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Abstract. Let A and B be commutative Banach algebras. Then a multi-
plicative linear functional θ on B induces a multiplication on the Cartesian
product space A × B given by (a, b)(c, d) = (ac + θ(d)a + θ(b)c, bd) for all
(a, b), (c, d) ∈ A × B. We show that this Lau product is stable with respect
to the spectral properties like the unique uniform norm property, the spectral
extension property, the multiplicative Hahn–Banach property, and the unique
semisimple norm property under certain conditions on θ.

1. Introduction

Let A and B be Banach algebras, and let θ be a multiplicative linear functional
on B. Then the product space A× B is a Banach algebra with the product

(a, b)(c, d) =
(
ac+ θ(d)a+ θ(b)c, bd

) (
(a, b), (c, d) ∈ A× B

)
and the norm ∥∥(a, b)∥∥ = ‖a‖+ ‖b‖

(
(a, b) ∈ A× B

)
.

This Banach algebra is called the Lau product of A and B and is denoted by
A ×θ B. This product was introduced by Lau [10] for certain classes of Banach
algebras and was extended by Sangani Monfared [14] for the general case. Many
Banach algebra properties of A ×θ B are studied in [1], [7], [9], [14], and [15].
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The product A×θ B generalizes the unitification process of adjoining identity by
taking B = C and θ(λ) = λ. We note that A×θ B is commutative if and only if
both A and B are commutative.

In this paper, we investigate the spectral properties of the commutative Banach
algebra A ×θ B arising out of investigation of incomplete algebra norms (see
[4], [5], [11], [12]). These properties include the unique uniform norm property
(UUNP), the spectral extension property (SEP), the multiplicative Hahn–Banach
property (MHBP), and the unique semisimple norm property (USNP). These
properties have turned out to be of relevance in the general theory of Banach
algebras (see [8], [13]). This paper is aimed at investigating the stability of A×θB
with respect to these properties. Not all the results turned out to be along the
expected lines, and the techniques involved working with the permanent Gelfand
space consisting of all those multiplicative linear functionals which are continuous
with respect to all algebra norms. These spectral properties describe some features
of the permanence nature of a normable algebra (see [11], [12], [16]), but it is not
known whether or not the UUNP implies SEP (see [5]).

When A and B are Banach algebras, and T : B → A is an algebra homomor-
phism with ‖T‖ ≤ 1, then A× B is a Banach algebra with the multiplication

(a, b)(c, d) =
(
ac+ aT (d) + T (b)c, bd

) (
(a, b), (c, d) ∈ A× B

)
and the norm ∥∥(a, b)∥∥ = ‖a‖+ ‖b‖

(
(a, b) ∈ A× B

)
.

This Banach algebra is denoted by A×T B [2]. When A is unital with the identity
e, then A×T B = A×θ B with T (b) = θ(b)e (b ∈ B).

2. The Shilov boundary

IfA and B are commutative Banach algebras, then the Gelfand space ∆(A×θB)
of A ×θ B is the union of the sets E = {(ϕ, θ) : ϕ ∈ ∆(A)} and F = {(0, ψ) :
ψ ∈ ∆(B)} (see [14, Proposition 2.4]). The topologies on E,F and E ∪ {(0, θ)}
are the induced topology from ∆(A×θ B).

Let A be a commutative Banach algebra, and let Ae = A×C be the unitization
of A. Hence ∆(Ae) = {ϕ̃ : ϕ ∈ ∆(A)} ∪ {ϕ∞}, where ϕ̃(a, λ) = ϕ(a) + λ,
and ϕ∞(a, λ) = λ for all (a, λ) ∈ Ae. Define the maps f : ∆(A) → E by

f(ϕ) = (ϕ, θ), g : ∆(B) → F by g(ψ) = (0, ψ), and f̃ : ∆(Ae) → E ∪ {(0, θ)}
by f̃(ϕ̃) = (ϕ, θ) and f̃(ϕ∞) = (0, θ). If ϕ ∈ ∆(A), a1, a2, . . . , an ∈ A and ε > 0,
then by U(ϕ, a1, a2, . . . , an, ε) we mean the set {ψ ∈ ∆(A) : |ψ(ai) − ϕ(ai)| <
ε for all i = 1, 2, . . . , n}.

Proposition 2.1. If A, B are commutative Banach algebras and θ ∈ ∆(B), then
the functions f , f̃ and g are homeomorphisms.

