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Abstract. In this article we use the atomic decomposition of a Herz-type
Hardy space of variable smoothness and integrability to obtain the boundedness
of the central Calderón–Zygmund operators on Herz-type Hardy spaces with
variable smoothness and integrability.

1. Introduction

The classical versions of Herz spaces Kα
p,q(Rn) and K̇α

p,q(Rn) were introduced by
Herz in [4]. These spaces were studied in many papers (see, e.g., [5], [7], [8], [10],
[15], and references therein). The topic of function spaces with variable exponents
is a very active area of research nowadays (see, e.g., [2], [9], [13]), and one of the
reasons is the wide variety of applications of such spaces (e.g., in the modeling
of electro-rheological fluids, as in [16], and in differential equations with non-
standard growth). Herz spaces with variable exponents were studied by several
authors using different approaches. The Herz spaces Kα

p(·),q and K̇α
p(·),q were stud-

ied by Izuki in [6] and [7] and were improved in the variable case of the Herz

spaces K
α(·)
p(·),q and K̇

α(·)
p(·),q by Almeida and Drihem in [1], where they obtained the

boundedness results for a class of sublinear operators. Izuki and Noi introduced
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the Herz spaces K
α(·)
p(·),q(·) and K̇

α(·)
p(·),q(·) in [8], where all parameters were taken as

variable. Recently, in [3], Drihem and Seghiri studied the Herz spaces and Herz-
type Hardy spaces with variable exponents which were introduced in [8] and
obtained several results regarding equivalence of norms and the atomic decompo-
sition of Herz-type Hardy spaces. Further, they studied the boundedness of some
sublinear operators on Herz spaces with variable exponents. Another approach
to studying variable exponent Herz spaces (with variable parameters), known as
continual Herz spaces, was given by Samko in [17], where the boundedness of some
sublinear operators was obtained. The Sobolev-type theorem on these spaces was
studied by Rafeiro and Samko in [14].

In this paper, we obtain the boundedness of central Calderón–Zygmund oper-

ators on Herz-type Hardy spaces HK
α(·)
p(·),q(·) and

˙HK
α(·)
p(·),q(·) by using the atomic

decomposition of the Herz–Hardy space obtained in [3]. In the proofs of the main
theorems we follow the ideas from [1]. The results for the case when q = const
were obtained in [19]. For the boundedness of such operators in the classical case,
we refer to [12]. The present article has three sections. Section 2 deals with some
basic notions regarding variable exponent Lebesgue and Herz spaces. In Section 3,
we obtain the boundedness of central Calderón–Zygmund operators on Herz-type
Hardy spaces. Throughout the paper, constants (often different constants in the
same series of inequalities) will mainly be denoted by c or C; by the symbol p′(x)

we denote the function p(x)
p(x)−1

, 1 < p(x) < ∞; the relation a ≈ b means that there

are positive constants c1 and c2 such that c1a ≤ b ≤ c2a; and by b·c we denote
the floor function.

2. Preliminaries

2.1. Variable Lebesgue spaces. Let x ∈ Rn and r > 0, and we denote by
B(x, r) an open ball in Rn centered at x and of radius r. By supp(f) we denote
the support of the function f . Let E be a measurable subset in Rn; by |E| we
denote the Lebesgue measure of the set E, and χE denotes the characteristic
function of the set E. Let E be a measurable set in Rn with positive measure.
We denote

p−(E) = ess inf
E

p(x), p+(E) := ess sup
E

p(x)

for a measurable function p on E. A measurable function p belongs to the class
P0(E) (p ∈ P0(E)) if 0 < p−(E) ≤ p+(E) < ∞. We say that p ∈ P(E) if
1 ≤ p−(E) ≤ p+(E) < ∞. We say that a measurable function f on E belongs to
Lp(·)(E) (or to Lp(x)(E)) if

Sp(·),E(f) =

∫
E

∣∣f(x)∣∣p(x) dx < ∞.

