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Abstract. In this article, we prove that if K is a nonempty weakly compact
convex set in a Banach space such thatK has the hereditary fixed-point property
(FPP) and F is a commuting family of isometry mappings on K, then there
exists a point in C(K) which is fixed by every member in F whenever C(K) is
a compact set. Also, we give an example to show that C(K), the Chebyshev
center of K, need not be invariant under isometry maps. This example answers
the question as to whether the Chebyshev center is invariant under isometry
maps. Furthermore, we give a simple example to illustrate that Lim’s center,
as introduced by Lim, is different from the Chebyshev center.

1. Introduction and preliminaries

Let K be a nonempty bounded subset of a Banach space X. For x ∈ X,
define r(x,K) = sup{‖x − y‖ : y ∈ K}, r(K) = inf{r(x,K) : x ∈ K}, δ(K) =
sup{r(x,K) : x ∈ K}, and C(K) = {x ∈ K : r(x,K) = r(K)}.

Definition 1.1 ([1, p. 837], [4, p. 38]). A nonempty bounded convex set K in a
Banach space X is said to have normal structure if every nonempty convex set
C ⊆ K with more than one point has a point x ∈ C such that r(x,C) < δ(C).
Then the set C(K) and the number r(K) are called, respectively, the Chebyshev
center of K and the Chebyshev radius of K.
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A mapping T : K → X is said to be nonexpansive (an isometry) if

‖Tx− Ty‖ ≤ ‖x− y‖
(
‖Tx− Ty‖ = ‖x− y‖

)
for x, y ∈ K.

Brodskii and Milman [1] introduced the notion of normal structure and proved
the following interesting result.

Theorem 1.2 ([1, p. 839]). Let K be a nonempty weakly compact convex set
in a Banach space X, and let F = {T : K → K : T is a surjective isometry
mapping}. Furthermore, assume that K has normal structure. Then there exists
an x ∈ C(K) such that Tx = x, for every T ∈ F.

By observing the results in [1], Lim [6] constructed a point, namely, the center
of a convex set, which is defined as follows.

Definition 1.3 ([6, p. 345]). Let C0 be a nonempty weakly compact convex subset
of a Banach space. Define Cα for all ordinals α by transfinite induction as follows.
Let n ∈ N be a finite ordinal number. Define Kn = {z ∈ Cn−1 : z = x+y

2
for some

x, y ∈ Cn−1 with ‖x− y‖ = δ(Cn−1)
2

} and Cn = co{Kn}. Let ω be the first infinite
ordinal number. Then define Cω =

⋂
(n∈N;n<ω) Cn−1. Let β be an infinite ordinal

number.
If β is a limit ordinal (i.e., β does not have a predecessor), we set Cβ =

⋂
α<β Cα.

Otherwise, let γ be the predecessor of β, and let Kβ = {z ∈ Cγ : z = x+y
2

for

some x, y ∈ Cγ with ‖x− y‖ = δ(Cγ)

2
}. Then we set Cβ = co(Kβ).

Then it is known from [6] that the intersection of Cα over all ordinal numbers
α (i.e.,

⋂
α is ordinal Cα) contains exactly one point. This unique point is called the

center of C0.
Note: We call this center the Lim’s center of the given convex set C0.

Lim also established the next result.

Theorem 1.4 ([6, p. 345]). Let K be a nonempty weakly compact convex set in
a Banach space X. Then the Lim’s center of K is a fixed point for every affine
isometry mapping from K into K.

Lim [5] introduced a notion of the asymptotic center of a decreasing net of
bounded subsets of a Banach space. The notion of an asymptotic center is defined
as follows.

Definition 1.5 ([5, p. 421]). Let A be a nonempty subset of a Banach space X.
Let {Bn : n ∈ N} be a decreasing sequence of bounded subsets of X. For each
x ∈ X and each n ∈ N, define

rn(x) = sup
{
‖x− y‖ : y ∈ Bn

}
and r(x) = lim

n
rn(x) = inf

n
rn(x).

Then the nonnegative real number ar({Bn}, A) := inf{r(x) : x ∈ A} = r and the
set AC({Bn}, A) := {x ∈ A : r(x) = r} are called, respectively, the asymptotic
radius and asymptotic center of {Bn} with respect to A.

Remark 1.6. Note that rn(x) = r(x,Bn) for x ∈ X.

Lim also proved the following.
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Lemma 1.7 ([5, p. 426]). Let K be a nonempty weakly compact convex set in a
Banach space, and let T : K → K be a nonexpansive map. Then the asymptotic
center of {T n(K) : n = 0, 1, 2, . . .} is invariant under T .

Motivated by Theorem 1.2 of Brodskii and Milman [1] and the fact that
T (C(K)) = C(K) whenever T is a surjective isometry on K, Lim et al. [7] raised
the following questions.

Question 1. Let T be an isometry on K which is not surjective. Does one still
have T (C(K)) ⊆ C(K)?