Proof. Clearly f , f̃ , and g are bijections. Let U(ϕ̃, (a1, λ1), . . . , (an, λn), ε) be a
basic open set containing ϕ̃ ∈ ∆(Ae). Let bi ∈ B be such that θ(bi) = λi for all
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i = 1, 2, . . . , n. Then

f̃
(
U
(
ϕ̃, (a1, λ1), . . . , (an, λn), ε

))
= U

(
(ϕ, θ), (a1, b1), . . . , (an, bn), ε

)
∩
(
E ∪

{
(0, θ)

})
,

which is a basic open set in E ∪ {(0, θ)} containing (ϕ, θ).
If U((ϕ, θ), (a1, b1), . . . , (an, bn), ε)∩ (E∪{(0, θ)}) is a basic open set containing

(ϕ, θ) ∈ E ∪ {(0, θ)}, then

(f̃)−1
(
U
(
(ϕ, θ), (a1, b1), . . . , (an, bn), ε

)
∩
(
E ∪

{
(0, θ)

}))
= U

(
ϕ̃,

(
a1, θ(b1)

)
, . . . ,

(
an, θ(bn)

)
, ε
)

is a basic open set in ∆(Ae) containing ϕ̃.
If U(ϕ∞, (a1, λ1), . . . , (an, λn), ε) is a basic open set containing ϕ∞ ∈ ∆(Ae),

then

f̃
(
U
(
ϕ∞, (a1, λ1), . . . , (an, λn), ε

))
= U

(
(0, θ), (a1, b1), . . . , (an, bn), ε

)
∩
(
E ∪

{
(0, θ)

})
is a basic open set in E ∪ {(0, θ)} containing (0, θ), where θ(bi) = λi for all i.
In addition, if U((0, θ), (a1, b1), . . . , (an, bn), ε) ∩ (E ∪ {(0, θ)}) is a basic open set
containing (0, θ) ∈ E ∪ {(0, θ)}, then

(f̃)−1
(
U
(
(0, θ), (a1, b1), . . . , (an, bn), ε

)
∩
(
E ∪

{
(0, θ)

}))
= U

(
ϕ∞,

(
a1, θ(b1)

)
, . . . ,

(
an, θ(bn)

)
, ε
)

is a basic open set in ∆(Ae) containing ϕ∞. Thus f̃ is a homeomorphism.

Since f̃ |∆(A) = f , we have that f is a homeomorphism. If U(ψ, b1, . . . , bn, ε) is
a basic open set in ∆(B) containing ψ, then

g
(
U(ψ, b1, . . . , bn, ε)

)
= U

(
(0, ψ), (0, b1), . . . , (0, bn), ε

)
∩ F

is a basic open set in F containing (0, ψ). If U((0, ψ), (a1, b1), . . . , (an, bn), ε) is a
basic open set in F containing (0, ψ), then

g−1
(
U
(
(0, ψ), (a1, b1), . . . , (an, bn), ε

))
= U(ψ, b1, . . . , bn, ε)

is a basic open set in ∆(B) containing ψ. Hence g is a homeomorphism. �

The last result implies that E ∪ {(0, θ)} is homeomorphic to ∆(Ae) and that
F is homeomorphic to ∆(B).

Let X be a locally compact Hausdorff space, and let A be a subalgebra of
C0(X) which strongly separates the points of X. A subset M of X is a boundary
of A if, for every f ∈ A, there is y ∈ M such that |f(y)| = sup{|f(x)| : x ∈
X} = ‖f‖∞. The intersection of all closed boundaries of A, which is a boundary
[8, Theorem 3.3.2], is called the Shilov boundary of A. It is denoted by ∂(A).

Let A be a commutative Banach algebra, and let Γ : A → C0(∆(A)), Γ(a) = â,
be the Gelfand representation of A. The set ∂(Γ(A)) is considered the Shilov
boundary of A and is denoted by ∂(A). We now see the relation between the
Shilov boundaries of A, B and A×θ B.
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Theorem 2.2. Let A and B be commutative Banach algebras and let θ ∈ ∆(B).
Then ∂(A×θ B) \ {(0, θ)} = (f(∂(A)) ∪ g(∂(B)) \ {(0, θ)}.

Proof. We may identify an element ϕ ∈ ∆(A) with the element ϕ̃ of ∆(Ae). Let
ϕ /∈ ∂(A). Since ∂(A) = ∆(A) ∩ ∂(Ae) (see [8, Remark 3.3.8]), there is an open

set U ⊂ ∆(Ae) containing ϕ such that ‖(̂a, λ)|U‖∞ ≤ ‖(̂a, λ)|Uc‖∞ for all (a, λ) ∈
Ae, where U

c is the complement of U in ∆(Ae). Consequently ‖(̂a, b)|f(U)‖∞ ≤
‖(̂a, b)|f(Uc)‖∞ ≤ ‖(̂a, b)|f(U)c‖∞ for all (a, b) ∈ A×θ B. Hence (ϕ, θ) /∈ ∂(A×θ B).
Thus if (ϕ, θ) ∈ ∂(A×θ B), then ϕ ∈ ∂(A).