The space Lp(·)(E) is a Banach space with respect to the norm (see, e.g., [11])

‖f‖Lp(·)(E) = inf
{
η > 0 : Sp(·),E

(f
η

)
≤ 1

}
.

(For the following propositions, see [11], [2].)
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Proposition A. Let E be a measurable subset of Rn. Suppose that 1 ≤ p−(E) ≤
p+(E) < ∞. Then

(i)

‖f‖p
+(E)

Lp(·)(E)
≤ Sp(·),E(f) ≤ ‖f‖p

−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≤ 1;

‖f‖p
−(E)

Lp(·)(E)
≤ Sp(·),E(f) ≤ ‖f‖p

+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≥ 1.

(ii) Hölder’s inequality∣∣∣∫
E

f(x)g(x) dx
∣∣∣ ≤ ( 1

p−(E)
+

1

(p+(E))′

)
‖f‖Lp(·)(E)‖g‖Lp′(·)(E)

holds, where f ∈ Lp(·)(E) and g ∈ Lp′(·)(E).
(iii) The generalized Hölder’s inequality

‖fg‖Lr(·)(E) ≤ c‖f‖Lp(·)(E)‖g‖Lq(·)(E)

holds, where f ∈ Lp(·)(E), g ∈ Lq(·)(E), and 1
r(x)

= 1
p(x)

+ 1
q(x)

for every

x ∈ E.

Proposition B. Let 1 ≤ r(x) ≤ p(x), and let E be a subset of Rn with |E| < ∞.
Then the following inequality

‖f‖Lr(·)(E) ≤
(
|E|+ 1

)
‖f‖Lp(·)(E)

holds.

Definition 2.1. We say that p satisfies the local log-Hölder continuity condition
(p ∈ P log(Rn)) if there is a positive constant A such that for all x and y in Rn

the inequality ∣∣p(x)− p(y)
∣∣ ≤ A/

(
ln
(
e+ 1/|x− y|

))
holds.

Definition 2.2. We say that p satisfies the log-Hölder condition at the origin
condition (p ∈ P log

0 (Rn)) if there is a positive constant c1 such that for all x ∈ Rn

the inequality ∣∣p(x)− p(0)
∣∣ ≤ c1/

(
ln
(
e+ 1/|x|

))
holds.

Definition 2.3. We say that p satisfies the log-Hölder condition at infinity (p ∈
P log

∞ (Rn)) if there exist two positive constants c2 and p∞ ∈ R such that for all
x ∈ Rn the inequality ∣∣p(x)− p∞

∣∣ ≤ c2/
(
ln
(
e+ |x|

))
holds.

We denote P log
0,∞(Rn) := P log

0 (Rn)∩P log
∞ (Rn). For the next lemma we refer to [9].
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Lemma 2.4. Let p ∈ P log
0,∞(Rn). Then

‖χB(0,r)‖Lp(·) ≤ c0r
n

p(0) for 0 < r ≤ 1 (2.1)

and

‖χB(0,r)‖Lp(·) ≤ c∞r
n

p∞ for r ≥ 1, (2.2)

respectively, where c0 ≥ 1 and c∞ ≥ 1 does not depend on r.

Let p, q ∈ P0(Rn). The mixed variable exponent Lebesgue space lq(·)(Lp(·)) is
defined on a sequence of Lp(·)-functions by the modular

Sp(·),q(·)
(
(fν)ν

)
=

∑
ν

inf
{
λν > 0 : Sp(·)

( fν

λ
1/q(·)
ν

)
≤ 1

}
.

The space is equipped with the quasi-norm∥∥(fν)ν∥∥lq(·)(Lp(·))
= inf

{
µ > 0 : Sp(·),q(·)

( 1
µ
(fν)ν

)
≤ 1

}
.

2.2. Variable Herz-type Hardy spaces. In this subsection, we introduce vari-
able Herz spaces and Herz-type Hardy spaces. The classical Herz spaces were first
considered in [4]. (For the following definitions and statements, see [3].) Let us
set Bk := B(0, 2k), Rk := Bk \Bk−1, and χk = χRk

for k ∈ Z.

