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Communicated by J. Chmieliński

Abstract. We construct a topology on the standard Hilbert module l2(A)
over a unital W ∗-algebra A such that any “compact” operator (i.e., any oper-
ator in the norm closure of the linear span of the operators of the form
x 7→ z〈y, x〉) maps bounded sets into totally bounded sets.

1. Introduction

Given a unitalW ∗-algebra A, we consider the standard Hilbert module denoted
by l2(A) (the notation HA is also widespread)

l2(A) =
{
x = (ξ1, ξ2, . . . )

∣∣∣ ξj ∈ A,
+∞∑
j=1

ξ∗j ξj converges in the norm topology
}
,

equipped with the A-valued inner product

l2(A)× l2(A) 3 (x, y) 7→
+∞∑
j=1

ξ∗j ηj ∈ A, x = (ξ1, ξ2, . . . ), y = (η1, η2, . . . ).

Since an arbitraryA-linear bounded operator on l2(A) does not need to have an
adjoint, the natural algebra of operators is Ba(l2(A))—the algebra of all A-linear
bounded operators on l2(A) having an adjoint. It is known that Ba(l2(A)) is a
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C∗-algebra. Also, Ba(M) is a W ∗-algebra whenever M is a self-dual module over
a W ∗-algebra.

Among all operators in Ba(l2(A)), those that belong to the linear span of the
operators of the form x 7→ Θy,z(x) = z〈y, x〉 (y, z ∈ l2(A)) are called finite-rank
operators. The norm closure of finite-rank operators is known as the algebra
of all “compact” operators. The quotation marks are usually written in order
to emphasize the fact that “compact” operators do not map bounded sets into
relatively compact sets, as is the case in the framework of Hilbert (and also
Banach) spaces, though they share many properties of proper compact operators
on a Hilbert space (see [6], [7]). (For general literature concerning Hilbert modules
over more general C∗-algebras, including the standard Hilbert module, the reader
is referred to [5] or [8].)

The aim of this article is to introduce a locally convex topology on l2(A), where
A is a unital W ∗-algebra, such that any “compact” operator maps bounded sets
(in the norm) into totally bounded sets in the introduced topology. In a very
special case, where A ∼= B(H) denotes the algebra of all bounded operators on a
Hilbert space, the converse is also true. Namely, any operator T ∈ Ba(l2(A)) that
maps bounded sets into totally bounded sets is “compact.” Therefore, speaking
freely, we can omit the quotation marks.

2. Preliminaries

Let us recall some basic definitions and facts concerning uniform spaces (for
more details, see [1] or [4]). Uniform spaces are those topological spaces in which
one can deal with notions such as Cauchy sequence, Cauchy net, or uniform
continuity. Although it is usual to define them as spaces endowed with a family
of sets in X×X given as some kind of neighborhoods of the diagonal, or so-called
entourages, for our purposes it is more convenient to give an equivalent definition
via a family of semimetrics.

Definition 2.1. A nonempty set endowed with a family of semimetrics, functions
dα : X × X → [0,+∞) satisfying (i) dα(x, y) ≥ 0, (ii) dα(x, y) = dα(y, x), and
(iii) dα(x, z) ≤ dα(x, y) + dα(y, z) is called a uniform space. All dα’s are metrics,
except they do not need to distinguish points, that is, there might be dα(x, y) = 0
for some x 6= y. However, it is provided that for all x 6= y there is an α such that
dα(x, y) > 0.

The family of sets Bdα(x; ε) = {y ∈ X | dα(x, y) < ε} makes a basis for some
topology. It is well known that a topological space X is a uniform space if and
only if it is completely regular.

Let X be a uniform space. We say that a net xi ∈ X is a Cauchy net if it is a
Cauchy net with respect to all dα’s; that is, if for all α’s and for all ε > 0 there
is i0 such that, for all i, j > i0, we have dα(xi, xj) < ε. The notion of a complete
uniform space is defined in an obvious way.

A set A ⊆ X is called totally bounded if for all ε > 0 and all α’s there is a finite
set c1, c2, . . . , cm ∈ X such that sets Bα(cj; ε) = {y ∈ X | dα(cj, y) < ε} cover A.
It is well known that any relatively compact set is totally bounded and that the
converse is true provided that X is complete. If X is not complete, then there are
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totally bounded sets that are not relatively compact, for instance, Q ∩ [0, 1] as a
subset of Q. (See also [1, Remark 4.2.2].)

