n))$ is isomorphic to the direct sum $\bigoplus \{M(H(\lambda)) : \lambda \in G(n)^{\wedge}\}$, where the embedding of $C^*(G(n))$ into $C^*(G(n+1))$ is consistent with the restriction rule. (See [9] and [10] for a general discussion of AF-algebras.) We remark that G is also the semidirect product of $S(\infty)$ with $\bigoplus_{n=1}^{\infty} A$. If T is a unitary representation of G, then we write \tilde{T} for the corresponding representation of $C^*(G)$. 2.2.1. Primitive ideal parameterization for wreath products. A primitive ideal J of $C^*(G)$ is parameterized by a diagram D_J which is an \widehat{A} -tuple, where each $D_J(\omega)$ is a certain infinite subset of \mathbb{N}^2 . Either $D_J(\omega) = \mathbb{N}^2$ or is a proper subset of the form $D_J(\omega) = D_J(k(\omega), \ell(\omega), Y(\omega))$:

$$D_J(k(\omega), \ell(\omega), Y(\omega)) = \{(i, j) : 1 \le j < \infty \text{ for } 1 \le i \le k(\omega)\}$$
$$\cup \{(i, j) : 1 \le i < \infty \text{ for } 1 \le j \le \ell(\omega)\}$$
$$\cup ((k(\omega), \ell(\omega)) + Y(\omega)),$$

where $Y(\omega)$ is the diagram of some partition and $(k(\omega), \ell(\omega)) \in \mathbb{N}^2$ (see [3]).

2.2.2. Primitive quotient spectrum. The diagram D_J of a primitive ideal J naturally describes the Bratteli diagram of the primitive quotient $A_J = C^*(G)/J$, where $A_J = \lim_{\to} (A_J)_n$, where $(A_J)_n$ is a subalgebra of $C^*(G(n))$. Its spectrum $(A_J)_n^{\wedge} \subset G(n)^{\wedge}$ consists of those irreducible representations λ such that $D(\lambda(\omega)) \subset D_J(\omega)$ for all $\omega \in \widehat{A}$.

2.2.3. Tame primitive ideals. We are particularly concerned with primitive ideals for which $k(\omega) = \ell(\omega) = 0$ for $\omega \neq \omega_1$ and $\ell(\omega_1) = 0$, $k(\omega_1) = 1$. We will call these primitive ideals *tame* and simplify their notation. If J is tame, then we write

$$D_{J,T} = \left(D_{J,T}(\omega) : \omega \in \widehat{A} \right),$$

where

$$D_{J,T}(\omega) = \begin{cases} Y(\omega), & \omega \neq \omega_1, \\ ((0,1) + Y(\omega_1)) \cup R_0, & \omega = \omega_1, \end{cases}$$

where $Y(\omega)$ is a diagram for some partition and $R_0 = \{(1, j) : 1 \le j < \infty\}$.

In other words, there is a bijection between tame primitive ideals and A-tuples of finite diagrams.

2.2.4. Postliminary primitive quotient. If π is a factor representation of a separable C*-algebra A, then its kernel $J = \text{Ker}(\pi)$ is a primitive ideal. Moreover, every primitive ideal is the kernel of some irreducible representation. If π_1 and π_2 are irreducible representations with the same kernel, then it is not true in general that they are unitarily equivalent. This holds if the primitive quotient A/J is postliminary or type I.

For AF C^* -algebras, every primitive ideal is the kernel of an irreducible representation π which is a direct limit of irreducible representations; that is, if $A = \lim_{\to} A_n$ and π_n is an irreducible representation of A_n , then $\pi = \lim_{\to} \pi_n$ (see [9, Chapter 1]). If the primitive quotient A/J is postliminary, then every irreducible representation with kernel J is, in particular, unitarily equivalent to a direct limit of irreducible representations.

An AF C^* -algebra $A = \lim_{K \to \infty} A_n$ has finite rank if there is a constant K such that $|\widehat{A_n}| \leq K$ for all n. In general, a finite rank AF-algebra may either be postliminary or not.

2.3. Tame representations and topological completion \overline{G} of G. Suppose that a group K has the form $\bigcup_{n=1}^{\infty} K(n)$, where $\{K(n)\}_{n=1}^{\infty}$ is an increasing sequence of subgroups. Neeb [6, Definition 3.4] says that the $\{K(n)\}$ are well complemented by a decreasing sequence $\{K_n\}_{n=1}^{\infty}$ of subgroups if $\bigcap_{n=1}^{\infty} K_n = \{1\}$ and K(n) commutes with K_n for all n. He further observed that $\{K_n\}$ is a basis of neighborhoods of the identity for a unique Hausdorff group topology τ for K.

