ANNALS of FUNCTIONAL ANALYSIS

Ann. Funct. Anal. 10 (2019), no. 1, 46–59 https://doi.org/10.1215/20088752-2018-0007 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

ON THE STRUCTURE OF THE DUAL UNIT BALL OF STRICT u-IDEALS

JULIA MARTSINKEVITŠ* and MÄRT PÕLDVERE

Communicated by P. N. Dowling

ABSTRACT. It is known that if a Banach space Y is a u-ideal in its bidual Y^{**} with respect to the canonical projection on the third dual Y^{***} , then Y^* contains "many" functionals admitting a unique norm-preserving extension to Y^{**} —the dual unit ball B_{Y^*} is the norm-closed convex hull of its weak* strongly exposed points by a result of Å. Lima from 1995. We show that if Y is a strict u-ideal in a Banach space X with respect to an ideal projection P on X^* , and X/Y is separable, then B_{Y^*} is the τ_P -closed convex hull of functionals admitting a unique norm-preserving extension to X, where τ_P is a certain weak topology on Y^* defined by the ideal projection P.

1. Introduction

Throughout this article, all Banach spaces will be over the scalar field \mathbb{K} where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. For a Banach space X, its dual space, closed unit ball, and unit sphere will be denoted, respectively, by X^* , B_X , and S_X . For a subset A of X, we denote its convex hull by co(A) and its linear span by span(A). The symbol $\mathcal{L}(X)$ will stand for the space of continuous linear operators from X to X.

Let X be a Banach space, and let Y be a closed subspace of X. According to the terminology in [5], Y is said to be an *ideal* in X if there exists a continuous linear projection $P \in \mathcal{L}(X^*)$ with ker $P = Y^{\perp} := \{x^* \in X^* : x^*|_Y = 0\}$ and

Copyright 2019 by the Tusi Mathematical Research Group.

Received Oct. 27, 2017; Accepted Feb. 24, 2018.

First published online Sep. 28, 2018.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B20; Secondary 46A55, 46B22.

Keywords. strict ideal, norm-preserving extension, dentability, denting point.

||P|| = 1. If ran P is norming for X in the sense that

$$||x|| = \sup_{x^* \in B_{\operatorname{ran} P}} |x^*(x)| \quad \text{for all } x \in X,$$

then Y is called a *strict ideal*, and the ideal projection P is said to be *strict*.

It is straightforward to verify that if P is an ideal projection for Y in X, then, for every $x^* \in X^*$, the functional $Px^* \in X^*$ is a norm-preserving extension of the restriction $x^*|_Y \in Y^*$. It follows that the mapping $J_P: Y^* \ni y^* \mapsto Px^* \in X^*$, where $x^* \in X^*$ is any extension of y^* , is a linear isometry. In particular, ran $J_P =$ ran P, and ran P is isometrically isomorphic to Y^* .

Suppose that Y is an ideal in X with respect to an ideal projection P. Then each $x \in X$ induces a functional $x_P \in Y^{**}$ defined by $x_P(y^*) = (J_P y^*)(x)$, $y^* \in Y^*$. If P is strict, then the mapping $x \mapsto x_P$ is an isometry and one can identify X with the closed subspace $X_P = \{x_P \in Y^{**} : x \in X\}$ of Y^{**} . In such a case, we will denote the weak topology $\sigma(Y^*, X_P)$ on Y^* by τ_P .

If an ideal projection $P \in \mathcal{L}(X^*)$ for Y in X satisfies ||I - 2P|| = 1, then it is called a *u-ideal* projection, and Y is said to be a *u-ideal* in X with respect to P. Our starting point is the following result of Lima and Lima.

Proposition 1.1 (cf. [7, Proposition 2.2]). Let Y be a strict u-ideal in a Banach space X. Then every ideal projection for Y in X is strict.

In [7], Proposition 1.1 was obtained using knowledge about centers of symmetry (see, e.g., [1, Proposition 2.2]). Denoting, whenever E is a subspace of X, by C_E the set of functionals in S_{Y^*} having a unique norm-preserving extension to $\overline{\text{span}}(Y \cup E)$, we observe that the conclusion of Proposition 1.1 easily obtains under the assumption that the set C_E is big enough for every 1-dimensional subspace E of X.

Proposition 1.2. Let Y be a strict ideal in a Banach space X, and suppose that for every 1-dimensional subspace E of X there is a strict ideal projection $P_E \in \mathcal{L}(X^*)$ for Y in X such that $B_{Y^*} = \overline{\operatorname{co}}^{\tau_{P_E}}(\mathcal{C}_E)$. Then every ideal projection for Y in X is strict.

Proof. Let P be any ideal projection for Y in X, and let $x \in X$ and $\varepsilon > 0$ be arbitrary. It suffices to find a $y^* \in B_{Y^*}$ such that

$$|x_P(y^*)| = |(J_P y^*)(x)| > ||x|| - \varepsilon.$$
 (1.1)

Set $E := \operatorname{span}(\{x\})$. Since P_E is strict, there is $v^* \in B_{Y^*}$ such that $|x_{P_E}(v^*)| = |(J_{P_E}v^*)(x)| > ||x|| - \varepsilon$. Since $B_{Y^*} = \overline{\operatorname{co}}^{\tau_{P_E}}(\mathcal{C}_E)$, there is $y^* \in \operatorname{co}(\mathcal{C}_E)$ such that $|x_{P_E}(y^*)| > ||x|| - \varepsilon$. For every $u^* \in \mathcal{C}_E$, the functionals $J_P u^* \in X^*$ and $J_{P_E} u^* \in X^*$ are norm-preserving extensions of u^* , and thus their restrictions to $\overline{\operatorname{span}}(Y \cup E)$ are also norm-preserving extensions of u^* ; hence $x_P(u^*) = (J_P u^*)(x) = (J_{P_E}u^*)(x) = x_{P_E}(u^*)$. Since $y^* \in \operatorname{co}(\mathcal{C}_E)$, one has $x_P(y^*) = x_{P_E}(y^*)$, and (1.1) follows.

In the light of Propositions 1.1 and 1.2, it is natural to ask whether the assumption of Proposition 1.2 holds if Y is a strict u-ideal in X with respect to a projection $P \in \mathcal{L}(X^*)$, and, moreover, whether in that case the projection P itself

always fits in the role of P_E . The objective of this article is to answer these questions in the affirmative.

Theorem 1.3. Let Y be a strict u-ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$. Then, for every separable subspace E of X,

- (a) $B_{Y^*} = \overline{\mathrm{co}}^{\tau_P}(\mathcal{C}_E);$
- (b) if Y is separable, then $B_{Y^*} = \overline{\operatorname{co}}^{\tau_P}(\mathcal{C}_E \cap \operatorname{ext} B_{Y^*})$, where $\operatorname{ext} B_{Y^*}$ is the set of extreme points of B_{Y^*} .