Any locally convex topological vector space is a uniform space. Indeed, there
is a family of seminorms generating its topology. This family can be obtained by
Minkowski functionals of basic neighborhoods of zero. And an arbitrary seminorm
defines a semimetric in a natural way. Conversely, any family of seminorms that
distinguishes points leads to a locally convex Hausdorff topological vector space.
Hence, a family of seminorms allows us to deal with notions such as totally
bounded set, complete space, Cauchy net, and so on.

3. Topology

For an arbitrary HilbertW ∗-module M, Paschke in his initial works on Hilbert
C∗-modules [9], [10] and Frank in [2] introduced two topologies, τ1 and τ2, the first
of them generated by functionals x 7→ ϕ(〈y, x〉), y ∈ M, ϕ normal state, and the
second by seminorms p(x) = ϕ(〈x, x〉)1/2, ϕ normal state. Frank proved that M is
self-dual if and only if the unit ball in M is complete in τ1 (and this is equivalent
to the completeness in τ2). Therefore, if M = l2(A) is a standard Hilbert module,
it is not complete either in τ1 or in τ2, since l

2(A) is never self-dual, except in the
case where A is a finite-dimensional algebra. We will refer to τ1 and τ2 as weak
Paschke–Frank (PF ) and strong PF topologies, since obviously τ1 ⊂ τ2.

However, we need a topology which is between a weak and a strong PF topology.
Namely, on a standard Hilbert module l2(A), where A is a unital W ∗-algebra, we
define a locally convex topology τ by the family of seminorms

pϕ,y(x) =

√√√√+∞∑
j=1

∣∣ϕ(η∗j ξj)∣∣2, (3.1)

where ϕ is a normal state, x = (ξ1, ξ2, . . . ) ∈ l2(A), and y = (η1, η2, . . . ) is a
sequence of elements in A such that

sup
j≥1

ϕ(η∗j ηj) = 1. (3.2)

(Note that y does not need to belong to l2(A).)

Proposition 3.1. Seminorms (3.1) are well defined; that is, the series is con-
vergent. Also, τ1 ⊂ τ ⊂ τ2.

Proof. Since (ξ, η) 7→ ϕ(η∗ξ) is a semi-inner product, we have |ϕ(η∗j ξj)|2 ≤
ϕ(ξ∗j ξj)ϕ(η

∗
j ηj). By this and by (3.2), we have

pϕ,y(x)
2 =

+∞∑
j=1

∣∣ϕ(η∗j ξj)∣∣2 ≤ +∞∑
j=1

ϕ(ξ∗j ξj)ϕ(η
∗
j ηj) ≤

+∞∑
j=1

ϕ(ξ∗j ξj) = ϕ
(
〈x, x〉

)
. (3.3)

This proves that seminorms (3.1) are well defined, and also that τ ⊂ τ2.
To prove τ1 ⊂ τ , pick y ∈ l2(A), y = (η1, η2, . . . ). The sequence ζj given by

ζj = ηj/ϕ(η
∗
j ηj)

1/2 if ϕ(η∗j ηj) 6= 0, and ζj = 0 otherwise, obviously fulfills (3.2).
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Hence

∣∣ϕ(〈y, x〉)∣∣ = ∣∣∣ϕ(+∞∑
j=1

η∗j ξj

)∣∣∣ = ∣∣∣+∞∑
j=1

ϕ(η∗j ηj)
1/2ϕ(ζ∗j ξj)

∣∣∣
≤

(+∞∑
j=1

ϕ(η∗j ηj)
)1/2(+∞∑

j=1

∣∣ϕ(ζ∗j ξj)∣∣2)1/2

= ϕ
(
〈y, y〉

)1/2
pϕ,z(x),

finishing the proof. �

Remark 3.2. The dual module of the module M is defined as the module of all
A-linear and A-valued bounded functionals. It is denoted by M′. The module
M always can be embedded in M′ via M 3 y 7→ Λy ∈ M′, Λy(x) = 〈y, x〉. If
this embedding is onto, the module M is called self-dual. It is worth mentioning
that the problem of self-duality, even if the underlying algebra A is commutative,
is still actual (see, e.g., some recent results [3, Theorem 3.3(2)], [11, Theorems
4.5 and 4.6]). It is also well known that l2(A) is not self-dual, except when the
algebra A is finite-dimensional. Namely, l2(A)′ can be described as the module of
all sequences x = (ξ1, ξ2, . . . ) such that the sequence of sums

∑n
j=1 ξ

∗
j ξj is norm

bounded (see [8, Proposition 2.5.5]). A careful reading of the proof of Proposi-
tion 3.1 reveals that nothing is changed if we replace l2(A) by l2(A)′. Indeed, the
entire proof does not depend on the norm convergence of the series

∑+∞
j=1 ξ

∗
j ξj.