A unitary representation T of K is tame (see [8], [6]) if the space $\bigcup_{n=0}^{\infty} H_n(T)$ is dense in H(T), where $H_n(T)$ is the subspace

$$H_n(T) = \left\{ v \in H(T) : T(g)v = v \text{ for all } g \in K_n \right\}.$$

If T is an irreducible representation, then T is tame if and only if there exists some m such that $H_m(T) \neq \{0\}$. Then the representation T of K is tame if and only if it is continuous relative to the topology τ (see [6, Section 3]).

If G is the infinite product group, its subgroups G(n) are well-complemented by the subgroups $G_n(\infty)$. The resulting topology τ is the topology of pointwise convergence. To make this explicit, we treat G as the set $S(\infty) \times \bigoplus_{n=1}^{\infty} A$. For $\sigma \in S(\infty)$ and $a = (a_n) \in \bigoplus_{n=1}^{\infty} A$, map (σ, a) to $(\sigma(n), a_n)_{n=1}^{\infty} \in \prod_{n=1}^{\infty} (\mathbb{Z}^+ \times A)$. The topology τ is identical to the pullback of the restriction of the topology of pointwise convergence (or product topology) of the image of G. Furthermore, the image of G is dense in the full product.

Let \overline{G} be a semidirect product of the full symmetric group $\overline{S}(\infty)$ (of \mathbb{Z}^+) with the Abelian infinite product group $\prod_{n=1}^{\infty} A$, where the topology is given by the identification with $\prod_{n=1}^{\infty} (\mathbb{Z}^+ \times A)$. Since G is dense in \overline{G} , the classification of the tame representations of G is equivalent to classifying the continuous unitary representations of \overline{G} .

3. Irreducible tame representations of G

Proposition 3.1. Let m < n. Then there is an injection of $G(m)^{\wedge}$ into $G(n)^{\wedge}$ given by

$$\nu \mapsto \mu = \nu \circ 1,$$

where $\mu \circ 1$ denotes the induction product. Further, $\lambda \in G(n)^{\wedge}$ is in the image if and only if the restriction of λ to $G(m) \times G_m(n)$ is equivalent to $\nu \boxtimes 1$ for some irreducible representation $\nu \in G(m)^{\wedge}$. For $m < k < n, \pi \in G(k)^{\wedge}$ lies in the restriction $\mu|G(k)$ if and only if $D(\pi(\omega)) \subset D(\mu(\omega))$ for $\omega \in \widehat{A}$.

Proof. This follows immediately using the Littlewood–Richardson rule extended to wreath products. \Box

Proposition 3.2. Let μ_m be an irreducible representation of G(m). If $\mu_{m+j} \in G(m+j)^{\wedge}$ such that its restriction $\mu_{m+j}|G(m) \times G_m(m+j) = \mu_m \boxtimes 1$ and $\mu_{m+j} < \mu_{m+j+1}$, then the direct limit representation $\mu = \lim_{m \to \infty} \mu_{m+j}$ is irreducible and tame.

Proof. We know that μ is irreducible since it is a direct limit of irreducible representations (see [5, Theorem 1]). To verify that μ is tame it is enough to show that $H_m(\mu) \neq \{0\}$. By construction, $\mu_{m+j}|G(m) \times G_m(m+j) = \mu_m \boxtimes 1$ for any j. Hence, $H(\mu) \subset H_m(\mu)$; in particular, it is nonzero.

Proposition 3.3. Let J be a primitive tame ideal of $C^*(G)$. Then the primitive quotient $A_J = C^*(G)/J$ is postliminary.

Proof. Write $A_J = \lim_{\to} (A_J)_n$. Then $\lambda \in G(n)^{\wedge}$ lies in $(A_J)_n^{\wedge}$ if and only if $D(\lambda(\omega)) \subset D_{J,T}(\omega)$ for $\omega \neq \omega_1$ and $D(\lambda(\omega_1)) \subset \{(1, j) : 1 \leq j < \infty\} \cup D_{J,T}(\omega_1)$. The primitive quotient A_J is postliminary provided that it contains an ideal isomorphic to the algebra \mathcal{K} of compact operators. Let $\mu_n \in (A_J)_n^{\wedge}$ such that $D(\mu_n(\omega)) \subset D_{J,T}(\omega), \ \omega \neq \omega_1$, and $D(\mu_n(\omega_1)) \subset (0, 1) + D_{J,T}(\omega_1)$. Consider $\lambda \in (A_J)_{n+1}^{\wedge}$ such that μ_n is contained in the restriction $\lambda_{n+1}|G(n)$. In terms of diagrams, we have $D(\mu_n(\omega)) \subset D(\lambda(\omega))$ for $\omega \in \widehat{A}$. By the set containments forced by the primitive ideal condition, we conclude that $\lambda = \mu_{n+1}$.