Question 2. Let K be a nonempty weakly compact convex subset of a Banach
space, and assume that K has normal structure. Does there exist a point in C(K)
which is fixed by every isometry from K into K?

In the case of uniformly convex Banach spaces, Lim et al. [7] affirmatively
answered the above questions. Moreover, Lim et al. [7] established the next result
(Theorem 1.8) by using Lemma 1.7 and the notion of the hereditary fixed-point
property (FPP). A nonempty weakly compact convex set K in a Banach space
is considered to have the fixed-point property (FPP) if every nonexpansive map
from K into K has a fixed point. The set K is said to have the hereditary FPP
if every closed convex nonempty subset of K has the FPP.

Theorem 1.8 ([7, p. 5]). Let K be a nonempty weakly compact convex set in a
Banach space, and let T be an isometry from K into K. Furthermore, assume
that K has the hereditary FPP. Then T has a fixed point in C(K).

We proved in [8], in the setting of strictly convex Banach spaces, that there
exists a common fixed point in C(K) for a commuting family of isometry map-
pings whenever K is a nonempty weakly compact convex set having normal struc-
ture.

Next, in connection with common fixed points of a commuting family of non-
expansive maps, we state the following theorem.

Theorem 1.9 ([2, p. 261]). Let K be a nonempty weakly compact convex set in a
Banach space, and let F be a finite family of commuting nonexpansive mappings
on K. Furthermore, assume that K has the hereditary FPP. Then there exists an
x0 ∈ K such that Tx0 = x0, for all T ∈ F.

In this article, we prove that every finite family of isometry mappings has a
common fixed point in C(K) (see Theorem 3.2). In the case of an arbitrary family
of commuting isometry mappings, we prove the existence of a common fixed point
in C(K) (see Theorem 3.4) whenever K is a nonempty weakly compact convex
set in a Banach space such thatK has the hereditary FPP and C(K) is a compact
set. Also, we show that C(K) need not be invariant under isometry maps (see
Example 3.8). That is, T (C(K)) * C(K) for some K and an isometry map
T : K → K, where K is a nonempty weakly compact convex set in a Banach
space X and K has normal structure. This example (Example 3.8) provides a
negative answer to the question (Question 1) raised by Lim et al. in [7].
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2. Lim’s center and the Chebyshev center

In this section, we discuss the problem of whether the Lim’s center of a set K,
where K is a nonempty weakly compact convex set in a Banach space X, is a
Chebyshev center of K. The notion modulus of convexity is defined as follows.

Definition 2.1 ([4, p. 52]). The modulus of convexity of a Banach space X is the
function δX : [0, 2] → [0, 1] defined by

δX(ε) = inf
{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε

}
.

A Banach space X is said to be uniformly convex if δX(ε) > 0 for ε ∈ (0, 2].

The next result claims that, in the case of uniformly convex Banach spaces,
the center of a convex set C0 can be defined using the finite induction method.

Proposition 2.2. Let C0 be a nonempty bounded closed convex set in a uniformly
convex Banach space X, and let Kn := {z ∈ Cn−1 : z = x+y

2
for some x, y ∈ Cn−1

with ‖x−y‖ = δ(Cn−1)
2

}, for n ∈ N. Then δ(Cn) ≤ α2
0δ(Cn−1), where Cn = co(Kn)

and α0 = (1− δX(
1
2
)) < 1.

Proof. Let z1, z2 ∈ K1. Then for i = 1, 2, zi =
xi+yi

2
for some xi, yi ∈ C0 with

‖xi−yi‖ = d0
2
, where d0 = δ(C0). Note that ‖z1−x2‖ ≤ r(z1, C0) and ‖z1−y2‖ ≤

r(z1, C0). Hence ‖z1−z2‖ ≤ (1−δX(
d0

2r(z1,C0)
))r(z1, C0), where δX(·) is the modulus

of convexity function.
Since for any u ∈ C0, ‖x1 − u‖ ≤ d0, ‖y1 − u‖ ≤ d0, and ‖x1 − y1‖ = d0

2
,

‖z1 − u‖ ≤ (1− δX(
d0
2d0

))d0. Therefore, r(z1, C0) ≤ (1− δX(
1
2
))d0. Also, as

d0
2d0

≤
d0

2r(z1,C0)
and δX(·) is an increasing function, we have 1− δX(

d0
2r(z1,C0)

) ≤ 1− δX(
1
2
).

Hence ‖z1 − z2‖ ≤ α2
0d0, where α0 = 1 − δX(

1
2
). Therefore, δ(C1) ≤ α2

0δ(C0), as
C1 = co(K1).