Proposition 3.3. The unit ball in l2(A) is not complete with respect to τ unless
A is finite-dimensional. Its completion is the unit ball in the dual module l2(A)′.

Proof. First, we prove that the unit ball in l2(A) is dense in the unit ball in l2(A)′.
Let x ∈ l2(A)′, x = (ξ1, ξ2, . . . ). Since the sequence of sums

∑n
j=1 ξ

∗
j ξj is bounded,

it is convergent in strong (or weak, ultraweak, etc.) topology. By normality of ϕ
we have

ϕ
(+∞∑

j=1

ξ∗j ξj

)
=

+∞∑
j=1

ϕ(ξ∗j ξj),

implying that ϕ(
∑+∞

j=n ξ
∗
j ξj) → 0, as n → +∞. Thus, by the inequality (3.3)

(ξ1, ξ2, . . . , ξn, 0, 0, . . . ) → x in each seminorm of the form (3.1).
Next, we prove that l2(A)′ is complete. Let xα = (ξα1 , ξ

α
2 , . . . ) be a Cauchy net

in the unit ball. Choosing an arbitrary normal state, with ηk = 1, ηj = 0 for
j 6= k, we obtain that ξαk is a Cauchy net in the weak-∗ topology in the unit ball
in A. Hence, it is convergent, say, ξαk → ξk in the weak-∗ topology.

Since multiplying is ultraweakly continuous, for any n ∈ N and for all ηj which
satisfy (3.2), we have

k∑
j=1

∣∣ϕ(η∗j ξαj )∣∣2 → k∑
j=1

∣∣ϕ(η∗j ξj)∣∣2.
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Choosing ηj = ξj/ϕ(ξ
∗
j ξj)

1/2 if ϕ(ξ∗j ξj) 6= 0 and ηj = 0 otherwise, we get

k∑
j=1

ϕ(ξ∗j ξj) =
k∑

j=1

∣∣ϕ(η∗j ξj)∣∣2 = lim
α

k∑
j=1

∣∣ϕ(η∗j ξαj )∣∣2 ≤ ‖x‖ ≤ 1.

Taking the limit as k → +∞, we conclude that x = (ξ1, ξ2, . . . ) ∈ l2(A)′. To see
that x is the limit of the Cauchy net xα, it is enough to take the limit over β in

k∑
j=1

∣∣ϕ(η∗j ξαj )− ϕ(η∗j ξ
β
j )
∣∣2 ≤ +∞∑

j=1

∣∣ϕ(η∗j ξαj )− ϕ(η∗j ξ
β
j )
∣∣2 < ε,

and finally the limit as k → +∞. �

Next, we want to study the restriction of τ to the module An seen as a sub-
module of l2(A) consisting of those x for which ξj = 0 for all j > n.

Proposition 3.4.

(a) On An, the weak PF and our topology coincide; that is, we have τ1|An =
τ |An.

(b) The embedding i : An → l2(A), i(ξ1, . . . , ξn) = (ξ1, . . . , ξn, 0, . . . ), is con-
tinuous with respect to (τ |An , τ).

Proof. (a) We already have τ1 ⊆ τ . Let us prove the converse. An arbitrary
seminorm of the form (3.1) restricted to An has the form

pϕ,y(x) =

√√√√ n∑
j=1

∣∣ϕ(η∗j ξj)∣∣2.
Consider the vectors yj = (0, . . . , 0, ηj, 0, . . . , 0), where ηj is the jth entry. Then

pϕ,y(x) =

√√√√ n∑
j=1

∣∣ϕ(〈yj, x〉)∣∣2 ≤ n∑
j=1

∣∣ϕ(〈yj, x〉)∣∣,
from which we conclude that pϕ,y is continuous with respect to τ1.