Definition 2.5. Let p, q ∈ P0(Rn) and α : Rn 7→ R with α ∈ L∞(Rn). The

inhomogeneous Herz space K
α(·)
p(·),q(·)(R

n) consists of all f ∈ L
p(·)
loc (Rn) such that

‖f‖
K

α(·)
p(·),q(·)(R

n)
:= ‖fχB0‖Lp(·)(Rn) +

∥∥(2kα(·)fχk)k≥1

∥∥
lq(·)(Lp(·))

< ∞. (2.3)

The homogeneous Herz space K̇
α(·)
p(·),q(·)(R

n) consists of all f ∈ L
p(·)
loc (Rn \{0}) such

that

‖f‖
K̇

α(·)
p(·),q(·)(R

n)
:=

∥∥(2kα(·)fχk)k∈Z
∥∥
lq(·)(Lp(·))

< ∞. (2.4)

If α, p, q are constant, then these spaces coincide with the classical Herz spaces,
first considered in [4]. Let us denote

∥∥{gk}∥∥lq>(Lp(·))
:=

( ∞∑
k=0

‖gk‖qLp(·)

)1/q

and ∥∥{gk}∥∥lq<(Lp(·))
:=

( −1∑
k=−∞

‖gk‖qLp(·)

)1/q

for a sequence {gk}k∈Z of measurable function. For the following proposition we
refer to [3].
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Proposition C. Let α ∈ L∞(Rn), p, q ∈ P0(Rn). If α, q ∈ P log
∞ (Rn), then

K
α(·)
p(·),q(·)(R

n) = Kα∞
p(·),q∞(Rn).

Further, if α, q also satisfy the log-Hölder condition at the origin, then

‖f‖
K̇

α(·)
p(·),q(·)(R

n)
=

∥∥{2kα(0)fχk}
∥∥
l
q(0)
< (Lp(·))

+
∥∥{2kα∞fχk}

∥∥
lq∞> (Lp(·))

< ∞.

Let GNf be the grand maximal function of f defined by

GNf(x) = sup
φ∈AN

∣∣φ∗
N(f)(x)

∣∣,
where

AN =
{
φ ∈ S (Rn) : sup

|α|≤N,|β|≤N

∣∣xα∂βφ(x)
∣∣ ≤ 1

}
and

φ∗
N(f)(x) = sup

t>0

∣∣φt ∗ f(x)
∣∣,

with φt(·) = t−nφ( ·
t
) and where S (Rn) denotes the class of Schwartz functions.

Definition 2.6. Let p, q ∈ P0(Rn) and α : Rn 7→ R with α ∈ L∞(Rn) and N >

n + 1. The inhomogeneous Herz-type Hardy space HK
α(·)
p(·),q(·)(R

n) consists of all

f ∈ S ′(Rn) such that GNf ∈ K
α(·)
p(·),q(·)(R

n), and we define

‖f‖
HK

α(·)
p(·),q(·)(R

n)
= ‖GNf‖Kα(·)

p(·),q(·)(R
n)
.

The homogeneous Herz-type Hardy space ˙HK
α(·)
p(·),q(·)(Rn) consists of all f ∈

S ′(Rn) such that GNf ∈ K̇
α(·)
p(·),q(·)(R

n), and we define

‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

= ‖GNf‖K̇α(·)
p(·),q(·)(R

n)
.

Definition 2.7. Let α ∈ L∞(Rn), q ∈ P0(Rn), p ∈ P(Rn), and s ∈ N0. A function
a is said to be a central (α(·), p(·))-atom, if

(1) supp a ⊂ B(0, r) = {x ∈ Rn : |x| ≤ r}, r > 0;
(2) ‖a‖Lp(·)(Rn) ≤ |B(0, r)|−α(0)/n, 0 < r < 1;

(3) ‖a‖Lp(·)(Rn) ≤ |B(0, r)|−α∞/n, r ≥ 1;

(4)
∫
Rn x

βa(x) dx = 0, |β| ≤ s.

