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ABSTRACT. In this note, we formulate recent stability results for Hardy
inequalities in the language of Folland and Stein’s homogeneous groups. Conse-
quently, we obtain remainder estimates for Rellich-type inequalities on homoge-
neous groups. Main differences from the Euclidean results are that the obtained
stability estimates hold for any homogeneous quasinorm.

1. Introduction

Recall the LP-Hardy inequality

/Rn|Vf|pdx2(n;p>p/Rn%dx (1.1)

for every function f € C§°(R"), where 2 < p < n.
Cianchi and Ferone [4] showed that for all 1 < p < n there exists a constant
C = C(p,n) such that
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holds for all real-valued weakly differentiable functions f in R™ such that f and
|V f| € LP(R™) go to zero at infinity. Here

_n—p
—clx|” 7 x)
P L
c€R Hf”LP*J' (R™)

with p* = *=, and L™ (R") is the Lorentz space for 0 <7 < 0o and 1 < 0 < o0.
Sometlmes the improved versions of different inequalities, or remainder estimates,
are called stability of the inequality if the estimates depend on certain distances
(see, e.g., [1] for stability of trace theorems, [3] for stability of Sobolev inequalities,
and so forth; for more general Lie group discussions of the above inequalities, we
refer to our recent work [7]-[9] as well as the references therein).

Recently, Sano and Takahashi [11]-[14] obtained improved versions of Hardy
inequalities. The aim of this note is to formulate their results on one of the
largest classes of nilpotent Lie groups on R™, namely, homogeneous Lie groups,
since obtained results give new insights even for the Abelian groups in terms of
the arbitrariness of the homogeneous quasinorm.

2. Preliminaries

First, we briefly review some main concepts of homogeneous groups following
Folland and Stein [6] (see also recent work [2] and [5] on this topic). We also recall
a few other facts that will be used in the proofs. A connected simply connected
Lie group G is called a homogeneous group if its Lie algebra g is equipped with a
family of dilations

Dy =Exp(Aln)\) =
k=0

n(n)A)",

.«vw

where A is a diagonalizable positive linear operator on g and every D, is a mor-
phism of g; that is,

VXY €g,A>0, [DyX,D,Y]=D,X,Y]

holds. We recall that @ := Tr A is called the homogeneous dimension of G. The
Haar measure on a homogeneous group G is the standard Lebesgue measure for
R™ (see, e.g., [5, Proposition 1.6.6]).

Let | - | be a homogeneous quasinorm on G. Then the quasiball centered at
x € G with radius R > 0 is defined by

B(z,R) :={y€G: |z 'y| < R}.

We refer the reader to [6] for the proof of the following important polar decompo-
sition on homogeneous Lie groups, which can also be found in [5, Section 3.1.7].
There is a (unique) positive Borel measure o on the unit quasisphere

p={zeG:|z|=1}, (2.1)
so that for every f € L'(G) we have

/f dx—/ /fry Lo (y)dr. (2.2)
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We use the notation

Rf(z) = Ryq f(2) d

= ga/ @ =RI@), VeeG, (2:3)

for any homogeneous quasinorm |x| on G. We will also use the following result.

Lemma 2.1 ([10, Theorem 3.1]). Let G be a homogeneous group of homogeneous
dimension Q. Let | -| be any homogeneous norm on G. Then for u € C3°(G\ {0})

and ug = u(Ry;), we have

H U — UR

<2 : 1l *5* Rul|, ) 1<p < o0, (2.4)

Q
|x|p log% LP(G) p

for all R > 0, and the constant £~ is sharp.
p
We will also use the following known relations.

Lemma 2.2. Let a,b € R. Then
(i) we have
la = b" —|al’ > —plal'"ab, p>1;
(i) there exists a constant C' = C(p) > 0 such that
la =0 —|a|” > —pla’~ab+ C[bI, p =2
(iii) ifa >0 and a —b >0, then
(@ —b)P +paP~'b—a? > |b]P, p>2.