(b) One can easily check that

i−1
({
x
∣∣ pϕ,η1,...,ηn,...(x) < ε

})
=

{
(ξ1, . . . , ξn)

∣∣ pϕ,η1,...,ηn(ξ1, . . . , ξn) < ε
}
. �

Proposition 3.5. The unit ball in An is compact with respect to τ |An. Since An

is self-dual, the unit ball is also complete and hence totally bounded.

Proof. In the case n = 1, both topologies τ and τ1 are generated by seminorms
ξ 7→ |ϕ(η∗ξ)|, η ∈ A, ϕ normal state. It is easy to verify that these topologies are
exactly the weak-∗ topology on A. Therefore, in this special case the conclusion
follows by the Banach–Alaoglu theorem.

To obtain the result in the general case, consider the product topology on
An = A × · · · × A. Basic neighborhoods of zero have the form {(ξ1, ξ2, . . . , ξn) |
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∀j = 1, 2, . . . , n|ϕj(η
∗
j ξj)| < εj}. Due to the inequalities

max
1≤j≤n

∣∣ϕ(η∗j ξj)∣∣ ≤
√√√√ n∑

j=1

∣∣ϕ(η∗j ξj)∣∣2 ≤ √
n max

1≤j≤n

∣∣ϕ(η∗j ξj)∣∣,
the topology τ is weaker than the product topology. Since the product of unit balls
is compact in stronger product topology, and since τ is Hausdorff, we conclude
that τ coincides with the product topology on the product of unit balls. Therefore,
it remains to show that the unit ball in An is closed in the product of n unit balls
in A, that is, that its complement is open.

Let z = (ζ1, . . . , ζn) ∈ An, ‖z‖ > 1, be arbitrary. Let ε > 0 be a number less
than (‖z‖2 − ‖z‖)/2

√
n, and let ϕ be the normal state that attains its norm at

〈z, z〉 = ζ∗1ζ1 + · · · + ζ∗nζn up to ε
√
n; that is, ϕ(〈z, z〉) > ‖z‖2 − ε

√
n. Consider

the seminorm

pϕ,z(x) =

√∣∣ϕ(ζ∗1ξ1)∣∣2 + · · ·+
∣∣ϕ(ζ∗nξn)∣∣2, x = (ξ1, ξ2, . . . , ξn).

We claim that the open set

G =
{
x
∣∣ pϕ,z(x− z) < ε

}
does not intersect the unit ball B. Indeed, let x ∈ G. Then by the classic Cauchy–
Schwarz inequality, we have

ε2 > pϕ,z(x− z)2 =
∣∣ϕ(ζ∗1ξ1)− ϕ(ζ∗1ζ1)

∣∣2 + · · ·+
∣∣ϕ(ζ∗nξn)− ϕ(ζ∗nζn)

∣∣2
≥ 1

n

∣∣ϕ(ζ∗1ξ1) + · · ·+ ϕ(ζ∗nξn)− ϕ(ζ∗1ζ1)− · · · − ϕ(ζ∗nζn)
∣∣2

or

ε
√
n >

∣∣ϕ(ζ∗1ξ1 + · · ·+ ζ∗nξn)− ϕ
(
〈z, z〉

)∣∣
≥ ‖z‖2 − ε

√
n−

∣∣ϕ(ζ∗1ξ1 + · · ·+ ζ∗nξn)
∣∣;

that is,

‖z‖2 − 2ε
√
n <

∣∣ϕ(ζ∗1ξ1 + · · ·+ ζ∗nξn)
∣∣ = ∣∣ϕ(〈z, x〉)∣∣. (3.4)

However, ϕ(〈z, x〉) is a semi-inner product and it satisfies the Cauchy–Schwarz
inequality ∣∣ϕ(〈z, x〉)∣∣2 ≤ ϕ

(
〈z, z〉

)
ϕ
(
〈x, x〉

)
≤ ‖z‖2‖x‖2. (3.5)

From (3.4) and (3.5) we obtain

‖z‖‖x‖ > ‖z‖2 − 2ε
√
n,

and taking into account how ε is chosen, we have

‖x‖ > 1

‖z‖
(
‖z‖2 − 2ε

√
n
)
> 1.