If we let ϕ ∈ ∂(A), then, for any neighborhood U of (ϕ, θ) not containing (0, θ),
there exists a ∈ A such that

‖â|∆(A)\f−1(U)‖∞ < ‖â|f−1(U)‖∞.

Thus sup{|(ϕ, θ)(a, 0)| : (ϕ, θ) ∈ ∆(A×θB)\U} < sup{|(ϕ, θ)(a, 0)| : (ϕ, θ) ∈ U}.
It is the same as ‖(̂a, 0)|∆(A×θB)\U‖∞ < ‖(̂a, 0)|U‖∞; therefore (ϕ, θ) ∈ ∂(A×θ B).

Let (0, θ) 6= (0, ψ) ∈ ∂(A×θ B). If U is a neighborhood of ψ in F not contain-
ing θ, then there exists (a, b) ∈ A×θ B such that∥∥(̂a, b)|∆(A×θB)\g(U)

∥∥
∞ <

∥∥(̂a, b)|g(U)

∥∥
∞;

that is, max{sup{|ϕ(a) + θ(b)| : ϕ ∈ ∆(A)}, sup{|ψ(b)| : ψ ∈ ∆(B) \ U} <
sup{|ψ(b)| : ψ ∈ U}. Hence sup{|ψ(b)| : ψ ∈ ∆(B) \ U} < sup{|ψ(b)| : ψ ∈ U},
which means that ψ ∈ ∂(B).

Let θ 6= ψ ∈ ∂(B). If U is a neighborhood of ψ not containing θ, then there
exists b ∈ B such that

‖b̂|∆(B)\g−1(U)‖∞ < ‖b̂|g−1(U)‖∞;

that is, sup{|ψ(b)| : ψ ∈ ∆(B)\g−1(U)} < sup{|ψ(b)| : ψ ∈ g−1(U)}, which means
that sup{|(0, ψ)(0, b)| : (0, ψ) ∈ ∆(B) \ U} < sup{|(0, ψ)(0, b)| : (0, ψ) ∈ U}.
Hence ‖(̂0, b)|∆(A×θB)\U‖∞ < ‖(̂0, b)|U‖∞, and (0, ψ) ∈ ∂(A×θ B). �

Proposition 2.3. Let A and B be commutative Banach algebras, let θ ∈ ∆(B),
and let (0, θ) ∈ ∂(A×θ B). Then ϕ∞ ∈ ∂(Ae), or (0, θ) ∈ ∂(A×θ B) \ {(0, θ)}.

Proof. Suppose that (0, θ) /∈ ∂(A×θ B) \ {(0, θ)}. Let U be a neighborhood of

ϕ∞ in ∆(Ae). Since g is a homeomorphism, we have θ /∈ ∂(B) \ {θ}. Consider
∆(B) as a part of ∆(Be). Since ∆(Be) is compact, ∂(B) \ {θ} is a compact subset
of ∆(Be). Since topology on ∆(Be) is Hausdorff, we have open sets V and V ′ such

that θ ∈ V , and (∂(B) \ {θ})∪{φ∞} ⊂ V ′, and V ′∩V = ∅. Since φ∞ /∈ V , we have
that V is a precompact subset of ∆(B). Since V c is closed, it is a compact subset
of ∆(Be). By similar arguments we have open sets S and S ′ such that θ ∈ S,
and V c ⊂ S ′ and S ∩ S ′ = ∅. Hence S ⊂ V , where V is a precompact subset of
∆(B), and (∂(B) \ {θ}) ∩ S = ∅. Note that the set W = f(U) ∪ g(S) ∪ {(0, θ)}
is a neighborhood of (0, θ) and that W is compact. Since (0, θ) ∈ ∂(A ×θ B),
there exists (a, b) ∈ A ×θ B such that ‖(̂a, b)|W‖∞ > ‖(̂a, b)|W c‖∞. Also, since

W is precompact, ‖(̂a, b)|W‖∞ is attained at some point in W . If ‖(̂a, b)|W‖∞
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is not attained at any point of W ∩ (f(∆(A)) ∪ {(0, θ)}), then there is ϕ ∈
W \ (f(∆(A)) ∪ {(0, θ)}) = g(S) \ {(0, θ)}, and ϕ ∈ ∂(A×θ B). This contradicts
the fact that (∂(B) \ {θ}) ∩ S = ∅. Thus ‖(̂a, b)|W‖∞ is attained at some point

of W ∩ (f(∆(A)) ∪ {(0, θ)}), which shows that ‖ ̂a+ θ(b)|U‖∞ > ‖ ̂a+ θ(b)|Uc‖∞.
Hence ϕ∞ ∈ ∂(Ae). �

Remark 2.4. Note that θ ∈ ∂(B) and (0, θ) ∈ ∂(A×θ B) are not related to each
other. This can be seen from the following examples.