Remark 1.4. Every Banach space Y is a strict ideal in its bidual Y^{**} with respect to the canonical projection $\pi := j_{Y^*}(j_Y)^*$, where $j_Y \colon Y \to Y^{**}$ and $j_{Y^*} \colon Y^* \to Y^{***}$ are canonical embeddings. If π happens to be a *u*-ideal projection, then, by a result of Lima [6, Proposition 4.1], B_{Y^*} is the norm-closed convex hull of its weak* strongly exposed points. Since the τ_{π} -topology on B_{Y^*} is the weak topology, and every weak* strongly exposed point of B_{Y^*} has a unique norm-preserving extension to Y^{**} , it follows that if Y is a *u*-ideal in its bidual Y^{**} with respect to the canonical projection π , then the dual unit ball B_{Y^*} is the τ_{π} -closed convex hull of functionals admitting a unique norm-preserving extension to Y^{**} .

Let us recall the notion of a *slice*. Let C be a nonempty bounded subset of a Banach space Z. Given $z^* \in Z^* \setminus \{0\}$ and $\alpha > 0$, the set

$$S(z^*, \alpha, C) := \left\{ z \in C \colon \operatorname{Re} z^*(z) > \sup \operatorname{Re} z^*(C) - \alpha \right\}$$

is called a *slice* of C. If τ is a locally convex topology on Z weaker than the norm topology, then slices of C whose defining functional comes from the topological dual $(Z, \tau)'$ (i.e., the linear space of all τ -continuous linear functionals on Z) are called τ -slices. In particular, if Z happens to be a dual space, say, $Z = E^*$, then slices of C whose defining functional comes from (the canonical image of) the predual E of Z are called *weak*^{*}-slices.

In Section 2, letting τ_1 and τ_2 be two comparable locally convex topologies in a Banach space X, we consider (τ_1, τ_2) -dentability and (τ_1, τ_2) -denting points of bounded subsets of X. These concepts are a natural generalization due to Fundo [3, p. 1118] of the "ordinary" dentability and denting points. We prove that if Y is a strict u-ideal in X with respect to an ideal projection $P \in \mathcal{L}(X^*)$, then every τ_P -slice of B_{Y^*} contains a weak*-slice of B_{Y^*} , and every (τ_P, τ_P) -denting point of B_{Y^*} is a $(weak^*, \tau_P)$ -denting point of B_{Y^*} (see Proposition 2.5).

From [4, Theorem 1, Proposition 1] it follows that, for a subspace E of a separable Banach space X, every nonempty bounded subset of the dual space X^* is $(\sigma(X^*, E), \sigma(X^*, E))$ -dentable. In Section 3, we prove this result without the assumption on the separability of X (see Theorem 3.1). It follows that if Y is a strict ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$, then every nonempty bounded subset of Y^* is $(\sigma(Y^*, E_P), \sigma(Y^*, E_P))$ -dentable, where $E_P := \{x_P \in Y^{**} : x \in E\}$ (see Corollary 3.3). In particular, every nonempty bounded subset of Y^* is (τ_P, τ_P) -dentable.

In Section 4, we prove that if Y is a strict u-ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$, and X/Y is separable, then B_{Y^*} is the τ_P -closed convex hull of its elements admitting a unique norm-preserving extension to X. Moreover, if X itself is separable, then B_{Y^*} is the τ_P -closed convex hull of its $(weak^*, \tau_P)$ -denting points (see Proposition 4.1). Since, by [9, Proposition 2.2, (iii) \Rightarrow (i)], every $(weak^*, \tau_P)$ -denting point of B_{Y^*} is an extreme point of B_{Y^*} admitting a unique norm-preserving extension to X, Theorem 1.3 follows (by courtesy of Proposition 2.5).

2. Dentability in spaces with two comparable locally convex topologies

Let Z be a Banach space, and let τ be a locally convex topology on Z. Given a $z \in Z$, a seminorm p on Z, and an $\varepsilon > 0$, we define

$$\mathcal{U}_p(z,\varepsilon) := \left\{ w \in Z \colon p(w-z) < \varepsilon \right\}.$$

Suppose that τ_1 and τ_2 are locally convex topologies on Z such that τ_1 is weaker than τ_2 and τ_2 is weaker than the norm topology. In this case, $(Z, \tau_1)' \subset (Z, \tau_2)' \subset Z^*$.

Definition 2.1 (cf. [3, Definitions 1, 3]). Let C be a nonempty bounded subset of Z. We say that

• the set C is (τ_1, τ_2) -dentable if, whenever p is a τ_2 -continuous seminorm on Z and $\varepsilon > 0$, there is $x \in C$ such that

$$x \notin \overline{\mathrm{co}}^{\tau_1} \big(C \setminus \mathcal{U}_p(x,\varepsilon) \big); \tag{2.1}$$

• a point $x \in C$ is a (τ_1, τ_2) -denting point of C if, whenever p is a τ_2 -continuous seminorm on Z and $\varepsilon > 0$, one has (2.1).

Dentability in locally convex spaces with two comparable topologies has been studied in [3] and [4].

Remark 2.2. If both τ_1 and τ_2 are the norm topology, then (τ_1, τ_2) -dentability and (τ_1, τ_2) -denting points are, respectively, the ordinary dentability and ordinary denting points. If Z is a dual space, say, $Z = E^*$, τ_1 is the weak* topology on $Z = E^*$, and τ_2 is the norm topology, then (τ_1, τ_2) -dentability and (τ_1, τ_2) -denting points are, respectively, weak*-dentability and weak*-denting points.

Let us introduce some more notation. For a finite family \mathcal{F} of seminorms on Z, we define a seminorm $p_{\mathcal{F}}$ on Z by

$$p_{\mathcal{F}}(z) := \max_{p \in \mathcal{F}} p(z), \quad z \in \mathbb{Z},$$

and we write $\mathcal{U}_{\mathcal{F}}(z,\varepsilon) := \mathcal{U}_{p_{\mathcal{F}}}(z,\varepsilon)$. For a seminorm p on Z and a subset C of Z, we define

$$\operatorname{diam}_p C := \sup_{z,w \in C} p(z-w).$$

Remark 2.3. In general, $\operatorname{diam}_p C$ need not be finite. However, if C is bounded and p is norm-continuous (which is the case, e.g., whenever p is τ -continuous, where τ is a locally convex topology on Z weaker than the norm topology), then $\operatorname{diam}_p C$ is finite.