Therefore, x /∈ B, implying that B is a closed set. The proof is complete. �

Proposition 3.6. The unit ball in l2(A) is not totally bounded in τ .
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Proof. Let ej = (0, . . . , 0, 1, 0, . . . ), where 1 (the unit of the algebra A) stands at
the jth entry. Let ϕ be an arbitrary normal state, and consider the seminorm p =
pϕ,1,1,... given by p(x)2 =

∑+∞
j=1 |ϕ(ξj)|2. We claim that the sequence ej is totally

discrete in p. Indeed, p(ei−ej)2 = |ϕ(1)|2+ |ϕ(−1)|2 = 2; that is, p(ei−ej) =
√
2.

Hence, the set {ej | j ≥ 1} is not totally bounded in p and also in τ . The same is
valid for a larger set—the unit ball. �

4. “Compact” operators

Let y, z ∈ l2(A). The operator l2(A) → l2(A), x 7→ z〈y, x〉 is adjointable (its
adjoint is x 7→ y〈z, x〉) and bounded. The closed linear hull of such operators is
called the algebra of “compact” operators. We say that the operator T ∈ Ba(l2(A))
is compact if its image of any (norm) bounded set is a totally bounded set in the
topology τ described in Section 3. For the operator T ∈ Ba(l2(A)), it is enough
to map the unit ball into a totally bounded set to be a compact operator.

Remark 4.1. Totally bounded and relatively compact sets differ in the general
case (whenever the unit ball is not complete). Also, throughout the literature,
there is a certain ambiguity between the terms completely continuous, compact,
and precompact when applied to operators. Although it seems that the terms
completely continuous and precompact are more accurate, we found that compact
is more convenient for our purposes.

Before we prove that any “compact” operator is compact, we need a few lemmas

Lemma 4.2. For S, T ⊆ l2(A) and a seminorm p, denote

dp(S, T ) = sup
x∈S

inf
y∈T

p(x− y)

(and note that dp is not symmetric). Let S ⊆ l2(A). If for all seminorms p of the
form (3.1) and all ε > 0 there is a totally bounded set Sp,ε such that

dp(S, Sp,ε) < ε, (4.1)

then S is also totally bounded.

Proof. Denote

Bp(x; ε) =
{
y ∈ l2(A)

∣∣ p(x− y) < ε
}
.

The condition (4.1) gives

S ⊆
⋃

x∈Sp,ε/2

Bp(x; ε/2), (4.2)

for all ε > 0. Let ε > 0 be arbitrary. The set Sp,ε/2 is totally bounded in p and
hence there is a finite set {c1, . . . , cm} such that the union of balls Bp(cj; ε/2)
covers Sp,ε/2. By (4.2), the union of balls Bp(cj; ε) covers S. �

Lemma 4.3. Let Tα : l2(A) → l2(A) be a net of compact operators such that
Tαx→ Tx in τ uniformly with respect to ‖x‖ < 1. Then T is also compact.
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Proof. For any ε > 0 and any seminorm p of the form (3.1), there is α such that
sup‖x‖<1 p(Tx− Tαx) < ε. Therefore,

dp
(
T
(
B‖·‖(0; 1)

)
, Tα

(
B‖·‖(0; 1)

))
≤ ε

and the conclusion follows from Lemma 4.2. �

Corollary 4.4. Let S ⊆ l2(A) be a set such that, for all ε > 0, there is a totally
bounded (in τ) set Sε such that

d(S, Sε) = sup
x∈S

inf
y∈Sε

‖x− y‖ < ε.

Then S is also totally bounded in τ . Also, let Tn : l2(A) → l2(A) be a sequence
of compact operators that converges to T in the operator norm. Then T is also
compact.

Proof. Both conclusions follow from the fact that τ is coarser than the norm
topology. �

Lemma 4.5. Let T1 and T2 be compact operators, and let u1, u2 ∈ A. Then
T1u1 + T2u2 is also compact.

Proof. Let ε > 0 be arbitrary. Since T1 and T2 are compact there is a finite ε/2‖u1‖
net for T1(B‖·‖(0; 1)), say, c1, c2, . . . , cn, and a finite ε/2‖u2‖ net for T2(B‖·‖(0; 1)),
say, d1, . . . , dm. Then the set {ciu1+ dju2 | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a finite ε net
for (T1u1 + T2u2)(B‖·‖(0; 1)). Indeed, if x ∈ B‖·‖(0; 1), then there is i and j such
that ‖T1x− ci‖ < ε/2‖u1‖ and ‖T2x− dj‖ < ε/2‖u2‖. Hence∥∥(T1xu1 + T2xu2)− (ciu1 + dju2)

∥∥ ≤ ‖T1x− ci‖‖u1‖+ ‖T2x− dj‖‖u2‖ < ε. �

Theorem 4.6. Let T : l2(A) → l2(A) be a “compact” operator. Then T is
compact.