(1) Let A = C0[0, 1), and let B = A(D). Let θ = φ0 ∈ ∆(A(D)), where φx(f) =
f(x) for all f ∈ A(D). It follows from Theorem 2.2 that (φx, θ) ∈ ∂(A×θ B) for
every φx ∈ ∆(A) and that (0, φy) ∈ ∂(A×θ B) for every φy ∈ ∆(B) with |y| = 1.
If we let U be any neighborhood of (0, θ) in ∆(A ×θ B), then f−1(U) ∪ {φ∞}
is a neighborhood of φ∞ ∈ ∆(Ae). If we now consider h ∈ C0[0, 1) such that
‖h|f−1(U)∪{φ∞}‖∞ > 0, and h|f−1(Uc) = 0, then ‖h|f−1(U)‖∞ = ‖(h, 0)|U‖∞ > 0 =
‖(h, 0)|Uc‖∞. Hence (0, θ) ∈ ∂(A×θ B), but θ /∈ ∂(B) = ∂(A(D)).

(2) Let A = {f ∈ A(D) : f(0) = 0}, B = C and θ(λ) = λ. Then the Shilov
boundary of A is T, and the Shilov boundary of A×θ B = A×θ C = Ae = A(D)
is T. Hence θ ∈ ∂(B) = ∂(C) = {θ}, but (0, θ) /∈ ∂(A×θ B).

(3) LetA be a commutative Banach algebra with identity e. Let B be a commu-
tative Banach algebra, and let θ ∈ ∆(B). Then A×θB is isometrically isomorphic
to the perturbed product A ×T B, where T : B → A is defined by T (b) = θ(b)e
(b ∈ B). By [6, Lemma 2.6], ∂(A) ∪ ∂(B) ∼= ∂(A×T B).

3. Uniqueness of uniform norm and spectral extension property

Let (A, ‖ · ‖) be a commutative Banach algebra. A norm | · | (not necessarily
complete) on A is a uniform norm if |a2| = |a|2 (a ∈ A). The Banach algebra A
has unique uniform norm property (UUNP) if it has exactly one uniform norm
(see [5], [4], [6]). A subset F of ∆(A) is a set of uniqueness if |a|F = sup{|ϕ(a)| :
ϕ ∈ F} is a norm on A. Let r(a) be the spectral radius of an element a of a
Banach algebra. We will prove the following.

Theorem 3.1. Let A and B be semisimple commutative Banach algebras, and
let θ ∈ ∆(B). Then we have the following.

(1) If A and B have UUNP, then A×θ B has UUNP.
(2) If we suppose that A×θ B has UUNP, then A has UUNP. Moreover, if θ

is continuous with respect to every uniform norm on B, then B also has
UUNP.

The proof of Theorem 3.1 will follow Lemma 3.5. The following gives a relation
between sets of uniqueness of A, B and A×θ B.

Lemma 3.2. Let A and B be commutative Banach algebras, and let θ ∈ ∆(B).
(1) If M is a set of uniqueness for A×θB, then f−1(M) is a set of uniqueness

for A, and g−1(M) ∪ {θ} is a set of uniqueness for B.
(2) IfM andM ′ are sets of uniqueness for A and B, respectively, then f(M)∪

g(M ′) is a set of uniqueness for A×θ B.
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Proof. (1) Let a ∈ A, and let â(f−1(M)) = {0}. Thus (̂a, 0)(M) = {0}. Since
M is a set of uniqueness for A ×θ B, we have a = 0. Hence f−1(M) is a set of

uniqueness for A. If b ∈ B, and b̂(g−1(M) ∪ {θ}) = {0}, then (̂0, b)(M) = {0}.
Since M is a set of uniqueness for A×θ B, b = 0, we have that g−1(M)∪ {θ} is a
set of uniqueness for B.

(2) If (a, b) ∈ A×θB, and (̂a, b)(f(M)∪g(M ′)) = {0}, then b̂(M ′) = {0}. Since
M ′ is a set of uniqueness for B, we have b = 0, and (̂a, 0)(f(M) ∪ g(M ′)) = {0}
implies that â(M) = {0}. Since M is a set of uniqueness for A, we have a = 0.
Hence f(M) ∪ g(M ′) is a set of uniqueness for A×θ B. �

We use the following result to show that UUNP is stable with respect to the
Lau product.