If \mathcal{F} is a finite family of seminorms on Z, then we write diam_{\mathcal{F}} instead of diam_{$p_{\mathcal{F}}$}. Recall that a family \mathcal{S} of seminorms on Z is said to *induce* the topology τ if, for every $z \in Z$, the family

$$\mathfrak{B}_{\mathcal{S}}(z) := \left\{ \mathcal{U}_{\mathcal{F}}(z,\varepsilon) \colon \mathcal{F} \text{ is a finite subfamily of } \mathcal{S} \text{ and } \varepsilon > 0 \right\}$$

is a basis of neighborhoods for z in τ , or, equivalently, the family $\mathfrak{B}_{\mathcal{S}}(0)$ is a basis of neighborhoods for 0 in τ .

The following proposition is an obvious generalization of a well-known characterization of *ordinary dentability* and *ordinary denting points*. We include its proof for the sake of completeness.

Proposition 2.4. Let Z be a Banach space, let τ_1 and τ_2 be locally convex topologies on Z such that τ_1 is weaker than τ_2 and τ_2 is weaker than the norm topology, let S be a family of seminorms on Z inducing τ_2 , and let C be a nonempty bounded subset of Z.

- (a) The following assertions are equivalent:
 - (i) C is (τ_1, τ_2) -dentable;
 - (i') whenever \mathcal{F} is a finite subfamily of \mathcal{S} and $\varepsilon > 0$, there is $x \in C$ such that

$$x \notin \overline{\mathrm{co}}^{\tau_1} (C \setminus \mathcal{U}_{\mathcal{F}}(x,\varepsilon)); \tag{2.2}$$

(ii) whenever p is a τ_2 -continuous seminorm on Z and $\varepsilon > 0$, there is a τ_1 -slice $S(z^*, \alpha, C)$ such that

$$\operatorname{diam}_{p} S(z^{*}, \alpha, C) < \varepsilon; \tag{2.3}$$

(ii') whenever \mathcal{F} is a finite subfamily of \mathcal{S} and $\varepsilon > 0$, there is a τ_1 -slice $S(z^*, \alpha, C)$ such that

$$\operatorname{diam}_{\mathcal{F}} S(z^*, \alpha, C) < \varepsilon. \tag{2.4}$$

- (b) Let $x \in C$. The following assertions are equivalent:
 - (i) x is a (τ_1, τ_2) -denting point of C;
 - (i') whenever \mathcal{F} is a finite subfamily of \mathcal{S} and $\varepsilon > 0$, one has (2.2);
 - (ii) whenever p is a τ_2 -continuous seminorm on Z and $\varepsilon > 0$, there is a τ_1 -slice $S(z^*, \alpha, C)$ containing x and satisfying (2.3);
 - (ii') whenever \mathcal{F} is a finite subfamily of \mathcal{S} and $\varepsilon > 0$, there is a τ_1 -slice $S(z^*, \alpha, C)$ containing x and satisfying (2.4).

Proof. In both (a) and (b), both (i) \Rightarrow (i') and (ii) \Rightarrow (ii') follow from the fact that each $p \in S$ is τ_2 -continuous (and thus also p_F is τ_2 -continuous). Also, in both (a) and (b), both (i') \Rightarrow (i) and (ii') \Rightarrow (ii) follow from the fact that, whenever p is a τ_2 -continuous seminorm on Z, there is a finite subfamily \mathcal{F} of S and a nonnegative real number M such that $p(z) \leq Mp_F(z)$ for every $z \in Z$.

(a): (i) \Rightarrow (ii). Assume that *C* is (τ_1, τ_2) -dentable, let *p* be a τ_2 -continuous seminorm on *Z*, and let $\varepsilon > 0$. Since *C* is (τ_1, τ_2) -dentable, there is $x \in C$ satisfying (2.1) with ε replaced by $\varepsilon/4$. By the Hahn–Banach separation theorem (see, e.g., [10, Theorem 2.2.28, p. 180]), there are $z^* \in (Z, \tau_1)'$ and $\alpha > 0$ such that

$$\operatorname{Re} z^*(x) - \alpha > \sup \operatorname{Re} z^*(\overline{\operatorname{co}}^{\tau_1}(C \setminus \mathcal{U}_p(x, \varepsilon/4))).$$

For every $z \in S(z^*, \alpha, C)$, one has

$$\operatorname{Re} z^*(z) > \sup \operatorname{Re} z^*(C) - \alpha \ge \operatorname{Re} z^*(x) - \alpha;$$

thus $z \notin C \setminus \mathcal{U}_p(x, \varepsilon/4)$, and it follows that $S(z^*, \alpha, C) \subset \mathcal{U}_p(x, \varepsilon/4)$. Thus, whenever $z, w \in S(z^*, \alpha, C)$, one has

$$p(z-w) \le p(z-x) + p(x-w) < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2},$$

and (2.3) follows.

(a): (ii) \Rightarrow (i). Assume that (ii) holds, let p be a τ_2 -continuous seminorm on Z, and let $\varepsilon > 0$. By (ii), there is a τ_1 -slice $S := S(z^*, \alpha, C)$ satisfying (2.3). Pick an arbitrary $x \in S$; then $S \subset \mathcal{U}_p(x, \varepsilon)$, and thus

$$C \setminus \mathcal{U}_p(x,\varepsilon) \subset C \setminus S = \left\{ z \in C \colon \operatorname{Re} z^*(z) \le \sup \operatorname{Re} z^*(C) - \alpha \right\}$$
$$\subset \left\{ z \in \overline{\operatorname{co}}^{\tau_1}(C) \colon \operatorname{Re} z^*(z) \le \sup \operatorname{Re} z^*(C) - \alpha \right\} =: K.$$

Since K is convex and τ_1 -closed, one has $\overline{\operatorname{co}}^{\tau_1}(C \setminus \mathcal{U}_p(x,\varepsilon)) \subset K$. Since $x \notin K$, (2.1) follows. We omit the proof of the equivalence (i) \Leftrightarrow (ii) in (b), which is not too different from that in (a).

Our special interest in (τ_1, τ_2) -denting points lies in the case when Y is a strict ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$, $Z = Y^*, \tau_1$ and τ_2 are, respectively, the weak* topology and the τ_P -topology (i.e. the $\sigma(Y^*, X_P)$ -topology) on $Y^* = Z$, and $C = B_{Y^*}$. In [9, Proposition 2.2, (iii) \Leftrightarrow (i)], we proved that y^* is a (weak*, τ_P)-denting point of B_{Y^*} if and only if y^* is an extreme point of B_{Y^*} having a unique norm-preserving extension to X. We conclude the section by proving the following proposition.