Again, since C2 = co(K2), where K2 = {z ∈ C1 : z = x+y
2

for some x, y ∈ C1

with ‖x − y‖ = δ(C1)
2

}, by repeating the above arguments we can prove that
δ(C2) ≤ α2

0δ(C1). Hence by induction, we can see that δ(Cn) ≤ α2
0δ(Cn−1), for all

n ∈ N. �

The following example illustrates that the Lim’s center of a weakly compact
convex set C0 need not be a Chebyshev center of C0.

Example 2.3. Consider the Banach space X = R2 with the norm

‖x‖ =

{
‖x‖∞ if x ∈ Q1 ∪Q3,
‖x‖1 if x ∈ Q2 ∪Q4,

where Qi is the ith quadrant, which also contains the boundary in R2 for i =
1, 2, 3, 4, and ‖x‖∞ = max{|x1|, |x2|} and ‖x‖1 = |x1|+ |x2|.

Let C0 be the convex hull of {(−1, 0), (1, 0), (0, 1)}. Note that δ(C0) = 2 and
that for any (x, y) ∈ C0 with (x, y) 6= (0, 0), either ‖(x, y) − (−1, 0)‖ > 1 or
‖(1, 0)− (x, y)‖ > 1. Hence, (0, 0) is the unique Chebyshev center of C0.

We claim that (0, 0) is not the Lim’s center of C0. Note that it is enough to
show that (0, 0) /∈ Cα, for some ordinal number α. We claim that (0, 0) /∈ C3.
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Note that for n ∈ N, Kn := {z ∈ Cn−1: z = x+y
2

for some x, y ∈ Cn−1 with

‖x− y‖ = δ(Cn−1)
2

}, where Cn−1 = co{Kn−1} and K0 = {(−1, 0), (1, 0), (0, 1)}.
Hence if z ∈ Kn, then there exist x and y in Cn−1 such that

P1: ‖x− z‖ = δ(Cn−1)
4

= ‖y − z‖;
P2: [x, y] := {(1− t)x+ ty : t ∈ [0, 1]} ⊆ Cn−1;
P3: consider any straight line L(z), different from L[x, y] := {(1 − t)x + ty :

t ∈ R}, passing through z in R2; then x and y are in different open
half-spaces determined by the complement of L(z) in R2.

Construction of C1: We claim that C1 = co{(−1
2
, 0), (1

2
, 0), (1

4
, 3
4
), (3

4
, 1
4
),

(−1
2
, 1
2
)}. From the definition of K1, it is easy to see that (±1

2
, 0), (1

4
, 3
4
), (3

4
, 1
4
),

and (−1
2
, 1
2
) belong to K1, as

δ(C1)
2

= 1 = ‖(0, 0) − (±1, 0)‖ = ‖(−1, 0) − (0, 1)‖
and ‖(1, 0)− (1

2
, 1
2
)‖ = 1 = ‖(0, 1)− (1

2
, 1
2
)‖.

Let S1 = {(1 − λ)(1
2
, 0) + λ(3

4
, 1
4
) : λ ∈ R}, S2 = {(1 − λ)(−1

2
, 0) + λ(−1

2
, 1
2
) :

λ ∈ R} and S3 = {(1−λ)(−1
4
, 3
4
)+λ(1

4
, 3
4
) : λ ∈ R}. Note that if S is a straight line

in R2, then Sc (the complement of S in R2) contains two disjoint open half-spaces
in R2. Since S1, S2, and S3 are straight lines in R2, they also determine open
half-spaces in R2.

Suppose that H1 is the open half-space, which contains (1, 0), determined by
S1; that H2 is the open half-space, which contains (−1, 0), determined by S2; and
that H3 is the open half-space, which contains (0, 1), determined by S3.

Now, note that C0 ∩Hi 6= ∅ and δ(C0 ∩Hi) ≤ 1
2
= δ(C0)

4
for i = 1, 2, 3.

Let x = (x1, x2), y = (y1, y2) ∈ C0 ∩H1. Then
1
2
< x1, y1 ≤ 1, 0 ≤ x2, y2 <

1
4
.

Note that either ‖x− y‖ = ‖x− y‖1 or ‖x− y‖ = ‖x− y‖∞.
Suppose that ‖x− y‖ = ‖x− y‖∞. Then it is easy to see that ‖x− y‖ < 1

2
, as

1
2
< x1, y1 ≤ 1, 0 ≤ x2, y2 <

1
4
.

Now, assume that ‖x− y‖ = ‖x− y‖1. Then ‖x− y‖ = |x1 − y1|+ |x2 − y2|.
Suppose that either 1

2
< x1, y1 ≤ 3

4
or 3

4
< x1, y1 ≤ 1. Then it is apparent

that ‖x − y‖1 < 1
2
. Assume that 1

2
< x1 ≤ 3

4
and 3

4
< y1 ≤ 1. In this case,

‖x− y‖1 = y1 − x1 + |x2 − y2|.
Now note that if 1

2
< x1 ≤ 3

4
, then x2 < x1 − 1

2
. Similarly, it can be seen that

if 3
4
< y1 ≤ 1, then y2 ≤ 1− y1. This implies that

‖x− y‖1 =
{
y1 − x1 + x2 − y2 < y1 − 1

2
− y2 <

1
2

if x2 ≥ y2,
y1 − x1 + y2 − x2 < 1− (x1 + x2) <

1
2

if y2 ≥ x2.