Theorem 3.3 ([4, Theorem 2.3]). If we let A be a semisimple commutative
Banach algebra, then the following are equivalent.

(1) A has UUNP.
(2) ∂A is the smallest closed set of uniqueness.
(3) If F ⊂ ∆(A) is closed and not containing ∂A, then there exists a ∈ A

such that r(a) > 0, and â|F = 0.

Lemma 3.4. Let A be a semisimple commutative Banach algebra such that A
has UUNP, and ∂(A) is a compact subset of ∆(A). Then ϕ∞ ∈ ∂(Ae) if and only
if A has identity.

Proof. Assume that ϕ∞ ∈ ∂(Ae). The set K = ∂(A) is a closed subset of ∆(Ae),
and it does not contain ϕ∞. Since A has UUNP, it holds that Ae has UUNP
(see [3, Theorem 3.1]). Thus by Theorem 3.3 there exists (a, λ) ∈ Ae such that

(̂a, λ)|K = 0, and r(a, λ) 6= 0. Hence ϕ(a) = −λ for all ϕ ∈ ∆(A). The case
λ = 0 is not possible if λ = 0. In that case, a = 0; hence (a, λ) = (0, 0). Since A is
semisimple and ϕ(b+ 1

λ
ab) = ϕ(b)+ϕ( 1

λ
ab) = ϕ(b)+ϕ( 1

λ
a)ϕ(b) = ϕ(b)−ϕ(b) = 0

for all b ∈ A, and ϕ ∈ ∆(A), the element −1
λ
a is the identity for A.

If A has identity e, then for any neighborhood U of φ∞ we have (−e, 1) ∈ Ae

such that ‖(̂−e, 1)|U‖∞ = 1, and ‖(̂−e, 1)|Uc‖∞ = 0. Hence φ∞ ∈ ∂(Ae). �

Lemma 3.5. Let A be a semisimple commutative Banach algebra, and let | · | be
a uniform norm on A. For a ∈ A, let |a|op = sup{|ab| : b ∈ A, |b| ≤ 1}. Then
| · |op is a norm on A, and | · |op = | · |.

Proof. Since A is semisimple, | · |op is a norm on A, and | · |op ≤ | · |. If a ∈ A,
then |a|2 = |a2| ≤ |a|op|a|; therefore | · | ≤ | · |op. �

Proof of Theorem 3.1. (1) Let A and B have UUNP. Let K be a closed subset of
∆(A×θ B) not containing ∂(A×θ B).

If K does not contain at least one element (ϕ, θ) of ∂(A ×θ B), then f−1(K)
is a closed subset of ∆(A) not containing ϕ ∈ ∂(A). Therefore by Theorem 3.3

there exists a nonzero a ∈ A such that â|f−1(K) = 0. Consequently (̂a, 0)|K = 0,
and (a, 0) is nonzero.
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If K does not contain at least one element (0, ψ) of ∂(A ×θ B) with (0, θ) 6=
(0, ψ), then g−1(K) ∪ {θ} is a closed subset of ∆(B) not containing ψ ∈ ∂(B).
Thus there exists a nonzero b ∈ B such that b̂|g−1(K)∪{θ} = 0; hence (̂0, b)|K = 0,
and (0, b) is nonzero.

If we suppose thatK does not contain only (0, θ) ∈ ∂(A×θB), then ϕ∞ ∈ ∂(Ae)
by Proposition 2.3, and A has identity by Lemma 3.4. Thus A×θ B ∼= A×T B,
and, by [6, Theorem 2.9], there is a nonzero (a, b) ∈ A×θB such that (̂a, b)|K = 0;
hence A×θ B has UUNP.

(2) Let | · | be a uniform norm on A. For (a, b) ∈ A×θ B, let∥∥(a, b)∥∥ = max
{∣∣a+ θ(b)

∣∣
op
, r(0, b)

}
,

where ∣∣a+ θ(b)
∣∣
op

= sup
{∣∣(a+ θ(b)

)
x
∣∣ : x ∈ A, |x| ≤ 1

}
.

Then ‖ · ‖ is a norm on A×θ B. If (a, b) ∈ A×θ B, then∣∣(a+ θ(b)
)2∣∣

op
= sup

{∣∣(a+ θ(b)
)2
x
∣∣ : |x| ≤ 1

}
≥ sup

{∣∣(a+ θ(b)
)2
x2
∣∣ : |x2| ≤ 1

}
= sup

{∣∣(a+ θ(b)
)
x
∣∣2 : |x|2 ≤ 1

}
=

∣∣(a+ θ(b)
)∣∣2

op
.