To finish, we look at the central decompositions $(A_J)_j = \bigoplus \{M(\pi) : \pi \in (A_J)_n^{\wedge}\}$ (for j = n, n + 1). Then the matrix algebra $M(\mu_n) \subset (A_J)_n$ embeds simply into $M(\mu_{n+1}) \subset (A_J)_{n+1}$. This is exactly the embedding that gives an ideal isomorphic to \mathcal{K} .

Corollary 3.4. Let J be a primitive tame ideal of $C^*(G)$. Then $J = \text{Ker}(\tilde{\mu})$ for some irreducible tame representation μ of G.

Proof. This follows easily from the Proposition 3.3. Consider the direct limit representation $\mu = \lim_{\to} \mu_n$. By Proposition 3.2, μ is irreducible and tame. Furthermore, $\tilde{\mu}$ is a faithful representation of $A_J = C^*(G)/J$ because any two nonzero ideals in a primitive algebra intersect. In particular, if P is the kernel of $\tilde{\mu}$, then it has a nonzero intersection with Q, where Q is the ideal generated by $\bigcup_n M(\mu_n)$. This contradicts that μ is nonzero on Q by construction.

Theorem 3.5. Let \tilde{T} be an irreducible representation of $C^*(G)$, where T is an irreducible tame representation of G. Let $J = \text{Ker}(\tilde{T}) \in \text{Prim}(G)$. Then J is a primitive tame ideal.

Proof. Assume that T is an irreducible tame representation. Then there exists a positive integer m such that $H_m(T) \neq \{0\}$. Consider T|G(m) acting on $H_m(T)$. Since G(m) is a finite group, $H_m(T)$ decomposes discretely into a direct sum of irreducible representations; pick one, say, $\mu \in G(m)^{\wedge}$ and the corresponding subspace V_m . Note that by construction, T(g) = I for $G_m(\infty)$. Next consider the cyclic subspace V_{m+1} generated by T(G(m+1)) acting on V_m . We decompose V_{m+1} into a direct sum of subspaces where G(m+1) acts irreducibly.

Now $V_m \subset V_{m+1}$ by construction. Furthermore, $T|(G(m) \times G_m(m+1)) = \mu \boxtimes 1$ on the subspace V_m . But this condition uniquely determines an irreducible representation, say, $mu_{m+1} \in G(m+1)^{\wedge}$. By the minimality of the cyclic subspace V_{m+1} , this subspace supports the irreducible representation μ_{m+1} . Consequently, we have constructed a chain $\mu_m < \mu_{m+1} < \cdots$ such that $\mu_{m+j} \in G(m+j)^{\wedge}$, $H(\mu_{m+j}) \subset H(\mu_{m+j+1})$, $H(\mu_{m+j}) \subset H_{m+j}(T)$. By construction, the union $\bigcup_{j=0}^{\infty} H(\mu_{m+j})$ is invariant under G. By the irreducibility of T, the infinite union is dense in H(T).

Consider the primitive quotient $A_J = C^*(G)/J$. Then its Bratteli diagram is given by the minimal choice of sets X_{m+j} that satisfy: (1) $X_{m+j} \subset G(m+j)^{\wedge}$; (2) $\mu_{m+j} \in X_{m+j}$; (3) if $\mu \in X_{m+j+1}$, then all the irreducible components of its restriction $\mu | G(m+j)$ belong to X_{m+j} . We will be able to identify X_{m+j} by means of the irreducible representations μ_{m+j} and their restrictions. First note that

$$D(\mu_{m+j}(\omega)) = D(\mu_m(\omega)), \quad \omega \neq \omega_1$$

for all $j \ge 0$. We write $D(\mu_m(\omega_1))$ in the form

$$D(\mu_m(\omega_1)) = ((0,1) + Y_0) \cup R_0,$$

where

$$R_0 = \{(1,i) : 1 \le i \le |\mu_m(\omega_1)| - |Y_0|\}.$$

Then we write the diagram $D(\mu_{m+j}(\omega_1))$ in the form

$$D(\mu_{m+j}(\omega_1)) = ((0,1) + Y_0) \cup R_j,$$

where

$$R_{j} = \{(1,i) : 1 \le i \le |\mu_{m+j}(\omega_{1})| - |Y_{0}|\};$$

that is, it is independent of j except for the length of its first row.