Therefore, if z ∈ C0∩H1, then there is no x ∈ C0∩H1 such that ‖x−z‖ = δ(C0)
4

.
Hence, by the properties P1, P2, and P3 ofK1, we have z /∈ K1 for any z ∈ C0∩H1

and consequently K1 ⊆ C0 ∩ Hc
1, where Hc

1 = {(x, y) ∈ R2 : (x, y) /∈ H1}.
In a similar manner, it can been seen that K1 ⊆ C0 ∩ Hc

i for i = 2, 3, since

δ(C0 ∩H2) ≤ δ(C0)
4

and δ(C0 ∩H3) ≤ δ(C0)
4

.

Therefore, K1 ⊆
⋂3

i=1(C0 ∩ Hc
i ). Further, as each C0 ∩ Hc

i is a closed convex

set, C1 = co(K1) ⊆
⋂3

i=1(C0 ∩Hc
i ). Hence, δ(C1) ≤ δ(

⋂3
i=1(C0 ∩Hc

i )). Also, since

δ(
⋂3

i=1(C0 ∩ Hc
i )) = 3

2
and the points (−1

2
, 1
2
) and (3

4
, 1
4
) belong to K1, we have

the diameter δ(C1) ≤ 3
2
and δ(C1) ≥ ‖(−1

2
, 1
2
)− (3

4
, 1
4
)‖ = ‖(−5

4
, 1
4
)‖ = 3

2
.
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Construction of C2: We claim that (x, 0) /∈ C2 = co(K2) for all x ∈ (1
8
, 1
2
].

Note that the points (1
8
, 0), (−1

8
, 0), (−3

8
, 1
4
), (−1

8
, 5
8
), ( 7

16
, 9
16
), ( 9

16
, 7
16
), and (3

8
, 1
8
)

belong to K2. Consider C1 = co{(−1
2
, 0), (1

2
, 0), (1

4
, 3
4
), (3

4
, 1
4
), (−1

2
, 1
2
)}. Then

δ(C1) =
3
2
.

Now, since ‖x−y‖ = ‖(−1
4
, 0)− (1

2
, 0)‖ = 3

4
= δ(C1)

2
, we have x+y

2
= (1

8
, 0) ∈ K2.

In a similar way, it can be seen that (−1
8
, 0) belongs to K2. Also note that since

‖x−y‖ = ‖(−1
2
, 1
2
)− (1

4
, 3
4
)‖ = 3

4
= δ(C1)

2
= ‖(0, 0)− (3

4
, 1
4
)‖, we have x+y

2
= (−1

8
, 5
8
)

and x+y
2

= (3
8
, 1
8
) ∈ K2.

Similarly, as ‖(−1
4
, 0)− (−1

2
, 1
2
)‖ = ‖(1

4
, −1

2
)‖1 = 3

4
, we have (−3

8
, 1
4
) ∈ K2.

Moreover, as the points (3
4
, 1
4
) and (1

4
, 3
4
) are in C1 and ‖(3

4
, 1
4
)− (1

4
, 3
4
)‖ = 1 >

δ(C1)
2

, it can be seen that ( 7
16
, 9
16
) and ( 9

16
, 7
16
) belong to K2. This implies that

δ(K2) ≥ ‖( 9
16
, 7
16
)− (−1

8
, 0)‖ = 11

16
.

Now we claim that (x, 0) /∈ C2 = co(K2), for every x ∈ (1
8
, 1
2
]. Fix x ∈ (1

8
, 1
2
],

and let α =
x+ 1

8

2
and Sα = {(1 − λ)(α, 0) + λ(3

8
+ α, α − 1

8
) : λ ∈ R}. Note that

(3
8
+ α, α− 1

8
) is in F = {(1− t)(1

2
, 0) + t(3

4
, 1
4
) : t ∈ [0, 1]} ⊆ C1.

Let Hα be the open half-space in R2, which contains (1
2
, 0), determined by Sα.

Now, consider the set C1 ∩Hα. Note that (x, 0) ∈ C1 ∩Hα. Also, it is apparent
that C1 ∩Hα = co{(α, 0), (1

2
, 0), (3

8
+ α, α − 1

8
)}. This implies that the diameter

δ(C1 ∩Hα) = ‖(3
8
+ α, α− 1

8
)− (α, 0)‖ = 3

8
= δ(C1)

4
.