Clearly, |(a + θ(b))2|op ≤ |a + θ(b)|2op. Thus ‖(a, b)2‖ = ‖(a, b)‖2 for all (a, b) ∈
A×θ B; that is, ‖ · ‖ is a uniform norm on A×θ B. Since A×θ B has UUNP, the
spectral radius is the only uniform norm on A ×θ B; therefore ‖(a, b)‖ = r(a, b)
for all (a, b) ∈ A ×θ B. If a ∈ A, then r(a, 0) = max{|a|op, r(0, 0)} = |a|op = |a|.
Thus any uniform norm on A is the restriction of the spectral radius of A×θ B,
and consequently A has UUNP.

Let | · | be a uniform norm on B. Since θ is continuous with respect to any
uniform norm on B, we have |θ(b)| ≤ |b| for all b ∈ B. For (a, b) ∈ A×θ B, let∥∥(a, b)∥∥ = max

{
rop

(
a+ θ(b)

)
, |b|

}
,

where

rop
(
a+ θ(b)

)
= sup

{
r
((
a+ θ(b)

)
x, 0

)
: x ∈ A, r(x, 0) ≤ 1

}
.

If (a, b) ∈ A×θ B, then

rop
((
a+ θ(b)

)2)
= sup

{
r
((
a+ θ(b)

)2
x, 0

)
: r(x, 0) ≤ 1

}
≥ sup

{
r
((
a+ θ(b)

)2
x2, 0

)
: r(x2, 0) ≤ 1

}
= sup

{
r
((
a+ θ(b)

)
x, 0

)2
: r(x, 0)2 ≤ 1

}
= rop

(
a+ θ(b)

)2
.

Moreover,

rop
((
a+ θ(b)

)2)
= sup

{
r
((
a+ θ(b)

)2
x, 0

)
: r(x, 0) ≤ 1

}
≤ sup

{
rop

(
a+ θ(b)

)
r
((
a+ θ(b)

)
x, 0

)
: r(x, 0) ≤ 1

}
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= rop
(
a+ θ(b)

)
sup

{
r
(
a+ θ(b)x, 0

)
: r(x, 0) ≤ 1

}
= rop

(
a+ θ(b)

)2
.

Hence ‖ · ‖ is a uniform norm on A ×θ B. Since A ×θ B has UUNP, we have
‖(a, b)‖ = r(a, b) for all (a, b) ∈ A×θ B. This gives r(0, b) = max{|θ(b)|, |b|} = |b|
for all b ∈ B; hence B has UUNP. �

An extension of a Banach algebra A is a Banach algebra B such that A is
algebraically, but not necessarily continuously, embedded in B. A commutative
Banach algebra A has the spectral extension property (SEP) if rB(a) = rA(a) for
every extension B ofA and for every a ∈ A (see [11]). Equivalently, a commutative
Banach algebra A has SEP if r(a) ≤ |a| (a ∈ A) for every norm | · | on A. The
SEP has precedents in [16]; it was formally introduced in [11], [12]; and it has
been investigated by several authors (see [3]–[5], [11], [12]). Clearly, SEP implies
UUNP, and it is not known whether UUNP implies SEP (see [5]). In what follows
we discuss the stability of SEP with respect to the Lau product.

The permanent spectral radius [11] of an element a of A is

rp(a) = inf
{
|a| : | · | is a norm on A

}
.

For the convenience of our readers we recall the following result.

Theorem 3.6 ([8, Theorem 4.5.3]). If we let A be a semisimple commutative
Banach algebra, then the following are equivalent.

(1) A has SEP.
(2) If E is a closed subset of ∆(A) that does not contain the Shilov boundary

of A, then there exists an element a ∈ A such that â = 0 on E, and
rp(a) > 0.

(3) Whenever B is a commutative extension of A, every ϕ ∈ ∂(A) extends to
some element of ∆(B).

Theorem 3.7. Let A and B be semisimple commutative Banach algebras, and
let θ ∈ ∆(B).

(1) If A and B have SEP, then A×θ B has SEP.
(2) If we suppose that A ×θ B has SEP, then A has SEP. Moreover, if θ is

continuous with respect to every norm on B, then B has SEP.

The proof of the Theorem 3.7 will follow Lemma 3.9.

Lemma 3.8. Let A and B be semisimple commutative Banach algebras, and let
(0, θ) /∈ ∂(A×θ B). If A and B have SEP, then A×θ B has SEP.