Proposition 2.5. Let Y be a strict u-ideal in X with respect to an ideal projection $P \in \mathcal{L}(X^*)$. Then

- (a) every τ_P -slice of B_{Y^*} contains a weak^{*}-slice of B_{Y^*} ;
- (b) every (τ_P, τ_P) -denting point of B_{Y^*} is a (weak^{*}, τ_P)-denting point.

For the proof of Proposition 2.5, it is convenient to state (and prove) the following two lemmas which are, respectively, a partial case (with s = 1) of [8, Lemma 4.3] and an obvious generalization of [8, Lemma 4.4]. We include their proofs for the sake of completeness.

Lemma 2.6 (cf. [8, Lemma 4.3]). Suppose that $x \in S_X$, $y \in S_Y$, and $\gamma > 0$ are such that

$$\|x - 2y\| < 1 + 2\gamma. \tag{2.5}$$

Then, whenever $\alpha > \gamma$ and P is an ideal projection for Y in X,

$$S(y, \alpha - \gamma, B_{Y^*}) \subset S(x_P, 2\alpha, B_{Y^*}).$$

$$(2.6)$$

Proof. Let $\alpha > \gamma$, and let P be an ideal projection for Y in X. Since, by (2.5), for all $y^* \in B_{Y^*}$,

$$\operatorname{Re} x_P(y^*) > 2 \operatorname{Re} y^*(y) - 1 - 2\gamma,$$

and the inequality

$$2 \operatorname{Re} y^*(y) - 1 - 2\gamma > 1 - 2\alpha$$

is equivalent to $\operatorname{Re} y^*(y) > 1 - (\alpha - \gamma)$, the inclusion (2.6) follows.

Lemma 2.7 (cf. [8, Lemma 4.4]). Let C be a nonempty bounded convex subset of a Banach space Z, let $z^* \in S_{Z^*}$, $\alpha > 0$, and $K \ge 1$, and let p be a (norm-)continuous seminorm on Z. Then

 $\operatorname{diam}_p S(z^*, K\alpha, C) \le K \operatorname{diam}_p S(z^*, \alpha, C).$

Proof. Set $d := \operatorname{diam}_p S(z^*, \alpha, C)$, and let $z_1, z_2 \in S(z^*, K\alpha, C)$. It suffices to show that $p(z_1 - z_2) \leq Kd$. To this end, set $M := \operatorname{sup} \operatorname{Re} z^*(C)$ and pick a $z_0 \in S(z^*, \alpha, C)$ such that

$$\left(1 - \frac{1}{K}\right)\left(M - \operatorname{Re} z^*(z_0)\right) < \frac{1}{K}\left(\operatorname{Re} z^*(z_j) - (M - K\alpha)\right)$$
$$= \alpha - \frac{1}{K}\left(M - \operatorname{Re} z^*(z_j)\right), \quad j = 1, 2.$$

Now put

$$u_j = \left(1 - \frac{1}{K}\right)z_0 + \frac{1}{K}z_j, \quad j = 1, 2.$$

Since

$$M - \operatorname{Re} z^{*}(u_{j}) = \left(1 - \frac{1}{K}\right) \left(M - \operatorname{Re} z^{*}(z_{0})\right) + \frac{1}{K} \left(M - \operatorname{Re} z^{*}(z_{j})\right) < \alpha,$$

one has $u_j \in S(z^*, \alpha, C), j = 1, 2$, and thus

$$p(z_1 - z_2) = p(K(u_1 - u_2)) = Kp(u_1 - u_2) \le Kd,$$

as desired.

In the proof of Proposition 2.5, we also use the following theorem which is the partial case (with $K = \{2\}, a = 1$) of [5, Lemma 2.2].

Theorem 2.8 (cf. [5, Lemma 2.2]). Let Y be an ideal in X with respect to a projection $P \in \mathcal{L}(X^*)$. The following assertions are equivalent:

- (i) P is a u-ideal projection;
- (ii) whenever $x \in S_X$, there is a net (y_{α}) in B_Y converging to x in the $\sigma(X, \operatorname{ran} P)$ -topology such that

$$\limsup_{\alpha} \|x - 2y_{\alpha}\| \le 1$$

Remark 2.9. Suppose that, in Theorem 2.8, P is a strict ideal projection. Then, in the assertion (ii), $\lim_{\alpha} ||y_{\alpha}|| = 1$, because, letting, for each $n \in \mathbb{N}$, an element $x_n^* \in \operatorname{ran} P$, $||x_n^*|| \le 1$, be such that $|x_n^*(x)| > 1 - 1/n$, one has $\liminf_{\alpha} ||y_{\alpha}|| \ge \lim_{\alpha} \inf_{\alpha} ||x_n^*(y_{\alpha})| > 1 - 1/n$.

Proof of Proposition 2.5. (a). Let $S(x_P, \alpha, B_{Y^*})$ be a τ_P -slice of B_{Y^*} . We may assume that ||x|| = 1. Letting $0 < \gamma < \alpha/2$, by Theorem 2.8 and Remark 2.9, there is $y \in S_Y$ such that $||x-2y|| < 1+2\gamma$. By Lemma 2.6, $S(y, \alpha/2 - \gamma, B_{Y^*}) \subset$ $S(x_P, \alpha, B_{Y^*})$.

(b). Let y^* be a (τ_P, τ_P) -denting point of B_{Y^*} , let p be a τ_P -continuous seminorm on Y^* , let $\varepsilon > 0$, and let $x \in S_X$ and $\alpha > 0$ be such that $y^* \in S(x_P, \alpha, B_{Y^*})$ and diam_p $S(x_P, \alpha, B_{Y^*}) < \varepsilon/2$. By Proposition 2.4 and Lemma 2.7, it suffices to show that there are $y \in S_Y$ and $\beta > 0$ with $y^* \in S(y, \beta, B_{Y^*}) \subset S(x_P, 2\alpha, B_{Y^*})$. To this end, choose $\gamma \in (0, \alpha)$ such that $y^* \in S(x_P, \alpha - \gamma, B_{Y^*})$. By Theorem 2.8 and Remark 2.9, there is $y \in S_Y$ with

$$y^* \in S(y, \alpha - \gamma, B_{Y^*})$$
 and $||x - 2y|| < 1 + 2\gamma$

By Lemma 2.6, $S(y, \alpha - \gamma, B_{Y^*}) \subset S(x_P, 2\alpha, B_{Y^*}).$

3. Bounded sets in a dual Banach space X^* are $(\sigma(X^*, E), \sigma(X^*, E))$ -dentable for every subspace E of X

In this section, we prove the following theorem.