3. Stability of L’-Hardy inequalities

Let us set
Ju(e) — R u(RE) 2|5 |1
dy(u; R) == / 2] dz)”, x€G,R>0.
" ( G |2 [P|log ([P )

Theorem 3.1. Let G be a homogeneous group of homogeneous dimension (). Let
|- | be any homogeneous quasinorm on G. Then there exists a constant C' > 0 for
all real-valued functions u € C§°(G), and we have

_ P
/ |Rul? dx — (Qp p>p/ [ dr > Csupdy(u; R), 2<p<Q, (3.1)
G G

|z[P R>0
where R = ﬁ 18 the radial derivative.
Proof of Theorem 3.1. Let us introduce polar coordinates x = (r,y) = (||, Ii_l) €
(0,00) x o on G, where p is the unit quasisphere
p:={reG:|z|=1}, (3.2)

and
Q-p

v(ry) ==r 7 u(ry), (3.3)
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where u € C§°(G). It follows that v(0) = 0 and lim, ., v(ry) = 0 for y € p since
u is compactly supported. Using the polar decomposition on homogeneous groups
(see (2.2)) and integrating by parts, we get

_ p
D: = / |Rul|P dx — (u>p Mcl:z:
G p G |@[?

Fre-t <—Q;p>p|u(ry)|perl dr dy
Q Q-p O

B e R e
= [ 15 e =

_ <—p)p|v(ry) |p7’_1 dr dy.

p
TQ’1

Now using the second relation in Lemma 2.2 with the choice a = =2£r

p
and b =717 2 v(ry), and making use of the fact that [~ |[v|P~*v(Zv)dr = 0,

we obtain
D= [ [T () el et goton) (3.4)

0 P
p—1
+ C" —6rv(ry) P~ dr dy (3.5)

= C’/ |2[P~9|Ru|P da.
G

Finally, combining (3.4) and Lemma 2.1, we arrive at

DZC/@\U( ) —v(R) //OO lw(ry —URiyﬂ iy (36)

|$|Q|10g| ‘|p r|log
* Ju(ry) = R u(Ry)r~ 7|
C/ / T1+p Ql log R’p d?” dy
for any R > 0. This proves the desired result. 0

4. Stability of critical Hardy inequalities

In this section, we establish a stability estimate for the critical Hardy inequality
involving the distance to the set of extremizers. Let us denote
Q-1

frr(x) = T%U<R6_%i> <log E) < (4.1)
and the following “distance”

don(wsT.R) o= ( [ ulw) el 40)%, (12)

BoR) [z|?[log %|Q\Tlog |7R\‘Q

for some parameter 7' > 0 and functions w and fr g for which the integral in (4.2)
is finite.
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Theorem 4.1. Let G be a homogeneous group of homogeneous dimension () > 2.
Let | -| be any homogeneous quasinorm on G. Then there exists a constant C > 0
for all real-valued functions uw € C§°(B(0, R)), and we have

Q-1y0 ju(z)|
o R = (557) ﬁmRMW®g%Q“

> C'sup d%, (u; T, R), (4.3)

T>0

where R = diz' 1s the radial derivative.

Proof of Theorem /. 1. Introducing coordinates (r,y) = (|z], |I‘) € (0,00)p on G,

where @ is the sphere as in (3.2), we have u(x) = u(ry) € C§°(B(0,R)). In
addition, let us set

v(sy) = <log R)QQIU(MJ), Yy € p, (4.4)

s=s(r):= (log §>_1.

Since u € C§°(B(0, R)), we have v(0) = 0 and v has a compact support. Moreover,
it is straightforward that

where

1

Duten =~ (%) (s B4 (Y L

A direct calculation gives

Q—1\@ [ul®
S —/ Ru|?de — ( S—— / —d;z:
OR)‘ | ( Q ) s(.x) |22 (log 1)

— D

Q-1 (QQ )QJZ((E%Q dr dy
// rlog %)év(sy) + (T log ?) QQ_l%v(sy)s'(r) ¢
- ;f'ifii?'Q

Now by applying the second relation in Lemma 2.2 with the choice

-1 _1 Q-1
a= QQ (r log g) “o(sy) and b= (r log g) ¢ %v(sy)s'(r),
and by using the fact that U(O) = 0 and lim, ,o v(ry) = 0, we obtain
Q _
s>//’ o) |2 o(sy) ()< ()

el (sy)‘Q(s’( ) (rlog R>Q_1 dr dy
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= [ E ) el e S0