Proof. In view of Lemmas 4.3 and 4.5, it is enough to prove that operators of
the form x 7→ Θy,z(x) = z〈y, x〉 are compact. In the special case, where z = ejζ,
ζ ∈ A, it immediately follows from Proposition 3.5. Indeed, then Θy,ejζ(B‖·‖(0; 1))
is contained in the ball of radius ‖Θy,ejζ‖ in A1 which is totally bounded. In the

general case, let z = (ζ1, ζ2, . . . ). Then z =
∑+∞

j=1 ejζj, where the series converges

in the norm. Since ‖Θy,z −Θy,z′‖ ≤ ‖y‖‖z − z′‖, we have

Θy,z = lim
n→+∞

n∑
j=1

Θy,ejζj

and the conclusion follows from the special case and Lemmas 4.3 and 4.5. �

Remark 4.7. In the case where A is only a C∗-algebra and not a W ∗-algebra, we
cannot use Proposition 3.5 since it relies on the property that A has a predual.
Moreover, the definition of the topology τ becomes inappropriate since it uses
the notion of normal state. Of course, we can substitute normal states by general
states. However, states (not necessarily normal) belong to the dual, not to the
predual, and hence they do not generate weak-∗ topology on the single algebra A.
Thus, we have no compactness results. Nevertheless, we hope that something can
be done using the enveloping W ∗-algebra A∗∗, but we leave this for future work.
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The converse is true in the special case where A = B(H) is the full algebra of
all bounded linear operators on a Hilbert space H. Before we prove such a result,
we need a technical lemma.

Lemma 4.8. Let A = B(H), and let aj ∈ A, j ≥ 1 be positive elements with
‖aj‖ > δ. There is a normal state ϕ and unitary elements uj, vj ∈ A such that
|ϕ(v∗jajuj)| > δ.

Remark 4.9. Actually, we can choose ϕ to be a vector state, and we can also
choose uj = vj.

Proof. Let ψ ∈ H be a unit vector, and let ϕ be the corresponding vector state,
that is, ϕ(a) = 〈aψ, ψ〉. For all aj let hj be a unit vector such that 〈ajhj, hj〉 > δ.
As is easy to see, there is a unitary uj such that ujψ = hj. Thus, we have
ϕ(u∗jajuj) = 〈u∗jajujψ, ψ〉 = 〈ajhj, hj〉 > δ. �

Theorem 4.10. Let A = B(H), and let T : l2(A) → l2(A) be a compact operator.
Then T is “compact.”

Proof. Let Pk denote the projection to the first k coordinates, that is, Pk(ξ1, ξ2,
. . . ) = (ξ1, . . . , ξk, 0, 0, . . . ). It is well known that all Pk’s are “compact.”

Suppose that T is not “compact.” Then

δ = inf
k≥1

∥∥(I − Pk)T
∥∥ > 0.

Indeed, otherwise either for some k we have (I −Pk)T = 0 and hence T = PkT is
“compact,” or there is a sequence of positive integers kn such that ‖T −PknT‖ →
0, from which it follows that T is “compact.”

To simplify the calculations, assume that ‖T‖ = 1. Then immediately, δ ≤ 1.
Define the sequence of projections Qn ∈ {P1, P2, . . . } and the sequences of

vectors xn, yn, and zn ∈ l2(A) in the following way. Let Q0 = 0. If Qn−1 is already
defined, there is xn ∈ l2(A) such that ‖xn‖ = 1 and ‖(I − Qn−1)Txn‖ > δ/2.
Denote yn = Txn. Then, by ‖I −Qn−1‖ = 1,

‖yn‖ ≥
∥∥(I −Qn−1)yn

∥∥ > δ

2
.