Theorem 3.1. Let X be a Banach space, and let E be a subspace of X. Then every nonempty bounded subset of the dual space X^* is $(\sigma(X^*, E), \sigma(X^*, E))$ dentable.

Remark 3.2. If, in Theorem 3.1, the space X is separable, then the assertion follows from [4, Theorem 1, Proposition 1], because, under that assumption, every weak^{*} compact convex subset of the dual space X^* is separable in the $(\sigma(X^*, E), \sigma(X^*, E))$ -topology.

Our interest in Theorem 3.1 lies in the following corollary.

Corollary 3.3. Let Y be a strict ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$, and let E be a subspace of X. Set $E_P :=$ $\{x_P \in Y^{**}: x \in E\}$, and denote by σ_E the weak topology $\sigma(Y^*, E_P)$ on Y^* . Then every nonempty bounded subset of Y^* is (σ_E, σ_E) -dentable. In particular, every nonempty bounded subset of Y^* is (τ_P, τ_P) -dentable.

Proof. Letting D be a nonempty bounded subset of Y^* , it suffices to observe that D is (σ_E, σ_E) -dentable if and only if $J_P(D)$ is $(\sigma(X^*, E), \sigma(X^*, E))$ -dentable (in X^*), and that $\tau_P = \sigma_E$ for E = X.

Proof of Theorem 3.1. Our proof is an adaption of the proof that a Banach space, which contains a bounded non-dentable subset, does not have the Radon–Nikodým property [2, Theorem 4, p. 133].

Suppose for contradiction that X^* contains a nonempty bounded subset D which is not $(\sigma(X^*, E), \sigma(X^*, E))$ -dentable. Then, by Proposition 2.4(a), there are $\varepsilon > 0$ and a finite subset \mathcal{F} of S_E such that, for every $x^* \in D$, one has $x^* \in \overline{\mathrm{co}}^{\sigma(X^*,E)}(D \setminus \mathcal{U}_p(x^*,\varepsilon))$, where the seminorm p on X^* is defined by $p(x^*) = \max_{x \in \mathcal{F}} |x^*(x)|$ for $x^* \in X^*$. In other words,

(\sharp) whenever $x^* \in D$, $\delta > 0$, and \mathcal{G} is a finite subset of E, there are $N \in \mathbb{N}$, real numbers $\alpha_1[x^*], \ldots, \alpha_N[x^*] > 0$ with $\sum_{j=1}^N \alpha_j[x^*] = 1$, and elements $x_1^*[x^*], \ldots, x_N^*[x^*] \in D \setminus \mathcal{U}_p(x^*, \varepsilon)$ such that

$$\left| \left(x^* - \sum_{j=1}^N \alpha_j [x^*] x_j^* [x^*] \right) (x) \right| < \delta \quad \text{for all } x \in \mathcal{G}.$$

It suffices to construct partitions $\pi_n := \{I_1^n, \ldots, I_{K_n}^n\}$ $(K_n \in \mathbb{N})$ of the half-open interval [0, 1) into half-open intervals $I_1^n, \ldots, I_{K_n}^n$ and functions $f_n : [0, 1) \to X^*$, $n \in \mathbb{N}$, such that

- (1) each f_n is of the form $f_n = \sum_{k=1}^{K_n} \chi_{I_k^n} x_{n,k}^*$, where $x_{n,1}^*, \ldots, x_{n,K_n}^* \in D$;
- (2) π_{n+1} refines π_n in the sense that each interval in π_n is a finite union of intervals in π_{n+1} ;
- (3) $\max_{x \in \mathcal{F}} |x(f_n(t) f_{n+1}(t))| \ge \varepsilon$ for all $n \in \mathbb{N}$ and all $t \in [0, 1)$;
- (4) $|\int_I x(f_n f_m) d\mu| < \mu(I)/2^n$ for all $n \in \mathbb{N}$, all $m \ge n$, all $x \in \mathcal{F}$, and all $I \in \pi_n$ (here μ is the Lebesgue measure).

Indeed, assume that functions f_n and partitions π_n , $n \in \mathbb{N}$, satisfying conditions (1)-(4) have been constructed. Define, for every $I \in \bigcup_{n=1}^{\infty} \pi_n$, a functional F[I] on span $(\mathcal{F}) =: X_0$ by

$$F[I](x) = \lim_{n} \int_{I} x f_n \, d\mu, \quad x \in X_0$$

(note that (4) guarantees, for every $x \in X_0$, the sequence $(\int_I x f_n d\mu)$ to be Cauchy); then F[I] can easily be seen to be linear and bounded with $||F[I]|| \leq M\mu(I)$, where the real number $M \geq 0$ is such that $||x^*|| \leq M$ for every $x^* \in D$; thus $F[I] \in X_0^*$. For every $n \in \mathbb{N}$, let \mathcal{B}_n be the σ -algebra of subsets of [0, 1)generated by $\pi_n = \{I_1^n, \ldots, I_{K_n}^n\}$, and define a function

$$g_n := \sum_{k=1}^{K_n} \chi_{I_k^n} \frac{F[I_k^n]}{\mu(I_k^n)} \colon [0,1) \to X_0^*;$$

then (g_n, \mathcal{B}_n) is a martingale in $L_1([0, 1), X_0^*)$. Indeed, let $m, n \in \mathbb{N}, m > n$, and let $g_m = \sum_{k=1}^{K_n} \sum_{j=1}^{N_k} \chi_{I_j^{n,k}} \frac{F[I_j^{n,k}]}{\mu(I_j^{n,k})}$, where $I_k^n = \bigcup_{j=1}^{N_k} I_j^{n,k}$ with $I_j^{n,k} \in \pi_m$ for every $k \in \{1, \ldots, K_n\}$; if $k \in \{1, \ldots, K_n\}$, then

$$\int_{I_k^n} g_m \, d\mu = \int_{I_k^n} \sum_{j=1}^{N_k} \chi_{I_j^{n,k}} \frac{F[I_j^{n,k}]}{\mu(I_j^{n,k})} \, d\mu = \sum_{j=1}^{N_k} \int_{I_j^{n,k}} \frac{F[I_j^{n,k}]}{\mu(I_j^{n,k})} \, d\mu$$
$$= \sum_{j=1}^{N_k} F[I_j^{n,k}] = F[I_k^n] = \int_{I_k^n} g_n \, d\mu.$$