Now, it follows from the properties P1, P2, and P3 of K2 that K2 ⊆ C1 ∩Hc
α

for all α =
x+ 1

8

2
, where x ∈ (1

8
, 1
2
] and Hc

α = {(x, y) ∈ R2 : (x, y) /∈ Hα}. Hence
for x ∈ (1

8
, 1
2
], (x, 0) /∈ C2 = co(K2) ⊆ C1 ∩Hc

α, as C1 ∩Hc
α is a closed convex set

and (x, 0) ∈ C1 ∩Hα.
Therefore, for every x ∈ (1

8
, 1
2
] there exists a unique yx ∈ (0, 1) such that

(x, yx) ∈ C2 and (x, y) /∈ C2 for all y ∈ [0, yx), since (1
8
, 0) and ( 9

16
, 7
16
) are in the

convex set C2. Furthermore, note that for every x ∈ (1
8
, 3
8
] we have yx ≤ 1

8
, since

the line segment joining (1
8
, 0) and (3

8
, 1
8
) is contained in C2.

Construction of C3: We claim that (0, 0) /∈ C3. Since
9
64

∈ (1
8
, 3
8
), there exists

y0 ∈ (0, 1
8
) such that ( 9

64
, y0) ∈ C2 and ( 9

16
, y) /∈ C2 for y ∈ [0, y0).

Now, consider the straight line S0 = {(1 − λ)(−1
64
, 0) + λ( 9

64
, y0) : λ ∈ R}. Let

H0 be the open half-space in R2, which contains (1
8
, 0) ∈ C2, determined by S0.

Note that (0, 0) and (1
8
, 0) ∈ C2 ∩ H0 and C2 ∩H0 = co{(−1

64
, 0), (1

8
, 0), ( 9

64
, y0)}.

Then it is easy to see that δ(C2 ∩H0) = ‖( 9
64
, y0)− (−1

64
, 0)‖ = 10

64
< 11

64
≤ δ(C2)

4
.

Since δ(C2 ∩ H0) ≤ δ(C2)
4

, we have from the properties P1, P2, and P3 of K3

that K3 ⊆ C2∩Hc
0. Consequently, C3 ⊆ C2 = co(K3)∩Hc

0, as C2∩Hc
0 is a closed

convex set in R2.
Note that (0, 0) /∈ C3 as (0, 0) ∈ C2 ∩ H0. This implies that (0, 0) /∈⋂
α is ordinal Cα. Therefore, (0, 0) is not the Lim’s center of C0.

Remark 2.4. Example 2.3 shows that the Chebyshev center of a weakly compact
convex set C0 in a Banach space need not contain the Lim’s center of C0 even if

r(C0) =
δ(C0)

2
.
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However, for the following class of sets, the Lim’s center is a Chebyshev center.

Definition 2.5 ([3, p. 904]). A nonempty subset K of a normed linear space X
is said to be a centrally symmetric set if there exists an a0 ∈ X such that K =
2a0 −K.

Proposition 2.6. Let C0 be a weakly compact convex set in a Banach space X.
Assume that C0 = 2a − C0, for some a ∈ X. Then the Lim’s center of C0 is a,
which is also a Chebyshev center of C0.

Proof. Note that for every x ∈ C0, we have 2a − x ∈ C0. Therefore, δ(C0) ≥
r(x,C0) ≥ ‖x−(2a−x)‖ = 2‖a−x‖ for all x ∈ C0. Hence r(a, C0) = sup{‖a−x‖ :
x ∈ C0} ≤ d

2
, where d = δ(C0). It is also easy to see that r(y, C0) ≥ d

2
, for any

y ∈ C0. Thus r(a, C0) =
d
2
. Consequently, a is a Chebyshev center of C0.

We claim that Cα is centrally symmetric about a, for every ordinal α. Let
K1 := {z ∈ C0 : z = x+y

2
for some x, y ∈ C0 with ‖x − y‖ = d

2
}. Note that

K1 = 2a−K1. For, if z ∈ K1, then z = x+y
2

for some x, y ∈ C0 with ‖x− y‖ = d
2
.

Hence, 2a − z = 2a−x+2a−y
2

and ‖2a − x − (2a − y)‖ = ‖x − y‖. Consequently,
2a − z ∈ K1, a ∈ C1 := co(K1), and C1 = 2a − C1. In a similar manner it can
be shown that a ∈ Cα for every ordinal number α which is not a limit ordinal.
Suppose that β0 is the first limit ordinal number. Then, as Cβ0 =

⋂
α<β0

Cα and
Cα = 2a − Cα, it is easy to see that Cβ0 = 2a − Cβ0 . Hence, Cβ0 is centrally
symmetric about a, and a is a Chebyshev center of Cβ0 .

Therefore a ∈ Cα, for every ordinal number α. Hence, a is the Lim’s center
of C0 as

⋂
Cα is a singleton, where the intersection is taken over all the ordinal

numbers. �

3. Fixed-point theorems for commuting families

The following observation leads to the existence of common fixed points for a
commuting family of isometry mappings.