Proof. Let D be a Banach algebra containing A ×θ B. If (ϕ, θ) ∈ ∂(A ×θ B),
then ϕ ∈ ∂(A), by Theorem 2.2. Since D is an extension of A, by Theorem 3.6,
we have φ in ∆(D) such that φ|A = ϕ; hence φ|A×θB = (ϕ, θ). Similarly, if
(0, ψ) ∈ ∂(A×θ B), then ψ ∈ ∂(B), by Theorem 2.2. As D is an extension of B,
by Theorem 3.6, we have Ψ in ∆(D) such that Ψ|B = ψ, but then we also see
that Ψ|A×θB = (0, ψ). This proves that A×θ B has SEP. �

Lemma 3.9. Let A and B be semisimple commutative Banach algebras, and let
(0, θ) ∈ ∂(A×θ B). If A and B have SEP, then A×θ B has SEP.
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Proof. LetM be a closed subset of ∆(A×θB) containing ∂(A×θB)\{(0, θ)} and
(0, θ) /∈M . Then, by Proposition 2.3, we have ϕ∞ ∈ ∂(Ae), and ∂(A) is a compact
subset of ∆(A). Thus A has identity, by Theorem 3.4. If we let T (b) = θ(b)e, then
A×T B ∼= A×θ B; thus A×θ B has SEP by [6, Theorem 2.30].

If, for any closed subset M of ∆(A ×θ B) containing ∂(A ×θ B) \ {(0, θ)}, we
let (0, θ) be in M , and we let M be a closed subset of ∆(A×θ B) not containing
(ϕ, θ) ∈ ∂(A×θ B), then U = f−1(M c) is an open subset of ∆(A) containing ϕ ∈
∂(A). Hence there exists a ∈ A such that â|Uc = 0, and rp(a) 6= 0. Consequently

(̂a, 0)|M = 0, and rp(a, 0) 6= 0.
If we let M be a closed subset of ∆(A×θ B) not containing (0, ψ) ∈ ∂(A×θ B),

and we let (0, θ) 6= (0, ψ), then U = g−1(M c) ∪ {θ} is an open subset of ∆(B)
containing ψ ∈ ∂(B). Thus there exists b ∈ B such that b̂|Uc = 0, and rp(b) 6= 0;

hence (̂0, b)|E = 0, and rp(0, b) 6= 0, and therefore A×θ B has SEP. �

Proof of Theorem 3.7. (1) This follows from Lemma 3.8 and Lemma 3.9.
(2) Let | · | be a norm on A. For (a, b) ∈ A ×θ B, let |(a, b)|1 = |a| + ‖b‖.

Consequently | · |1 is a norm. Since A×θB has SEP, r(a) = r(a, 0) ≤ |(a, 0)|1 = |a|
for all a ∈ A; hence A has SEP. Let | · | be a norm on B. Define |(a, b)|2 =
‖a‖ + |b| for all (a, b) ∈ A ×θ B. Since θ is continuous with respect to every
norm on B, we have |θ(b)| ≤ |b| (b ∈ B), and | · |2 is a norm on A ×θ B. Since
A ×θ B has SEP, r(b) = r(0, b) ≤ |(0, b)|2 = |b| for all b ∈ B; hence B has
SEP. �

A commutative Banach algebraA has themultiplicative Hahn–Banach property
(MHBP) if, given any commutative extension B of A, every ϕ ∈ ∆(A) extends
to some element of ∆(B) (see [11]). We show that MHBP is stable with respect
to the Lau product.

Theorem 3.10 ([8, Theorem 4.5.7]). If we let A be a semisimple commutative
Banach algebra, then A has MHBP if and only if A has SEP, and ∂(A) = ∆(A).

Theorem 3.11. If we let A and B be semisimple commutative Banach algebras,
and we let θ ∈ ∆(B), then we see the following.

(1) If both A and B have MHBP, then A×θ B has MHBP.
(2) If we suppose that A×θ B has MHBP, then A has MHBP. Moreover, if θ

is continuous with respect to every norm on B, then B has MHBP.

Proof. (1) Since A and B have MHBP, we have ∂(A) = ∆(A), ∂(B) = ∆(B), and
A and B have SEP. By Theorem 3.7, A ×θ B has SEP, and by Theorem 2.2 we
have ∆(A×θ B) \ {(0, θ)} = ∂(A×θ B) \ {(0, θ)}. If (0, θ) ∈ ∆(A×θ B) \ {(0, θ)},
then we have ∂(A ×θ B) = ∆(A ×θ B) because the Shilov boundary is a closed

subset of Gelfand space. If we let (0, θ) /∈ ∆(A×θ B) \ {(0, θ)}, then {(0, θ)}
is a compact open subset of ∆(A ×θ B). By Shilov’s idempotent theorem [8,