For every $I \in \bigcup_{n=1}^{\infty} \pi_n$, one has

$$\left\|\frac{F[I]}{\mu(I)}\right\| \le \frac{M\mu(I)}{\mu(I)} = M.$$

Thus the martingale (g_n, \mathcal{B}_n) is, in fact, L_{∞} -bounded. From (3) it follows that, for some $x \in \mathcal{F}$, the sequence (xf_n) is not Cauchy in $L_1([0, 1), \mathbb{K})$. From (4) it follows that

$$\begin{split} \int_{[0,1)} |xf_n - xg_n| \, d\mu &= \int_{[0,1)} \left| \sum_{k=1}^{K_n} \chi_{I_k^n} \Big(x_{n,k}^*(x) - \frac{F[I_k^n](x)}{\mu(I_k^n)} \Big) \right| \, d\mu \\ &= \sum_{k=1}^{K_n} \int_{I_k^n} \left| x_{n,k}^*(x) - \frac{F[I_k^n](x)}{\mu(I_k^n)} \right| \, d\mu \\ &= \sum_{k=1}^{K_n} \left| x_{n,k}^*(x) - \frac{F[I_k^n](x)}{\mu(I_k^n)} \right| \mu(I_k^n) \\ &= \sum_{k=1}^{K_n} \left| x_{n,k}^*(x)\mu(I_k^n) - F[I_k^n](x) \right| \\ &= \sum_{k=1}^{K_n} \left| \int_{I_k^n} xf_n \, d\mu - \lim_m \int_{I_k^n} xf_m \, d\mu \right| \\ &= \lim_m \sum_{k=1}^{K_n} \left| \int_{I_k^n} x(f_n - f_m) \, d\mu \right| \\ &\leq \sum_{k=1}^{K_n} \frac{\mu(I_k^n)}{2^n} = \frac{1}{2^n} \mu([0,1)) = \frac{1}{2^n}; \end{split}$$

thus also the sequence (xg_n) is not Cauchy in $L_1([0,1),\mathbb{K})$. On the other hand, since (xg_n, \mathcal{B}_n) is an L_{∞} -bounded martingale in $L_1([0,1),\mathbb{K})$, the sequence (xg_n) must converge in $L_1([0,1),\mathbb{K})$ (see, e.g., [2, Corollary 4, p. 126]), which is a contradiction.

To complete the proof, it remains to construct the functions $f_n: [0,1) \to X^*$ and partitions π_n of [0,1), $n \in \mathbb{N}$, satisfying (1)–(4). Picking an arbitrary $x^* \in D$, define $f_1 := \chi_{[0,1)}x^*$ and $\pi_1 := \{[0,1)\}$. Next suppose that, for some $n \in \mathbb{N}$, the function $f_n = \sum_{k=1}^{K_n} \chi_{I_k^n} x_{n,k}^*$, where $K_n \in \mathbb{N}$, $x_{n,1}^*, \ldots, x_{n,K_n}^* \in D$, and $I_1^n, \ldots, I_{K_n}^n$ are pairwise disjoint half-open intervals with $\bigcup_{k=1}^{K_n} I_k^n = [0,1)$, and the partition $\pi_n := \{I_1^n, \ldots, I_{K_n}^n\}$ have been defined. By (\sharp) , for every $k \in \{1, \ldots, K_n\}$, there are $N_k \in \mathbb{N}$, real numbers $\alpha_1[x_{n,k}^*], \ldots, \alpha_{N_k}[x_{n,k}^*] > 0$ with $\sum_{j=1}^{N_k} \alpha_j[x_{n,k}^*] = 1$, and elements $x_1^*[x_{n,k}^*], \ldots, x_{N_k}^*[x_{n,k}^*] \in D \setminus \mathcal{U}_p(x_{n,k}^*, \varepsilon)$ such that

$$\left| \left(x_{n,k}^* - \sum_{j=1}^{N_k} \alpha_j [x_{n,k}^*] x_j^* [x_{n,k}^*] \right) (x) \right| < \frac{1}{2^{n+1}} \quad \text{for all } x \in \mathcal{F}.$$
(3.1)

Now, if $k \in \{1, \ldots, K_n\}$ and $I_k^n = [a, b)$, then, setting $\alpha_0[x_{n,k}^*] := 0$, define half-open intervals

$$I_j^{n,k} := \left[a + (b-a) \sum_{i=0}^{j-1} \alpha_i[x_{n,k}^*], a + (b-a) \sum_{i=0}^j \alpha_i[x_{n,k}^*] \right), \quad j = 1, \dots, N_k,$$

partitions $\pi_{n+1} := \{I_j^{n,k} : k \in \{1, \ldots, K_n\}, j \in \{1, \ldots, N_k\}\}$, and functions $f_{n+1} := \sum_{k=1}^{K_n} \sum_{j=1}^{N_k} \chi_{I_j^{n,k}} x_j^* [x_{n,k}^*]$. The functions $f_n, n \in \mathbb{N}$, defined as above satisfy (1) and (3), and the partitions $\pi_n, n \in \mathbb{N}$, satisfy (2). To prove (4), let $n \in \mathbb{N}$ and $k \in \{1, \ldots, K_n\}$ be arbitrary. For every $x \in \mathcal{F}$, by (3.1),

$$\begin{split} \left| \int_{I_k^n} x(f_n - f_{n+1}) \, d\mu \right| &= \left| \mu(I_k^n) x_{n,k}^*(x) - \sum_{j=1}^{N_k} \mu(I_j^{n,k}) x_j^*[x_{n,k}^*](x) \right| \\ &= \left| x_{n,k}^*(x) - \sum_{j=1}^{N_k} \frac{\mu(I_j^{n,k})}{\mu(I_k^n)} x_j^*[x_{n,k}^*](x) \right| \mu(I_k^n) \\ &= \left| x_{n,k}^*(x) - \sum_{j=1}^{N_k} \alpha_j[x_{n,k}^*] x_j^*[x_{n,k}^*](x) \right| \mu(I_k^n) \\ &< \frac{\mu(I_k^n)}{2^{n+1}}. \end{split}$$

This establishes (4).

4. Existence of functionals in the dual unit ball of strict *u*-ideals, which admit a unique norm-preserving extension

Theorem 1.3 follows quickly from the following proposition, Proposition 2.5, and [9, Proposition 2.2].

Proposition 4.1. Let Y be a strict u-ideal in a Banach space X with respect to an ideal projection $P \in \mathcal{L}(X^*)$.

- (a) If X/Y is separable, then $B_{Y^*} = \overline{co}^{\tau_P}(\mathcal{C}_X)$, where \mathcal{C}_X is the set of functionals in S_{Y^*} having a unique norm-preserving extension to X.
- (b) If X is separable, then B_{Y^*} is the τ_P -closed convex hull of its (weak^{*}, τ_P)denting points.