Lemma 3.1. Let K be a nonempty weakly compact convex set in a Banach
space X. Suppose that for i = 1, 2, . . . ,m, Ti : K → K is a nonexpansive map
such that Ti ◦ Tj(x) = Tj ◦ Ti(x), for all x ∈ K and i, j ∈ {1, 2, . . . ,m}. Let F0

be the asymptotic center of the sequence {(T1 ◦ T2 ◦ · · · ◦ Tm)
n(K)} with respect

to K. Then Ti(F0) ⊆ F0, for i = 1, 2, . . . ,m.

Proof. The proof we give here is for the case m = 3, which can be carried over
for any integer m.

Note that for all n ∈ N,

T n
1 ◦ T n+1

2 ◦ T n+1
3 (K) ⊆ (T1 ◦ T2 ◦ T3)

n(K) and

(T1 ◦ T2 ◦ T3)
n+1(K) ⊆ T n

1 ◦ T n+1
2 ◦ T n+1

3 (K).

Now, we claim that T1(F0) ⊆ F0. Suppose that x ∈ F0. Then

rn+1

(
T1(x)

)
= r

(
T1(x), (T1 ◦ T2 ◦ T3)

n+1(K)
)

= r
(
x, T n

1 ◦ T n+1
2 ◦ T n+1

3 (K)
)
≤ rn(x).
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Therefore, r(T1(x)) ≤ r(x). As x ∈ F0, r(x) = r ≤ r(T1(x)). Hence, T1(F0) ⊆ F0.
In a similar manner, it can be proved that Ti(F0) ⊆ F0, for i = 2, 3. �

Next, we prove that every finite family of commuting isometry maps has a
common fixed point in C(K).

Theorem 3.2. Let K be a nonempty weakly compact convex set in a Banach space
X such that K has the hereditary FPP. Let F be a finite family of commuting
isometry mappings on K. Then there exists x0 ∈ C(K) such that T (x0) = x0, for
every T ∈ F.

Proof. Suppose that F = {Ti : i = 1, 2, . . . ,m}. Then from Lemma 3.1, it follows
that F0 = AC({(T1 ◦T2 ◦ · · · ◦Tm)

n(K)}, K) is invariant under each Ti ∈ F. Then
from Theorem 1.9, it follows that there exists an x0 ∈ F0 such that Ti(x0) = x0,
for i = 1, 2, . . . ,m.

Now we claim that x0 ∈ C(K). Note that for each n ∈ N,

rn(x0) = r
(
x0, (T1 ◦ T2 ◦ · · · ◦ Tm)

n(K)
)
= r(x0, K).

Thus r(x0) = limn rn(x0) = r(x0, K). Also, since x0 ∈ F0, r(x0) ≤ r(x) for all
x ∈ K. But r(x) ≤ rn(x) ≤ r(x,K), for all x ∈ K. Hence r(x0, K) ≤ r(x,K), for
all x ∈ K. Therefore, x0 ∈ C(K). �

Remark 3.3. The previous theorem (Theorem 3.2) holds for a finite family F
of commuting nonexpansive maps in which every member T satisfies, for every
common fixed point x0, ‖Tx0 − Ty‖ = ‖x0 − y‖, for all y ∈ K.

Also, note that from Theorem 1.9 it follows that the set of all common fixed
points of the family F is nonempty whenever K is a nonempty weakly compact
convex set in a Banach space such that K has the hereditary FPP.

Next, we prove a common fixed-point theorem for an arbitrary family in which
any two members commute.

Theorem 3.4. Let K be a nonempty weakly compact convex set in a Banach
space X such that K has the hereditary FPP. Let F be a commuting family of
isometry mappings on K. Furthermore, assume that C(K) is a compact subset
of K. Then there exists an x0 ∈ C(K) such that T (x0) = x0, for every T ∈ F.

Proof. Suppose that FT = {x ∈ C(K) : Tx = x}, for T ∈ F. Then from Theo-
rem 3.2, it follows that FT is a nonempty closed set.

Let S = {FT : T ∈ F}. As C(K) is a compact set, it is enough to prove that S
has the finite intersection property. Now from Theorem 3.2, it follows that every
finite subset of S has nonempty intersection. Therefore,

⋂
T∈F FT 6= ∅. That is,

there exists an x0 ∈ C(K) such that Tx0 = x0, for all T ∈ F. �

Note that if K has normal structure, then K has the hereditary FPP. Hence
we have the following result.

Corollary 3.5. Let K be a nonempty weakly compact convex set having normal
structure in a Banach space X such that C(K) is a compact set. Let F be a
commuting family of isometry mappings on K. Then there exists an x0 ∈ C(K)
such that T (x0) = x0, for every T ∈ F.
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In the case of Banach spaces with uniformly Kadec–Klee (UKK) norm, it is
known from [9] that C(K) is a compact convex set whenever K is a nonempty
weakly compact convex set. The notion of Banach spaces with UKK norm is
defined as follows.