We now choose diagrams $D(\omega), \omega \neq \omega_1$ such that

 $D(\omega) \subset D(\omega_m(\omega))$

and a diagram Y such that $Y \subset Y_0$. These diagrams specify uniquely the irreducible representation $\mu \in G(m+i)^{\wedge}$ given by

$$D(\mu(\omega)) = \begin{cases} D(\omega) & \omega \neq \omega_1, \\ ((0,1)+Y) \cup R & \omega = \omega_1, \end{cases}$$

where $R = \{(1, \alpha) : 1 \leq \alpha \leq k\}$ and $k = m + i - |Y| - \sum\{|D(\omega)| : \omega \neq \omega_1\}$. Then the set $X_{m+i} \subset G(m+i)^{\wedge}$ is the collection of all such $\mu \in G(m+i)^{\wedge}$. It is straightforward to verify that these sets satisfy the above properties (1)–(3). Since \tilde{T} is a faithful irreducible representation of A_J , we identify that the diagrams for J are those for a tame ideal.

Corollary 3.6. Let T_1 and T_2 be irreducible tame representations of G. Then T_1 and T_2 are unitarily equivalent if and only if $\operatorname{Ker}(\tilde{T}_1) = \operatorname{Ker}(\tilde{T}_2)$.

Corollary 3.7. Every irreducible tame representation T is unitarily equivalent to a direct limit $\lim_{\to} T_n$ of irreducible representations $T_n \in G(n)^{\wedge}$.

Remark 3.8. By construction, the cardinality of the collection of tame primitive ideals is countable since they are uniquely determined by \widehat{A} -tuples of (finite) diagrams. In turn, there are only countably many distinct unitary equivalence classes of tame irreducible representations of G.

By [3], the finite-rank primitive quotients of $C^*(G)$ are all postliminary. This is not true for general C^* -algebras. It would be interesting to have a deeper group-theoretic understanding of this relationship.

Proposition 3.9. Every tame representation T of G decomposes uniquely as a direct sum of irreducible tame representations; that is, let T be the collection of the unitary equivalence classes of tame irreducible representations. Then

$$T \simeq \bigoplus \{ n_{\tau} \tau : \tau \in \mathcal{T} \},\$$

where the multiplicity of τ in T is unique.

Proof. The proof in [2, p. 385] applies word for word here since the cardinality of the set of equivalence classes of the irreducible tame representations is countable.

4. Induced representation realization

In this section, we show that the tame irreducible representations of G can be realized as induced representations just as the case for the infinite symmetric group (see [8]). Let $(D(\omega))$ be an \widehat{A} -tuple, and set $m = \sum |D(\omega)|$. Corresponding to $(D(\omega))$ there are two objects: $\lambda \in G(m)^{\wedge}$ and a primitive tame ideal J. Consider the subgroup G(n) of G with m < n. For the sake of notation, set $K = G(m) \times G_m(\infty) \subset G$ and $K(n) = G(n) \cap K$. We can extend λ trivially to an irreducible representation to either K or K(n) by $\lambda \boxtimes 1$, where 1 is the trivial representation of either K or K(n). Let

$$T = \operatorname{Ind}_{K}^{G}(\lambda \boxtimes 1), \qquad T_{n} = \operatorname{Ind}_{K(n)}^{G(n)}(\lambda \boxtimes 1);$$

that is, $T_n = \lambda \circ 1$ (induction product) in the notation of Proposition 3.1. We will identify the representation spaces $H(\lambda \boxtimes 1)$ and $H(\lambda)$ so the representation space $H(T_{\lambda})$ consists of all functions $f: G \to H(\lambda)$ such that $f(gk) = (\lambda \boxtimes 1)(k)^{-1} = \lambda(k')^{-1}f(g)$, where k = k'k'', $k' \in G(m)$ and $k'' \in G_m(\infty)$, and satisfies the L^2 -condition $\sum ||f(\dot{g})||^2_{H(\lambda)}$ (sum over the cosets $\dot{g} = gK$). This is similarly the case for $H(T_n)$: $f_0: G(n) \to H(\lambda)$ such that $f_0(g_0k_0) = \lambda(k'_0)^{-1}f_0(g_0)$, where $g_0 \in G(n), k_0 \in K(n)$, and $k_0 = k'_0k''_0$, where $k'_0 \in G(m)$ and $k''_0 \in G_m(n)$. A function $f_0 \in H(T_n)$ has a unique extension to $\tilde{f}_0 \in H(T)$:

$$\tilde{f}_0(x) = \begin{cases} f_0(g_0k'), & x = g_0k, g_0 \in G(n), k = k'k'', k' \in G(m), k'' \in G_m(\infty), \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to check that \tilde{f}_0 lies in H(T) and the L^2 -norm is preserved. We conclude that the induced representation T is the direct limit of T_n . An important consequence of the direct limit form of T is that it allows us to find the primitive ideal corresponding to T by Proposition 3.1. We summarize this discussion.