Theorem 3.5.1] there exists (a, b) ∈ A ×θ B such that (̂a, b)|{(0,θ)} = {1}, and
(̂a, b){∆(A×θB)\{(0,θ)}} = {0}; that is, (0, θ) ∈ ∂(A×θ B). Thus A×θ B has MHBP.
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(2) If we let A ×θ B have MHBP, then A ×θ B has SEP, and ∂(A ×θ B) =
∆(A×θB). Consequently A and B have SEP by Theorem 3.7, and ∂(A) = ∆(A),

and ∂(B) \ {θ} = ∆(B) \ {θ} by Theorem 2.2. If θ ∈ ∆(B) \ {θ}, then, since ∂(B)
is closed subset of ∆(B), we have ∂(B) = ∆(B). If θ /∈ ∆(B) \ {θ}, it holds that
{θ} is an open and compact subset of ∆(B). By Shilov’s idempotent theorem [8,

Theorem 3.5.1], we have b ∈ B such that b̂|{θ} = 1, and b̂|∆(B)\{θ} = 0; that is,
θ ∈ ∂(B). Hence A and B have MHBP. �

A commutative Banach algebra A has unique semisimple norm property
(USNP) if any two semisimple norms on A are equivalent (see [4]). We will use
the following to show that USNP is stable with respect to the Lau product.

Theorem 3.12. [4, Proposition 2.2] A commutative Banach algebra (A, ‖ · ‖A)
has USNP if and only if A has UUNP, and ‖ · ‖A is equivalent to a uniform norm
on A.

Theorem 3.13. Let A and B be commutative Banach algebras, and let θ ∈ ∆(B).
(1) If A and B have USNP, then A×θ B has USNP.
(2) If we suppose that A×θB has USNP, then A has USNP. Moreover, if θ is

continuous with respect to every uniform norm on B, then B has USNP.

Proof. (1) Since (A, ‖ · ‖A) and (B, ‖ · ‖B) have USNP, they have UUNP and the
norms ‖ · ‖A and ‖ · ‖B are equivalent to uniform norms ‖ · ‖′ and ‖ · ‖′′ on A and
B respectively. Since A and B have UUNP, A×θ B has UUNP. Define∣∣(a, b)∣∣ = max

{∥∥a+ θ(b)
∥∥′
op
, ‖b‖′′

} (
(a, b) ∈ A×θ B

)
,

where ‖a+ θ(b)‖′op = sup{‖(a+ θ(b))x‖′ : x ∈ A, ‖x‖′ ≤ 1}. Then ‖ · ‖′op is

a uniform norm on the unitization Ae of A; hence | · | is a uniform norm on
A ×θ B. Since ‖ · ‖′′ and ‖ · ‖B are equivalent, θ is continuous with respect to
‖ · ‖′′. This gives |θ(b)| ≤ ‖b‖′′ for all b ∈ B. If (a, b) ∈ A ×θ B, and x ∈ A
with ‖x‖′ ≤ 1, then ‖(a+ θ(b))x‖′ ≤ ‖a‖′ + ‖b‖′′ ≤ K(‖a‖A + ‖b‖B) for some
constant K > 0 as the norms ‖ · ‖A and ‖ · ‖′ are equivalent on A, and the
norms ‖ · ‖B and ‖ · ‖′′ are equivalent on B. Thus |(a, b)| ≤ K(‖a‖A + ‖b‖B) for
all (a, b) ∈ A×θ B. To show that the norms | · | and ‖ · ‖A + ‖ · ‖B are equivalent,
we need to prove that | · | is a complete norm on A ×θ B. Let ((an, bn)) be a
Cauchy sequence in A ×θ B in the norm | · |. Since ‖ · ‖′′ is a complete norm on
B, there is b ∈ B such that ‖bn − b‖′′ → 0 as n → ∞. If we let m,n ∈ N, then
‖an − am‖′op ≤ ‖an + θ(b)− am − θ(bm)‖′op + |θ(bn)− θ(bm)|. Since ‖ · ‖′op = ‖ · ‖′

on A, by Lemma 3.5, and ‖ · ‖′ is a complete norm on A, there is a ∈ A such
that ‖an − a‖′op → 0 as n→ ∞. It follows that |(an, bn)− (a, b)| → 0 as n→ ∞.

Hence | · | is a complete norm on A×θ B. This proves that the norm on A×θ B
is equivalent to a uniform norm on A×θ B; therefore A×θ B has USNP.

(2) Assume that A×θ B has USNP. Since θ is continuous with respect to every
uniform norm B, it holds that both A and B have UUNP, by Theorem 3.1. Since
A×θ B has USNP, the norm ‖ · ‖ on A×θ B is equivalent to a uniform norm on
A ×θ B. However the restrictions of the uniform norm on A and B are uniform
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norms and these uniform norms are equivalent to norms of A and B respectively.
Therefore A and B have USNP. �
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