Definition 3.6 (see [4]). A Banach space X is said to have uniformly Kadec–Klee
(UKK) norm if and only if for any ε > 0, there exists δ > 0 such that

{xn} ⊆ B[0, 1], xn converges weakly to x0, and

sep{xn} := inf
{
‖xn − xm‖ : n 6= m

}
> ε

imply that

‖x0‖ ≤ 1− δ.

We obtain the following result from Theorem 3.4.

Corollary 3.7. Let K be a nonempty weakly compact convex set in a Banach
space X with UKK norm. Let F be a commuting family of isometry mappings
on K. Then there exists an x0 ∈ C(K) such that T (x0) = x0, for every T ∈ F.

The following example illustrates that C(K) need not be invariant under isom-
etry maps.

Example 3.8. Consider the Hilbert space l2(N) = {x : N → R :
∑

i∈N |x(i)|2 <
∞}. LetXλ be the reflexive Banach space l2(N) with the norm ‖x‖λ = max{‖x‖∞,
1
λ
‖x‖2}, for λ ≥ 1. It is known from [4] that Xλ has normal structure whenever

λ ∈ [1,
√
2).

Suppose that λ =
√
5
2

and that K is the intersection of the closed balls B[x0, 1]

and B[−x0, 1] in Xλ, where x0 = (1
2
, 0, 0, . . .). Then it is easy to see that K = −K

and en ∈ K, for n ≥ 2. Moreover, x ∈ K implies that |x(1)| ≤ 1
2
and |x(n)| ≤ 1,

for all n ≥ 2. Also, for x, y ∈ K ‖x − y‖λ ≤ ‖x − x0‖λ + ‖x0 − y‖λ ≤ 2. But

‖en − (−en)‖λ = 2‖en‖λ = 2. Hence, δ(K) = 2. Since K = −K and δ(K)
2

≤
r(x,K), for x ∈ K, we have r(0, K) = δ(K)

2
= 1. Therefore, 0 ∈ C(K).

Now, we claim that C(K) = {(1 − t)x0 + t(−x0) : t ∈ [0, 1]}. It is easy to see
that C(K) ⊆ {(1 − t)x0 + t(−x0) : t ∈ [0, 1]}. For suppose that x ∈ K such
that x /∈ {(1 − t)x0 + t(−x0) : t ∈ [0, 1]}. Then x(n) 6= 0 for some n ≥ 2. Thus
r(x,K) ≥ ‖x− (− sgn(x(n)))en‖λ ≥ |x(n) + sgn(x(n))| > 1 = r(K).

Suppose that x ∈ {(1− t)x0 + t(−x0) : t ∈ [0, 1]}. Then for y ∈ K, ‖y− x‖λ ≤
(1 − t)‖y − x0‖λ + t‖y + x0‖λ ≤ 1 = r(K). Hence, r(x,K) ≤ r(K). This shows
that C(K) = {(1− t)x0 + t(−x0) : t ∈ [0, 1]}.

Define T (ei) = ei+1 for all i ∈ N. Then extend T linearly to the whole of K.
Now, it is easy to see that ‖Tx−Ty‖λ = ‖x−y‖λ and ‖Tx−x0‖2 = ‖Tx−(−x0)‖2,
for x, y ∈ K.

Note that for x ∈ K, either ‖Tx−x0‖2 ≤ ‖x−x0‖2 or ‖Tx−x0‖2 ≤ ‖x+x0‖2
and ‖Tx±x0‖∞ ≤ 1. Hence T is a self-map on K. As T (αe1) = αe2 for all α ∈ R,
we have T (C(K)) " C(K). This proves that C(K) need not be invariant under
isometry maps.

However, we claim that 0 ∈ K is a fixed point for every isometry self-map S
on K. It is enough to prove that there exists an x ∈ K such that
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(a) ‖x− (±)x0‖λ = 1, and
(b) ‖Sx− S(−x)‖λ = 1

λ
‖Sx− S(−x)‖2.

For if there exists an x ∈ K such that

(1) ‖x−±x0‖λ = 1, and
(2) ‖Sx− S(−x)‖λ = 1

λ
‖Sx− S(−x)‖2,

then S(0) = 0.
Assume that such an x ∈ K exists. Then 1

λ
‖Sx− S(−x)‖2 = 2 and

2λ =
∥∥Sx− S(−x)

∥∥
2
≤ ‖Sx− 0‖2 +

∥∥0− S(−x)
∥∥
2

≤ λ‖Sx− 0‖λ + λ
∥∥0− S(−x)

∥∥
λ

≤ 2λ, as 0 ∈ C(K) and r(K) = 1.