A function a is said to be a central (α(·), p(·))-atom of restricted type, if it satisfies

conditions (iii) and (iv) above and supp a ⊂ B(0, r), r ≥ 1.

Now we present the atomic decomposition theorems. For these statements we
refer to [18] in the case of α and q constant and [3] in the case of α and q are
variable.

Proposition D. Let p ∈ P(Rn), q ∈ P0(Rn), and α : Rn 7→ R with α ∈ L∞(Rn).
Let α, q ∈ P log

∞ (Rn) and p ∈ P log(Rn) ∩ P log
∞ (Rn). Suppose that α∞ ≥ n(1− 1

p∞
),

and let s be a nonnegative integer such that s ≥ bα∞ + n( 1
p∞

− 1)c. If f ∈
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HK
α(·)
p(·),q(·)(R

n), then we have

f =
∞∑
k=0

λkak, (2.5)

where the series converges in the sense of distribution, λk ≥ 0, each ak is a central
(α(·), p(·))-atom of restricted type with supp ak ⊂ Bk, and( ∞∑

k=0

|λk|q∞
)1/q∞

≤ c‖f‖
HK

α(·)
p(·),q(·)(R

n)
.

Proposition E. Let p ∈ P(Rn), q ∈ P0(Rn), and α : Rn 7→ R with α ∈ L∞(Rn).

Let α, q ∈ P log
0,∞(Rn) and p ∈ P log(Rn) ∩ P log

0,∞(Rn). Suppose that α(·) ≥ n(1 −
1
p−
), and let s be a nonnegative integer such that s ≥ max{bα∞ + n( 1

p∞
− 1)c,

bα(0) + n( 1
p(0)

− 1)c}. If f ∈ ˙HK
α(·)
p(·),q(·)(Rn), then we have

f =
∞∑

k=−∞

λkak, (2.6)

where the series converges in the sense of distribution, λk ≥ 0, each ak is a central
(α(·), p(·))-atom with supp ak ⊂ Bk, and( −1∑

k=−∞

|λk|q(0)
)1/q(0)

+
( ∞∑

k=0

|λk|q∞
)1/q∞

≤ c‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

. (2.7)

3. Boundedness of central Calderón–Zygmund operators

In this section, we show that the central Calderón–Zygmund operator is

bounded from ˙HK
α(·)
p(·),q(·)(Rn) to K̇

α(·)
p(·),q(·)(R

n). A similar conclusion holds for the

inhomogeneous case. Our main result follows from a general result of a larger
class of operators. We begin this section with the following definition.

Definition 3.1. Let p ∈ P(Rn), q ∈ P0(Rn), and α : Rn 7→ R with α ∈ L∞(Rn).

Let α, q ∈ P log
0,∞(Rn) and p ∈ P log(Rn) ∩ P log

0,∞(Rn). Let s be the nonnegative
integer given by s = max{bα∞ + n(1/p∞ − 1)c, bα(0) + n(1/p(0)− 1)c}. We say
that a sublinear operator T belongs to class I0,∞ (T ∈ I0,∞) if the following
conditions hold:

(1) T is bounded in Lp(·)(Rn).
(2) There exists a constant δ > 0 such that s+ δ > max{α∞ + n(1/p∞ − 1),

α(0) + n(1/p(0)− 1)}, and for any compactly supported function f with∫
Rn

f(x)xβ dx = 0, |β| ≤ s,

Tf satisfies the size condition∣∣Tf(x)∣∣ ≤ c
(
diam(supp f)

)s+δ|x|−(n+s+δ)

∫
Rn

∣∣f(y)∣∣ dy, (3.1)

if dist(x, supp f) ≥ |x|/2.
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Analogously, we can define the class I∞, where all the exponents satisfy the
log-Hölder condition near infinity, and replace the condition on s as above by
s = bα∞ + n(1/p∞ − 1)c.