Q 1 RN\@-1
+C‘—U Sy ‘ W(rlog ?) dr dy
- - Q Q* 0 /
-/ [ =) e ot 2otowys
) ¢ 1
+ C‘&’U(Sy)‘ Wé’ (7”) dr dy

) // Q(25)" e uts) 5ol

0 Q
Q-1
+C" Sv(sy)‘ s dsdy

= C'/ |Rv|“ da,
G

that is,

S > C’/ |Rv|“ da. (4.5)

G
According to Lemma 2.1 with v € C5°(G\{0}) with p = @ and (4.5), it implies
that
v - o0 — Q
Szc/l() (TEpl® // [v(sy) — v( y)\ ds dy
o g e S[log T
Q7

_g//RHOg T u(ry) = T°@ u(Re~ty)|? dr dy
log )| 1og(T log )|

—1
_C//R lu(ry) = T°@ u(Re~Ty)(log #) " | drdy
r(log £)@| log(T log %)|2 '

Thus, we arrive at
fu(z) — T°T u(Re ) (log &) %" |

dx
B(0,R) ||| log |7R\‘Q| log(T'log %)‘Q

S>C

for all T' > 0. The proof is complete. OJ

5. Improved critical Hardy and Rellich inequalities
for radial functions

Proposition 5.1. Let G be a homogeneous group of homogeneous dimension
Q > 2. Let | - | be a homogeneous quasinorm on G. Let ¢ > 0 be such that

—alg L) = %HLHSQ (5.1)
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for =1 < L < @ — 2. Then for all real-valued positive nonincreasing radial func-
tions u € C3°(B(0, R)), we have

Q—1\@ Ju(z)[“
Rul®dr — [ 2—= —d
/B(O,R) | u‘ ‘ ( Q ) /B(O,R) ’$‘ (IOg [z \) !

Q@ lu(z)|? ¢
> |p|1 a (' / o dr ), (5.2)
< B(o,r) |7|9(log ﬁ—\)a )

where |p| is the measure of the unit quasisphere in G and

1 Q-1
Ct=C(L,Q,q)" ::/ 3L<10g 1) % s
0 8

—(L+1) q“’r(%q + 1);

here T'(+) is the gamma function.

Proof of Proposition 5.1. As in previous proofs, we set

Q-1
v(s) = <10g %) ® u(r), wherer = |z|,s = s(r) = (log @> , (5.3)
Sl S(T)‘Re O
rlog £

Simply, we have v(0) = v(1) = 0 since u(R) = 0; moreover,

) = ~(Z2) (o ) 7D 4 (1 N o (s 0)
<0. (5.4)

It is straightforward that

—1\@Q |u|Q
[::/ Rul? dx — / —dx
o (*3") . |x|@<1og >
Q Q
i [ (€2 [ ke

’@’/ €1 log&> 7 us(r) <log&) v’(s('r))s'(r))QrQldr

T
) ||/
log

By applying the third relation in Lemma 2.2 with

o= Q-1 <log E) 2 u(s(r) and b= <log E) Tv’(s(r))s’(r),
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and dropping a? > 0 as well as using the boundary conditions v(0) = v(1)

we get

I> —|p]Q<QQ 1) /ORv(s(r))Q_lv’(s(r))s’(r) dr

+ ol / o)) (r tog ) ar

— —lplQ( Ql) /ORv(s(r))Q‘lv’<s<r>)s'<r>dr

+ ’@’/ (10; )Q<r10g %)Q_ldr
- -wie(%5 1) /0 () (s() )
ol [ s100) )05 )

- —|p|@(7‘1)“ / () () ds
+ | gl /01 ’v'(s)|QsQ_1 ds

1
:|p\/ !v’(s)‘QsQflds.
0

Moreover, by using the inequality

lo(s)| = St dt‘

1 1 Q-1
< ([ e ) o)
0 S
we obtain

1 1 q 1 Q-1
q_L 1N Q.0-1 1.\ @ L 1\“ge
/0 |vu(s)|"s" ds < (/0 V()]s ds) /0 s (log s> ds

for —1 < L < ) — 2. Thus, we have

1 s Q
/ ‘v’(s)|QsQ’1 ds > CQ@ </ |v(s)|*s" ds) "
0

Now it follows from ) and (5.9) that

(5.
1= el ( O |v |q5Ld3> — |p|C (/j%dr)

r(log =€)
|u(z)|? 7
(o Tetos 27 )"

where a = a(q, L) = %q + L + 2. The proof is complete.