Proof of Theorem 1.3. Let E be a separable subspace of X. Set $Z := \overline{\text{span}}(Y \cup E)$, and define an operator $P_0: Z^* \ni u^* \mapsto Px^*|_Z \in Z^*$, where $x^* \in X^*$ is any extension of u^* . One immediately verifies that P_0 is a strict *u*-ideal projection for Y in Z.

(a) Observing that Z/Y is separable, by Propositions 4.1(a) and 2.5(a),

$$B_{Y^*} = \overline{\operatorname{co}}^{\tau_{P_0}}(\mathcal{C}_E) \subset \overline{\operatorname{co}}^{weak^*}(\mathcal{C}_E) \subset \overline{\operatorname{co}}^{\tau_P}(\mathcal{C}_E) \subset B_{Y^*}.$$

(b) Assume that Y is separable. Then also Z is separable, and thus B_{Y^*} is the τ_{P_0} -closed convex hull of its $(weak^*, \tau_{P_0})$ -denting points by Proposition 4.1(b). As in the proof of (a), from Proposition 2.5(a), it follows that B_{Y^*} is, in fact, the τ_P -closed convex hull of its $(weak^*, \tau_{P_0})$ -denting points. It remains to observe that, by [9, Proposition 2.2, (iii) \Rightarrow (i)], every $(weak^*, \tau_{P_0})$ -denting point of B_{Y^*} is an extreme point of B_{Y^*} having a unique norm-preserving extension to Z.

Remark 4.2. Sufficient conditions in order that a convex set in a linear space with two locally convex topologies τ_1 and τ_2 were the closed convex hull of its

 (τ_1, τ_2) -denting points, have been studied in [3, Section 4]. Proposition 4.1(b) cannot be derived directly from these results because the τ_P -topology on Y^* is not quasimetrizable (and neither is the weak^{*} topology).

Proposition 4.1 is a quick consequence of the following proposition and the Hahn–Banach separation theorem.

Proposition 4.3. Let Y, X, and C_X be as in Proposition 4.1.

- (a) If X/Y is separable, then every τ_P -slice of B_{Y^*} contains a point in \mathcal{C}_X .
- (b) If X is separable, then every τ_P -slice of B_{Y^*} contains a (weak^{*}, τ_P)-denting point of B_{Y^*} .

Proof of Proposition 4.1. We only prove (a). The proof of (b) is similar with some obvious changes.

Assume that X/Y is separable, and suppose for contradiction that there is $y^* \in B_{Y^*} \setminus \overline{\operatorname{co}}^{\tau_P}(\mathcal{C}_X)$. Then, by the Hahn–Banach separation theorem (see, e.g., [10, page 180, Theorem 2.2.28]), there are $x \in X$ and a real number $\beta > 0$ such that

$$\operatorname{Re} x_P(y^*) - \beta > \sup \operatorname{Re} x_P(\overline{\operatorname{co}}^{\tau_P}(\mathcal{C}_X)),$$

and thus $\mathcal{C}_X \cap S(x_P, \beta, B_{Y^*}) = \emptyset$. This is a contradiction to Proposition 4.3(a). \Box

Proposition 4.3 follows from the following lemma.

Lemma 4.4. Let Y and X be as in Proposition 4.1, and let E be a subspace of X. Set $E_P := \{x_P \in Y^{**} : x \in E\}$, and denote by σ_E the weak topology $\sigma(Y^*, E_P)$ on Y^* . Then, whenever $S(z_P, \alpha, B_{Y^*})$ is a σ_E -slice with $z \in S_E$, p is a σ_E -continuous seminorm on Y^* , and $\varepsilon > 0$, there is a σ_E -slice $S(x_P, \beta, B_{Y^*})$ with $x \in S_E$ such that

- (1) $S(x_P, \beta, B_{Y^*}) \subset S(z_P, \alpha, B_{Y^*});$
- (2) diam_p $S(x_P, \beta, B_{Y^*}) < \varepsilon$.

Proof of Proposition 4.3. Let $S(x_{0P}, \beta_0, B_{Y^*})$ with $x_0 \in S_X$ be a τ_P -slice of B_{Y^*} .

(a) Assume that X/Y is separable. Then there is a separable subspace E_0 of X such that $X = \overline{\text{span}}(Y \cup E_0)$. Set $Z_1 := \overline{\text{span}}(E_0 \cup \{x_0\})$, and proceed as follows. Given $n \in \mathbb{N}$ and a separable subspace Z_n of X, let A_n be a countable dense subset of S_{Z_n} . For every $x \in A_n$ and every $k \in \mathbb{N}$, by Proposition 2.5(a), there are $y_{n,k}^x \in S_Y$ and $\alpha_{n,k}^x > 0$ such that $S(y_{n,k}^x, \alpha_{n,k}^x, B_{Y^*}) \subset S(x_P, 1/k, B_{Y^*})$. Set

$$B_n := \{y_{n,k}^x \colon x \in A_n, k \in \mathbb{N}\}$$
 and $Z_{n+1} := \overline{\operatorname{span}}(A_n \cup B_n).$

Set $E := \overline{\bigcup_{n=1}^{\infty} Z_n}$. Since E is separable, there are finite subsets $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ of S_E such that the union $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is dense in S_E . For every $n \in \mathbb{N}$, define a seminorm $p_n \colon Y^* \ni y^* \mapsto \max_{x \in \mathcal{F}_n} |x_P(y^*)|$. By Lemma 4.4 and our construction, we can inductively find weak*-slices $S(y_n, \gamma_n, B_{Y^*})$ and σ_E -slices $S(x_{nP}, \beta_n, B_{Y^*})$ with $y_n \in S_{Y \cap E}$ and $x_n \in S_E$ such that, for every $n \in \mathbb{N}$,

- (I) $S(x_{nP}, \beta_n, B_{Y^*}) \subset \{y^* \in B_{Y^*}: \operatorname{Re} y^*(y_n) \ge 1 \gamma_n/2\} \subset S(y_n, \gamma_n, B_{Y^*}) \subset S(x_{n-1P}, \beta_{n-1}, B_{Y^*});$
- (II) $\operatorname{diam}_{p_n} S(x_{nP}, \beta_n, B_{Y^*}) < 1/n.$

There exists $y^* \in \bigcap_{n=1}^{\infty} S(y_n, \gamma_n, B_{Y^*}) = \bigcap_{n=1}^{\infty} S(x_{nP}, \beta_n, B_{Y^*})$, because B_{Y^*} is weak* compact. One can immediately verify that this y^* is a weak*-to- σ_E point of continuity of the identity operator on B_{Y^*} , and thus a weak*-to- $\sigma(Y^*, X_P)$ point of continuity. From [9, Proposition 2.1] it now follows that $y^* \in \mathcal{C}_X$.