The next statements are the main results of this section.

Theorem 3.2. Let p, α ∈ P∞(Rn), T ∈ I∞, and δ be as in Definition 3.1. If
n

p′∞
< α∞ <

n

p′∞
+ δ, (3.2)

holds, then T is bounded from HK
α(·)
p(·),q(·)(R

n) to K
α(·)
p(·),q(·)(R

n).

Theorem 3.3. Let p, α ∈ P0,∞(Rn), T ∈ I0,∞, and δ be as in Definition 3.1. If
n

p′(0)
< α(0) <

n

p′(0)
+ δ,

n

p′∞
< α∞ <

n

p′∞
+ δ, (3.3)

holds, then T is bounded from ˙HK
α(·)
p(·),q(·)(Rn) to K̇

α(·)
p(·),q(·)(R

n).

We present the proof only for Theorem 3.3. The proof of Theorem 3.2 can be
obtained by the same arguments.

Proof of Theorem 3.3. Now, by Proposition C, we have∥∥T (f)∥∥
K̇

α(·)
p(·),q(·)

≤ c
( −1∑
k=−∞

2kα(0)q(0)
∥∥T (f)χk

∥∥q(0)

Lp(·)

) 1
q(0)

+
( ∞∑

k=0

2kα∞q∞
∥∥T (f)χk

∥∥q∞

Lp(·)

) 1
q∞

=: c(I< + I>).

Let f ∈ ˙HK
α(·)
p(·),q(·)(Rn). By Proposition E the function f can be represented

as f =
∑∞

j=−∞ λjaj, where aj is a central (α(·), p(·))-atom with supp aj ⊂ Bj.
Hence,

I< ≤ c
( −1∑
k=−∞

2kα(0)q(0)
( k−2∑
j=−∞

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q(0)) 1
q(0)

+ c
( −1∑
k=−∞

2kα(0)q(0)
( ∞∑
j=k−1

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q(0)) 1
q(0)

=: I
(1)
< + I

(2)
<

and

I> ≤ c
( ∞∑

k=0

2kα∞q∞
( k−2∑
j=−∞

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q∞) 1
q∞

+ c
( ∞∑

k=0

2kα∞q∞
( ∞∑
j=k−1

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q∞) 1
q∞

=: I
(1)
> + I

(2)
> .
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Estimate of I
(2)
< : By (Lp(·), Lp(·)) boundedness of T and Minkowski’s inequality,

we have

I
(2)
< ≤ c

( −1∑
k=−∞

2kα(0)q(0)
( ∞∑
j=k−1

|λj|‖aj‖Lp(·)

)q(0)) 1
q(0)

≤ c
( −1∑
k=−∞

2kα(0)q(0)
( −1∑
j=k−1

|λj|‖aj‖Lp(·) +
∞∑
j=0

|λj|‖aj‖Lp(·)

)q(0)) 1
q(0)

≤ c
( −1∑
k=−∞

( −1∑
j=k−1

|λj|2(k−j)α(0)
)q(0)) 1

q(0)

+ c
( −1∑
k=−∞

2kα(0)q(0)
( ∞∑

j=0

|λj|2−jα∞
)q(0)) 1

q(0)

=: cH1 + cH2.

Now for H1, by Hölder’s inequality with (q(0), q′(0)) and changing the order of
summation, we have

H1 ≤ c
( −1∑
k=−∞

−1∑
j=k−1

|λj|q(0)2(k−j)
α(0)q(0)

2

) 1
q(0)

≤ c
( −1∑
j=−∞

|λj|q(0)
j+1∑

k=−∞

2(k−j)
α(0)q(0)

2

) 1
q(0)

≤ c
( −1∑
j=−∞

|λj|q(0)
) 1

q(0)

≤ c‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

.