Since limk→+∞ ‖(I − Pk)(I − Qn−1)yn‖ = 0, there is a positive integer kn such
that ‖(I − Pkn)(I −Qn−1)yn‖ < δ2/8 ≤ δ/8. Define Qn = Pkn and

zn = Qn(I −Qn−1)yn. (4.3)

The sequences yn and zn have the following properties. First, by definition, the
inequalities ∥∥(I −Qn)(I −Qn−1)yn

∥∥ < δ2

8
≤ δ

8
, (4.4)

‖zn‖ ≤ ‖yn‖ ≤ ‖T‖‖xn‖ = 1, (4.5)

‖zn‖ ≥
∥∥(I −Qn−1)yn

∥∥−
∥∥(I −Qn)(I −Qn−1)yn

∥∥ > δ

2
− δ

8
=

3δ

8
(4.6)

hold. Second,

〈zn, yn〉 = 〈zn, zn〉. (4.7)
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Indeed, since zn = Qn(I −Qn−1)yn, we have

〈zn, yn〉 =
〈
Qn(I −Qn−1)yn, yn

〉
=

〈
Qn(I −Qn−1)yn, (I −Qn−1)Qnyn

〉
= 〈zn, zn〉.

Third, for m > n, we have ∥∥〈zm, yn〉∥∥ < δ2

8
. (4.8)

Indeed, for such m and n, we have Qn−1 ≤ Qn ≤ Qm−1; that is, I − Qm−1 ≤
I − Qn ≤ I − Qn−1, implying that I − Qm−1 = (I − Qm−1)(I − Qn)(I − Qn−1),
and thus that

〈zm, yn〉 =
〈
(I −Qm−1)zm, yn

〉
=

〈
zm, (I −Qm−1)(I −Qn)(I −Qn−1)yn

〉
=

〈
zm, (I −Qn)(I −Qn−1)yn

〉
.

Therefore, by (4.4) and (4.5),∥∥〈zm, yn〉∥∥ ≤ ‖zm‖
∥∥(I −Qn)(I −Qn−1)yn

∥∥ ≤ δ2

8
.

Let us construct a seminorm p, continuous in τ , and a totally discrete sequence
from T (B‖·‖(0; 1)). Since by (4.6) ‖zn‖2 = ‖〈zn, zn〉‖ > (3δ/8)2, we can choose ϕ
and υj, νj ∈ A according to Lemma 4.8 such that

ϕ
(
υ∗n〈zn, zn〉νn

)
>

9δ2

64
. (4.9)

Consider the seminorm p given by

p(x) =

√√√√+∞∑
j=1

∣∣ϕ(〈zjυj, x〉)∣∣2.
By (4.3) there is a sequence ζj ∈ A such that

zk = (0, . . . , 0, ζkn−1+1, . . . , ζkn , 0, . . . ).

Define ωj = ζjυn/ϕ(υ
∗
nζ

∗
j ζjυn)

1/2, for j = kn−1+1, . . . , kn. Obviously ϕ(ω∗
jωj) = 1.

Also, for x = (ξ1, ξ2, . . . ) we have

∣∣ϕ(〈znυn, x〉)∣∣2 = ∣∣∣ kn∑
j=kn−1+1

ϕ(υ∗nζ
∗
j ζjυn)

1/2ϕ(ω∗
j ξj)

∣∣∣2
≤

kn∑
j=kn−1+1

ϕ(υ∗nζ
∗
j ζjυn)

kn∑
j=kn−1+1

∣∣ϕ(ω∗
j ξj)

∣∣2
= ϕ

(
υ∗n〈zn, zn〉υn

) kn∑
j=kn−1+1

∣∣ϕ(ω∗
j ξj)

∣∣2.
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Including (4.5), we obtain ϕ(υ∗n〈zn, zn〉υn) ≤ ‖υ∗n〈zn, zn〉υn‖ = ‖zn‖2 ≤ 1, and
hence

p(x)2 =
+∞∑
n=1

∣∣ϕ(〈znυn, x〉)∣∣2 ≤ +∞∑
j=1

∣∣ϕ(ω∗
j ξj)

∣∣2 = pϕ,ω1,...,ωn,...(x)
2.

Thus, we conclude that p is well defined and also that it is continuous with respect
to τ . Also, ‖xnνn‖ = ‖xn‖; that is, ynνn = Txnνn ∈ T (B(0; 1)). Finally, we prove
that ynνn is a totally discrete sequence. Indeed, for m > n, we have

p(ymνm − ynνn) ≥
∣∣ϕ(〈zmυm, ymνm − ynνn〉

)∣∣
≥

∣∣ϕ(υ∗m〈zm, ym〉νm)∣∣− ∣∣ϕ(υ∗m〈zm, yn〉νn)∣∣.
However, by (4.7) and (4.9),∣∣ϕ(υ∗m〈zm, zm〉νm)∣∣ > 9δ2

64

and, by (4.8), ∣∣ϕ(υ∗m〈zm, yn〉νn)∣∣ ≤ ∥∥〈zm, yn〉∥∥ < δ2

8
.