(b) If X is separable, then set E = X and follow the proof of (a) starting with picking the finite subsets $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ of S_E . The resulting y^* is now a $(weak^*, \tau_P)$ -denting point of B_{Y^*} .

The proof of Lemma 4.4 makes use of the following lemma.

Lemma 4.5 (cf. [3, Lemma 1], [2, Lemma 2, p. 200]). Let Z be a Banach space, let τ be a locally convex topology on Z weaker than the norm topology, let $x^* \in (Z, \tau)'$ with $||x^*|| = 1$, and let K be a nonempty closed bounded convex subset of Z such that $K \subset \{x \in Z : \operatorname{Re} x^*(x) \ge 0\}$ and $K \cap \{x \in Z : \operatorname{Re} x^*(x) > 0\} \neq \emptyset$. Suppose that every nonempty bounded subset of Z is (τ, τ) -dentable. Then, whenever p is a τ -continuous seminorm on Z and $\varepsilon > 0$, there is a τ -slice $S(y^*, \beta, K)$ with $||y^*|| = 1$ such that

(1)
$$S(y^*, \beta, K) \subset \{x \in K : \operatorname{Re} x^*(x) > 0\};$$

(2) diam $S(x^*, \beta, K) < \epsilon$

(2) diam_p $S(y^*, \beta, K) < \varepsilon$.

Proof. The lemma follows from [3, Lemma 1].

Proof of Lemma 4.4. Let $S(z_P, \alpha, B_{Y^*})$ be a σ_E -slice with $z \in S_E$, let p be a σ_E -continuous seminorm on Y^* , and let $\varepsilon > 0$. Pick $v^* \in Y^*$ so that $z_P(v^*) = \alpha - 1$, and let $C := v^* + B_{Y^*}$. Then sup $\operatorname{Re} z_P(C) = \alpha$ and thus $S(z_P, \alpha, C) = \{y^* \in C : \operatorname{Re} z_P(y^*) > 0\}$. Set $K := \{y^* \in C : \operatorname{Re} z_P(y^*) \ge 0\}$. Since, by Corollary 3.3, every nonempty bounded subset of Y^* is (σ_E, σ_E) -dentable, by Lemma 4.5, there is a σ_E -slice $S(x_P, \beta, K)$ with $x \in S_E$ such that

- (I) $S(x_P, \beta, K) \subset \{y^* \in K : \operatorname{Re} z_P(y^*) > 0\} = S(z_P, \alpha, C);$
- (II) diam_p $S(x_P, \beta, K) < \varepsilon$.

It now suffices to show that

$$S(x_P, \beta, C) \subset K,\tag{4.1}$$

because, in this case,

 $S(x_P, \beta, C) \subset S(x_P, \beta, K) \subset S(z_P, \alpha, C),$

and therefore, since $C = v^* + B_{Y^*}$, one has $S(x_P, \beta, B_{Y^*}) \subset S(z_P, \alpha, B_{Y^*})$ and

 $\operatorname{diam}_p S(x_P, \beta, B_{Y^*}) = \operatorname{diam}_p S(x_P, \beta, C) \le \operatorname{diam}_p S(x_P, \beta, K) < \varepsilon.$

Suppose for contradiction that (4.1) fails; that is, let $y^* \in S(x_P, \beta, C) \setminus K$, that is, $y^* \in C$ with

$$\operatorname{Re} x_P(y^*) > \sup \operatorname{Re} x_P(C) - \beta \ge \sup \operatorname{Re} x_P(K) - \beta$$

and $\operatorname{Re} z_P(y^*) < 0$. Letting $u^* \in S(x_P, \beta, K)$ be arbitrary, one has $u^* \in K \subset C$ and $\operatorname{Re} x_P(u^*) > \sup \operatorname{Re} x_P(K) - \beta$. Since $\operatorname{Re} z_P(u^*) > 0$ by (I), there is $\lambda \in (0, 1)$ such that, for $w^* := (1 - \lambda)y^* + \lambda u^* \in C$, one has $\operatorname{Re} z_P(w^*) = 0$; thus $w^* \in K$. Since $\operatorname{Re} x_P(w^*) > \sup \operatorname{Re} x_P(K) - \beta$, that is, $w^* \in S(x_P, \beta, K)$, one must have $\operatorname{Re} z_P(w^*) > 0$ by (I), which is a contradiction. \Box

Acknowledgments. The authors are grateful to the anonymous referees for enlightening remarks.

Martsinkevitš and Põldvere's work was partially supported by Estonian Ministry of Education and Research institutional research funding grant IUT20-57.

References

- T. A. Abrahamsen, Å. Lima, and V. Lima, Unconditional ideals of finite rank operators, Czechoslovak Math. J. 58 (2008), no. 4, 1257–1278. Zbl 1174.46003. MR2471182. DOI 10.1007/s10587-008-0085-9. 47
- J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977. Zbl 0369.46039. MR0453964. 53, 55, 58
- M. Fundo, The dentability in the spaces with two topologies, Rocky Mountain J. Math. 27 (1997), no. 4, 1117–1130. Zbl 0907.46012. MR1627678. DOI 10.1216/rmjm/1181071864. 48, 49, 57, 58
- 4. M. Fundo, Some aspects of dentability in bitopological and locally convex spaces, Rocky Mountain J. Math. 29 (1999), no. 2, 505–518. Zbl 0954.46011. MR1705473. DOI 10.1216/ rmjm/1181071649. 48, 49, 53
- G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), no. 1, 13–59. Zbl 0814.46012. MR1208038. 46, 52
- Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), no. 3, 249–263. Zbl 0826.46013. MR1330210. DOI 10.4064/ sm-113-3-249-263. 48
- V. Lima and Å. Lima, Strict u-ideals in Banach spaces, Studia Math. 195 (2009), no. 3, 275–285. Zbl 1190.46015. MR2559177. DOI 10.4064/sm195-3-6. 47
- 8. J. Lippus and M. Põldvere, Metric ideal structure in Banach spaces, preprint. 51, 52
- 9. J. Martsinkevitš and M. Põldvere, Uniqueness of norm-preserving extensions of functionals on the space of compact operators, preprint, to appear in Math. Scand. 49, 51, 56, 58
- R. E. Megginson, An Introduction to Banach Space Theory, Grad. Texts in Math. 183, Springer, New York, 1998. Zbl 0910.46008. MR1650235. DOI 10.1007/978-1-4612-0603-3. 50, 57

INSTITUTE OF MATHEMATICS AND STATISTICS, UNIVERSITY OF TARTU, J. LIIVI 2, TARTU 50409, ESTONIA.

E-mail address: julia.martsinkevits@ut.ee; mart.poldvere@ut.ee