For H2, first let q∞ > 1; then by Hölder’s inequality with exponents (q∞, q′∞) and
Proposition E (the fact that α∞ > 0 together with inequality (2.7)) we have

H2 = c
( −1∑
k=−∞

2kα(0)q(0)
) 1

q(0)
( ∞∑

j=0

|λj|2−jα∞
)

≤ c
( ∞∑

j=0

|λj|q∞
)1/q∞( ∞∑

j=0

2−jα∞q′∞

)1/q′∞

≤ c
( ∞∑

j=0

|λj|q∞
)1/q∞

≤ c‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

.
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Estimate of I
(2)
> : The estimate is similar to the one for H1 with q(0) replaced by

q∞, since j ≥ k − 1 > 0. Thus we have

I
(2)
> ≤ c‖f‖ ˙HK

α(·)
p(·),q(·)(Rn)

.

Estimate of I
(1)
> : First, since x ∈ Rk, y ∈ Bj, and j ≤ k− 2 and |x− y| ≥ 2k/2 ≥

|x|/2, we have, by the size condition (3.1) and Hölder’s inequality,

∣∣T (aj)(x)∣∣ ≤
c2(j−k)(s+δ)2−kn2

nj

p′∞ 2−jα∞ , j ≥ 0,

c2(j−k)(s+δ)2−kn2
nj

p′(0)2−jα(0), j < 0.
(3.4)

Hence,

∥∥T (aj)χk

∥∥
Lp(·)(Rn)

≤

c2
−nk
p′∞ 2(j−k)(s+δ)2

nj

p′∞ 2−jα∞ , j ≥ 0,

c2
−nk
p′∞ 2(j−k)(s+δ)2

nj

p′(0)2−jα(0), j < 0,
(3.5)

I
(1)
> ≤ c

( ∞∑
k=0

2kα∞q∞
( k−2∑
j=−∞

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q∞) 1
q∞

≤ c
( ∞∑

k=0

2kα∞q∞
( −1∑
j=−∞

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q∞) 1
q∞

+ c
( ∞∑

k=0

2kα∞q∞
(k−2∑

j=0

|λj|
∥∥T (aj)χk

∥∥
Lp(·)

)q∞) 1
q∞

≤ J1 + J2,

where J2 = 0 for k = 0, 1, 2. Let q(0) > 1; then, by using the estimate (3.5)
for J1 and Hölder’s inequality with exponents (q(0), q′(0)) and the fact s + δ >
max{α∞ + n(1/p∞ − 1), α(0) + n(1/p(0)− 1)}, we have

J1 ≤ c
( ∞∑

k=0

2kα∞q∞
( −1∑
j=−∞

|λj|2
−nk
p′∞ 2(j−k)(s+δ)2

nj

p′(0)2−jα(0)
)q∞) 1

q∞

≤ c
( ∞∑

k=0

2
−kq∞( n

p′∞
+s+δ−α∞)

) 1
q∞

( −1∑
j=−∞

|λj|2j(s+δ+ n
p′(0)−α(0))

)
≤ c

( −1∑
j=−∞

|λj|q(0)
) 1

q(0)
( −1∑
j=−∞

2
j(s+δ+ n

p′(0)−α(0))q′(0)
) 1

q′(0)

≤ c‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

.

Similarly for J2, inserting the appropriate estimate from (3.5), it follows from
Hölder’s inequality with exponents (q∞, q′∞) and the condition s + δ >
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max{α∞ + n(1/p∞ − 1), α(0) + n(1/p(0)− 1)} that

J2 ≤ c
( ∞∑

k=0

2kα∞q∞
(k−2∑

j=0

|λj|2(j−k)(s+δ)2
−kn
p′∞ 2

nj

p′∞ 2−jα∞
)q∞) 1

q∞

≤ c
( ∞∑

k=0

(k−2∑
j=0

|λj|2
(j−k)(s+δ+ n

p′∞
−α∞)

)q∞) 1
q∞

≤ c
( ∞∑

k=0

(k−2∑
j=0

|λj|q∞2
(j−k)(s+δ+ n

p′∞
−α∞)

q∞
2

)(k−2∑
j=0

2
(j−k)(s+δ+ n

p′∞
−α∞)

q′∞
2

) q∞
q′∞

) 1
q∞

≤ c
( ∞∑

j=0

|λj|q∞
( ∞∑
k=j+2

2
(j−k)(s+δ+ n

p′∞
−α∞)

q∞
2

)) 1
q∞

≤ c
( ∞∑

j=0

|λj|q∞
) 1

q∞

≤ c‖f‖ ˙HK
α(·)
p(·),q(·)(Rn)

.