Proposition 4.1. Let $\lambda \in G(m)^{\wedge}$. Then the induced representation

$$T = \operatorname{Ind}_{G(m) \times G_m(\infty)}^G (\lambda \boxtimes 1)$$

is an irreducible tame representation of G with tame primitive ideal $\operatorname{Ker}(\tilde{T}) = J$ given by $D_{J,T}(\omega) = \lambda(\omega)$ for $\omega \in \widehat{A}$. The induced representation T can be studied directly using the results of [7, Theorems 1, 2] to deduce their irreducibility and their equivalence. The classification of the irreducible representations of \overline{G} is consistent with Mackey's results on semidirect products; unfortunately, they did not apply since \overline{G} is not locally compact.

References

- D. Beltiţă and K.-H. Neeb, Schur-Weyl theory for C*-algebras, Math. Nachr. 285 (2012), no. 10, 1170–1198. Zbl 1251.22014. MR2955788. DOI 10.1002/mana.201100114. 98
- R. P. Boyer, "Representation theory of infinite-dimensional unitary groups" in *Representation Theory of Groups and Algebras*, Contemp. Math. 145, Amer. Math. Soc., Providence, 1993, 381–391. Zbl 0815.22005. MR1216198. DOI 10.1090/conm/145/1216198. 98, 104
- R. P. Boyer, Character theory of infinite wreath products, Int. J. Math. Math. Sci. 2005, no. 9, 1365–1379. Zbl 1104.22009. MR2176493. DOI 10.1155/IJMMS.2005.1365. 100, 103
- F. Ingram, N. Jing, and E. Stitzinger, Wreath product symmetric functions, Int. J. Algebra 3 (2009), no. 1–4, 1–19. Zbl 1184.05135. MR2497341. 99
- V. I. Kolomytsev and Y. S. Samoilenko, Irreducible representations of inductive limits of groups (in Russian), Ukraïn. Mat. Zh. 29, no. 4 (1977), 526–531; English translation in Ukrainian Math. J. 29 (1977), 402–405. Zbl 0419.43009. MR0466402. 101
- K.-H. Neeb, "Unitary representations of unitary groups" in *Developments and Retrospectives in Lie Theory*, Dev. Math. **37**, Springer, Cham, 2014, 197–243. Zbl 1317.22012. MR3329940. DOI 10.1007/978-3-319-09934-7.8. 101
- N. Obata, Some remarks on induced representations of infinite discrete groups, Math. Ann. 284 (1989), no. 1, 91–102. Zbl 0648.20023. MR0995384. DOI 10.1007/BF01443507. 105
- G. I. Olshanski, "Unitary representations of the infinite symmetric group: A semigroup approach" in *Representations of Lie Groups and Lie Algebras (Budapest, 1971)*, Akad. Kiadó, Budapest, 1985, 181–197. Zbl 0605.22005. MR0829049. 98, 101, 104
- 9. Ş. Strătilă and D. Voiculescu, Representations of AF-Algebras and of the Group U(∞), Lecture Notes in Math. 486, Springer, Berlin, 1975. Zbl 0318.46069. MR0458188. 99, 100
- A. M. Vershik and S. V. Kerov, Locally semisimple algebras: Combinatorial theory and the K₀-functor (in Russian), Itogi Nauki Tekh., Sovrem. Probl. Mat. 26 (1985), 3–56; English translation in J. Soviet Math. 38 (1987), no. 2, 1701–1733. Zbl 0623.46036. MR0849784. DOI 10.1007/BF01088200. 99
- A. V. Zelevinsky, Representations of Finite Classical Groups: A Hopf Algebra Approach, Lecture Notes in Math. 869, Springer, Berlin, 1981. Zbl 0465.20009. MR0643482. 98, 99
- ¹DEPARTMENT OF MATHEMATICS, DREXEL UNIVERSITY, PHILADELPHIA, PA. *E-mail address*: rboyer@math.drexel.edu

²Department of Mathematics, Community College of Philadelphia, Philadelphia, PA.

E-mail address: yyoo@ccp.edu