Therefore,

p(ymνm − ynνn) >
9δ2

64
− δ2

8
=
δ2

64
. �

5. An example and a comment

The proof of Theorem 4.10 depends on Lemma 4.8. Hence it is valid for all
unital W ∗-algebras that satisfy the mentioned lemma. We do not know how to
describe such algebras, but it should be noted that Lemma 4.8 does not hold for
infinite-dimensional commutative W ∗-algebras.

Example 5.1. In any infinite-dimensional commutative W ∗-algebra A, there is a
sequence pj of nontrivial mutually orthogonal projections. Since

∑n
j=1 pj is an

increasing sequence, p =
∑+∞

j=1 pj ∈ A. Therefore, for an arbitrary normal state

ϕ, the series
∑+∞

j=1 ϕ(pj) is convergent. The algebra is commutative, and for all
unitary υj, νj, we have∣∣ϕ(υjpjνj)∣∣ = ∣∣ϕ(pjυjνj)∣∣ ≤ ϕ(pj)

1/2ϕ(ν∗j υ
∗
jυjνj)

1/2 → 0.

Thus, Lemma 4.8 is not valid for commutative W ∗-algebras. Moreover, we can
use this sequence of projections to construct an operator which is compact, but
is not “compact.” Indeed, let T : l2(A) → l2(A) be the operator defined by

Tx = T (ξ1, ξ2, . . . ) = (p1ξ1, p2ξ2, . . . ).

Then, T is not “compact.” Indeed, if it is “compact,” for all ε > 0 there is
an operator S of the form S =

∑n
j=1 λjΘyj ,zj such that ‖T − S‖ < ε/3. Since

Pkzj − zj → 0, as k → +∞ for all 1 ≤ j ≤ n implies ‖PkS − S‖ → 0, there
is k large enough such that ‖PkS − S‖ < ε/3 and then ‖T − PkT‖ ≤ ‖T −
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S‖+ ‖S − PkS‖+ ‖Pk(S − T )‖ < ε. However, as it is easy to see, ‖T − PkT‖ ≥
‖Tek+1 − PkTek+1‖ = ‖pk‖ = 1.

On the other hand, for an arbitrary seminorm of the form (3.1), we have
p((T − PkT )x) → 0 uniformly with respect to x ∈ B‖·‖(0; 1). Indeed, A is
commutative and therefore ξ∗j ξjη

∗
j ηj ≤ ‖ξj‖2η∗j ηj; furthermore, ϕ(ξ∗j ξjη

∗
j ηj) ≤

‖ξj‖2 supj ϕ(η
∗
j ηj) ≤ 1, by ‖x‖ < 1 and (3.2). Thus, we have

p
(
(T − PkT )x

)2
=

+∞∑
j=k+1

∣∣ϕ(η∗jpjξj)∣∣2 ≤ ∑
j>k

ϕ(pj)ϕ(ξ
∗
j ξjη

∗
j ηj) ≤

∑
j>k

ϕ(pj) → 0.

Hence, T is compact by Lemma 4.3.

Remark 5.2. The topology τ defined in this article highly depends on coordinates,
and therefore it is inappropriate for Hilbert modules other than l2(A). One might
try to define a topology by seminorms

pϕ,zj(x) =

√√√√+∞∑
j=1

∣∣ϕ(〈zj, x〉)∣∣2, (5.1)

where ϕ is a normal state and zj is an orthogonal sequence, that satisfies
supj≥1 ϕ(〈zj, zj〉) = 1. These seminorms are generalizations of those given by

(3.1). Indeed, seminorms (5.1) become seminorms (3.1) by choosing zj = ejηj.
However, such new topology is in the case of l2(A) larger than τ , even if we

suppose that zj is moreover orthonormal. Namely, if A = B(H), H infinite-
dimensional, there is a Cuntz ∞-tuple, that is, a sequence of isometries vj satis-

fying v∗j vj = 1 and
∑+∞

j=1 vjv
∗
j = 1. Then, it is easy to see that xj = (vj, 0, 0, . . . )

is orthonormal. But in the seminorm pϕ,xj
of the form (5.1), the sequence xj itself

is totally discrete.
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