1

1
/ t)dt‘ -

<O

1-

»Q\@

Ca

Y'a)

= |p|
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The method used in the previous section also allows one to obtain the following
stability inequality for Rellich-type inequalities.
Proposition 5.2. Let G be a homogeneous group of homogeneous dimension (.
Let | - | be a homogeneous quasinorm on G, and let p > 1. Let k > 2,k € N, be
such that kp < Q. Then for all real-valued radial functions u € C§°(G), we have

\RUV’ Jul?
¢ |z|6=2p ¢ |z !’“p
p—2 _ kp
>pr/uu DI ule) = RE ) ule] P
= O 2o log £2 |
where .
7éf:732f+Q|T_|Rf

is the Rellich-type operator on G, and Ky, = Q- kp)[(k_p%)pﬂp_l)@}.

Proof of Proposition 5.2. For k > 2,k € N and kp < @, let us set

v(r) = rQ;kPu(r), where r € [0, 00). (5.11)
Thus, v(0) = 0 and v(oco0) = 0.
We have
kp—Q Q-1 kp—Q

—7~2u:—7€2(r P (r))—TR(r v o(r))

__R(=Q ey,
= R( 5 r v(r) +r Rv(r))

—1kp— p— — 1 k-
_@ P Qr¥7lv(7“) _@ T¥Rv(r)
r P r
kp—Q rkp—Q kp=Q g kp—Q r-o_4
= — —1)r » “o(r)— r v Rou(r
() () == (r)
- LS R(r) - U RA)
—1kp— p— 1 ko
_¢ P Qr%_lv(r) ©- P Ro(r)
r p
e o (kp—Q)(kp—Q—p) (Q@—1)(kp—Q)
=—r r 2( - + » )v(r)
2(kp — @
= (R + 1 (s (- ) Ru)
= 2% (Kppo(r) — r27~€kv(r)),
where
. L. 2k+ 92
Rif=Rf+ rp Rf
and Ky, = (kap)[(kfp?pﬂp*l)q. By using the first inequality in Lemma 2.2 with

a = Ky(r) and b = r?Ryu(r), and the fact that [ [v[P~?vv'dr = 0 since
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v(0) = 0 and v(co0) = 0, we obtain

Rul? [
o T &2 T R | o

=lol [ |Ru1 s~ Kol [ Jutr) v

= |¢| /OOO(|Kk,pv(r) — r27~2kv(r)}p — (Kkypv(r))p)r_l dr

J = dx

o0
> plp| K / o2 R dr
0

Q(p—2)
2k + »

0 1
——plolty [P+ o)rdr
0

(o]
:—p|gg|K,f;1/ lv[P~2v0"r dr.
0

On the other hand, we have
—/ |v]p2vv”rdr:(p—1)/ lv[P~2 (v )rdr—i—/ [v[P~2v0’ dr
0 0 0
—(p-1) [P prar
0

= 4(pp; 2 /000 <p;2>2|v|p_2(v’)2dr
202D % o

p

= 4(])—;1)/0 ((|0]"7) v+ |o|"7 ') rdr

p

= Zl(p—gl)/o |<|v|p77271)/‘27‘d7‘

p
4(]3—1)/ =2\ 12
— 2R dz,
2|2 Gz‘ (|U| : U)‘ X

where G, is a homogeneous group of homogeneous degree 2 and |p,| is the mea-

r

sure of the corresponding unit 2-quasiball. By using Lemma 2.1 for |vl¥v €
C°(Ga \ {0}) in the p = @ = 2 case, and combining the above equalities, we
obtain

raa @) F (@) — (R FoREE

2 log £ P

o ()=o) — B oB)E

r|log E|2

00 —2 _Q—kp
o [P I ) - R R (R
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for any R > 0. That is,

p=2 Q—kp p—2 _Q—kp
3 cop [ IEITHD  FF WD Lol P,
- R>0JG |f75|kp|10g\7R||2
The proof is complete. O
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