Hence, 2λ = ‖Sx − S(−x)‖2 ≤ ‖Sx − 0‖2 + ‖0 − S(−x)‖2 = 2λ. Since 0 ∈
C(K) and r(K) = 1, we have ‖S(x) − 0‖2 = λ = ‖S(−x) − 0‖2. Further, since
‖Sx− 0 + 0− S(−x)‖2 = ‖Sx− 0‖2 + ‖S(−x)− 0‖2 and ‖ · ‖2 is strictly convex,
we have Sx−0 = r(0−S(−x)) for some r ≥ 0. This implies that S(−x) = −S(x)
as ‖S(x)− 0‖2 = λ = ‖S(−x)− 0‖2.

Now, note that for z = (1− t)x+ t(−x) with t ∈ (0, 1), we have

2λ =
∥∥Sx− S(−x)

∥∥
2
≤ ‖Sx− Sz‖2 +

∥∥Sz − S(−x)
∥∥
2

≤ λ‖Sx− Sz‖λ + λ
∥∥Sz − S(−x)

∥∥
λ

= λ‖x− z‖λ + λ
∥∥z − (−x)

∥∥
λ
, as S is isometry

= 2λ.

This implies that ‖Sx− S(−x)‖2 = ‖Sx− Sz‖2 + ‖Sz − S(−x)‖2. Now, by the
strict convexity of ‖ · ‖2, we have S(z) − S(−x) = r(Sx − Sz) for some r ≥ 0.
Since S is an isometry, we have 2(1− t) = ‖z − (−x)‖λ = r‖z − x‖λ = 2rt.

Thus r = 1−t
t

and consequently Sz = (1 − t)Sx + tS(−x). This implies that

S(0) = 0, as 0 = 1
2
x+ 1

2
(−x) and S(−x) = −S(x).

Now, we claim that there exists an x ∈ K such that

(a) ‖x− (±)x0‖λ = 1, and
(b) ‖Sx− S(−x)‖λ = 1

λ
‖Sx− S(−x)‖2.

Suppose that ‖Sx − S(−x)‖λ = ‖Sx − S(−x)‖∞ for all x ∈ K satisfying
‖x− (±)x0‖λ = 1.

Note that the uncountable set F = {x = (0, cos θ, sin θ, 0, 0, . . .) : θ ∈ [0, 2π]} is
a subset of K and that ‖x− (±x0)‖λ = 1 for all x ∈ K. Then, by our assumption,
we have ‖Sx − S(−x)‖λ = ‖Sx − S(−x)‖∞ for all x ∈ F . This implies that, for
every x ∈ F , there exists j0 ∈ N such that |S(x)(j0)− S(−x)(j0)| = 2.

Now, since S(±x) ∈ K, it is easy to see that j0 ≥ 2, S(±x)(j0) = ±1 and
S(±x)(i) = 0 for all i 6= j0. Hence, S(−x) = −S(x), as ‖Sx − S(−x)‖∞ = 2.
This implies that Sx ∈ {±en : n ≥ 2} for all x ∈ F . Therefore, the isometry
map S maps the uncountable set F into a countable set {±en : n ≥ 2}. This
contradiction proves that there exists an x ∈ K such that
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(a) ‖x− (±)x0‖λ = 1, and
(b) ‖Sx− S(−x)‖λ = 1

λ
‖Sx− S(−x)‖2.

Consequently, we have S(0) = 0.
Therefore, T (0) = 0 for all isometry self-maps T on K.

Theorem 3.9. Let K be a nonempty weakly compact convex set in a Banach
space, and let F be a finite commuting family of affine isometry maps on K.
Then there exists an x ∈ C(K) such that Tx = x, for all T ∈ F.

Proof. Suppose that F = {Ti : i = 1, 2, . . . ,m}. Note that from Lemma 3.1, it
follows that F0, the asymptotic center of {(T1 ◦ T2 ◦ · · · ◦ Tm)

n(K)} with respect
to K, is invariant under each Ti, for i = 1, 2, . . . ,m.

Now by Theorem 1.4, we have that the center of F0, say, x0, is a fixed point for
every Ti, for i = 1, 2, . . . ,m. Hence, r(x0) = lim rn(x0) = r(x0, K). Also as x0 ∈ F0

and r(x) ≤ r(x,K) for all x ∈ K, we have r(x0, K) = r(x0) ≤ r(x) ≤ r(x,K),
for all x ∈ K. Therefore, x0 ∈ C(K). �

Theorem 3.10. Let K be a nonempty weakly compact convex set in a Banach
space, and let F be a commuting family of affine isometry maps on K. Then there
exists an x ∈ C(K) such that Tx = x, for all T ∈ F.

Proof. Let S = {FT : T ∈ F}, where FT = {x ∈ C(K) : Tx = x}. Since each
T ∈ F is an affine map, FT is a convex set in C(K). Hence, FT is a weakly
compact convex set in C(K).

Note that from Theorem 3.9, it follows that S has the finite intersection
property. Therefore,

⋂
T∈F FT 6= ∅. Thus there exists an x0 ∈ C(K) such that

T (x0) = x0, for all T ∈ F. �
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