Estimate of I
(1)
< : The estimate is similar to the one for J2 with q∞ replaced by

q(0) since j ≤ k − 2 < 0. The case when 0 < q < 1 can be obtained in a similar
way by using the inequality (

∑
xi)

q ≤ (
∑

xq
i ). �

3.1. Application. In this section, we apply our main result to obtain the bound-
edness of central Calderón–Zygmund operators, which are more general than the
standard Calderón–Zygmund operators. We begin this section with the following
definition.

Definition 3.4. Let K be a locally integrable function on Rn×Rn \{x = y}. Then
K is called a central kernel if there exist δ ∈ (0, 1] and C > 0, such that∣∣K(x, y)−K(x, 0)

∣∣ ≤ C
|y|δ

|x|n+δ
, |x| ≥ 2|y|, (3.6)

and ∣∣K(x, 0)
∣∣ ≤ c

|x|n
.

Definition 3.5. A linear operator TK : S (Rn) 7→ S ′(Rn) is said to be a Calderón–
Zygmund operator associated with a central kernel K if

(1) TK can be extended to be a bounded operator on L2(Rn);
(2) for any f ∈ L2(Rn) with compact support and almost every x /∈ supp f ,

TKf(x) =

∫
Rn

K(x, y)f(y) dy. (3.7)

Now we present the boundedness of Calderón–Zygmund operators with a cen-
tral kernel. We remark that the case for q(·) = const was proved in [19].
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Theorem 3.6. Let p, q, α be as in Theorem 3.2. Let TK be a Calderón–Zygmund
operator bounded in Lp(·)(Rn) and let it be associated with the central kernel K

in the sense of (3.7). Then TK is bounded from HK
α(·)
p(·),q(·)(R

n) to K
α(·)
p(·),q(·)(R

n).

Theorem 3.7. Let p, q, α be as in Theorem 3.3. Let TK be a Calderón–Zygmund
operator bounded in Lp(·)(Rn) and let it be associated with the central kernel K

in the sense of (3.7). Then TK is bounded from ˙HK
α(·)
p(·),q(·)(Rn) to K̇

α(·)
p(·),q(·)(R

n).

Proof. We only prove Theorem 3.6. The proof of Theorem 3.7 follows analogously.
First, the condition n/p′∞ ≤ α∞ < n/p′∞ + δ implies that s =

bα∞ − n/p′∞c = 0. Now let f ∈ HK
α(·)
p(·),q(·)(R

n); then by Proposition D we have

that f(x) =
∑∞

k=0 λkak(x) where ak is central (α(·), p(·))-atom. By sublinearity
of TK we have |TKf(x)| ≤

∑∞
k=0 |λk||TK(ak)(x)|. Following the proof of Theo-

rem 3.2, we have that, for each x ∈ Ak and supp(f) ⊂ Bj (j ≤ k − 2) together
with the condition of vanishing moments (i.e.,

∫
Rn ak = 0) and condition (3.6),

the operator TK satisfies condition (3.1) with s = 0. Hence the result follows by
the same arguments as presented in Theorem 3.2. �
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Colombia, as a postdoctoral investigator working on the research project “Study
of boundedness of some operators in generalized Morrey spaces,” ID-PRJ: 6576
(contract DPE-040-15).

References

1. A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces
with variable exponents, J. Math. Anal. Appl. 394 (2012), no. 2, 781–795. Zbl 1250.42077.
MR2927498. DOI 10.1016/j.jmaa.2012.04.043. 310, 311

2. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Har-
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