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Abstract. We introduce the notion of the p-Schur property (1 ≤ p ≤ ∞) as
a generalization of the Schur property of Banach spaces, and then we present
a number of basic properties and some examples. We also study its relation
with some geometric properties of Banach spaces, such as the Gelfand–Phillips
property. Moreover, we verify some necessary and sufficient conditions for the
p-Schur property of some closed subspaces of operator spaces.

1. Introduction

A sequence (xn) in a Banach space X is called weakly p-summable with 1 ≤ p <
∞ if, for each x∗ in the dual spaceX∗ ofX, the sequence (〈xn, x∗〉) is p-summable;
that is,

∞∑
n=1

∣∣〈xn, x∗〉∣∣p <∞,

where 〈x, x∗〉 denotes the duality between x ∈ X and x∗ ∈ X∗. The space of all
weakly p-summable sequences in X is denoted by `weakp (X), which is a Banach
space with the norm∥∥(xn)∥∥weak

p
= sup

{( ∞∑
n=1

∣∣〈xn, x∗〉∣∣p) 1
p
: ‖x∗‖ ≤ 1

}
.
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An operator T between Banach spaces X and Y is said to be p-converging
if it transfers weakly p-summable sequences into norm-null sequences; that is,
‖Txn‖ → 0 for all (xn) ∈ `weakp (X). The class of all p-converging operators from
X into Y is denoted by Cp(X,Y ). The Banach space of all (weakly) bounded
sequences in X with supremum norm is denoted by `weak∞ (X). Moreover, by
cweak0 (X) we represent the closed subspace of `weak∞ (X) which contains all weakly
null sequences of X.

For each 1 ≤ p < ∞, a sequence (xn) in a Banach space X is said to be
weakly p-convergent to an x ∈ X if the sequence (xn − x) is weakly p-summable;
that is, (xn − x) ∈ `weakp (X). The weakly ∞-convergent sequences are simply
the weakly convergent sequences. Also, according to [4], a bounded set K in a
Banach space is said to be relatively weakly p-compact, 1 ≤ p ≤ ∞, if every
sequence in K has a weakly p-convergent subsequence. If the limit point of each
weakly p-convergent subsequence is in K, then we call K a weakly p-compact set.
Also a Banach space X is weakly p-compact if the closed unit ball BX of X is
a weakly p-compact set. A bounded operator T from X into Y is called weakly
p-compact, 1 ≤ p ≤ ∞, if T (BX) is relatively weakly p-compact. The space of all
weakly p-compact operators from X into Y is denoted by Wp(X,Y ), while the
space of all bounded operators and weakly compact operators from X into Y are
denoted by L(X,Y ) and W (X,Y ), respectively. Weakly ∞-compact operators
are precisely those T ∈ L(X,Y ) for which T (BX) is relatively weakly compact;
that is, W∞(X,Y ) = W (X,Y ). The reader is referred to [4] for more information
about these concepts.

We note that in [18], the authors used the same name “relatively weakly
p-compact” for a subset K of a Banach space X such that for some sequence
(xn) ∈ `weakp (X),

K ⊆
{∑

j

λjxj : (λj) ∈ B`q

}
,

where p ≥ 1 and 1
p
+ 1

q
= 1. Note that, by [5], this notion is stronger than the

concept of a “relatively weakly p-compact set” that was considered by Castillo
and Sánchez in [4].

We know that a Banach spaceX has the Dunford–Pettis (DP) property if every
weakly compact operator T from X into any Banach space Y is a Dunford–Pettis
operator; that is, T carries weakly convergent sequences to norm-convergent ones.
Also, if 1 ≤ p ≤ ∞, then the Banach space X has the Dunford–Pettis property
of order p (DPp) if for each Banach space Y , every weakly compact operator
T : X → Y is p-converging; in other words, W (X,Y ) ⊆ Cp(X,Y ). By definition,
∞-converging operators are equal to Dunford–Pettis ones. So the Dunford–Pettis
property of order ∞ is the same as the DP property. Every Banach space with
the DP property, such as the sequence spaces c0, `1 and every Schur space, has
the DPp property. A Banach space X has the Schur property if every weakly
null sequence in X converges in norm. The simplest Banach space with the Schur
property is `1.
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A subset K of a Banach space X is called limited (resp., Dunford–Pettis (DP))
if for each weak∗ null (resp., weak null ) sequence (x∗n) in X

∗,

lim
n→∞

sup
x∈K

∣∣〈x, x∗n〉∣∣ = 0.

In general, every relatively compact subset of X is limited and so is Dunford–
Pettis. If every limited subset of a Banach space X is relatively compact, then
X has the Gelfand–Phillips (GP) property. For example (see [2]), the classical
Banach spaces c0 and `1 have the GP property and every Schur space and spaces
containing no copy of `1, such as reflexive spaces, have the same property. (The
reader can find some useful and additional properties of limited and DP sets and
Banach spaces with the Schur and GP properties in [2], [9], [13], and [17].)

The main aim of the present article is to introduce the p-Schur property of
Banach spaces as a generalization of the Schur property. We give some basic facts
and some examples of this concept. We obtain some sufficient conditions which
illustrate the relation between the Gelfand–Phillips property and the p-Schur
property of Banach spaces. Finally, we characterize closed subspaces of some
operator spaces with the p-Schur property relative to the p-converging of some
special operators, the so-called evaluation operators.

2. Main results

Recall that a series
∑∞

n=1 xn in X is said to be unconditionally convergent
if
∑∞

n=1 xπ(n) converges for every permutation π of the natural numbers. Also,
a series

∑∞
n=1 xn in X is weakly unconditionally Cauchy or weakly unconditionally

convergent (WUC) if for every x∗ ∈ X∗,
∑∞

n=1 |〈xn, x∗〉| <∞.

Definition 2.1 ([8, p. 37]). Let X and Y be two Banach spaces. An operator
T : X → Y is called unconditionally converging if

∑∞
n=1 Txn is unconditionally

convergent whenever
∑∞

n=1 xn is WUC.

Theorem 2.2 ([1, Theorem 2.4.11]). For every WUC series in a Banach space
X to be unconditionally convergent, it is necessary and sufficient that X contains
no copy of c0.

Definition 2.3. A Banach space X has the p-Schur property (1 ≤ p ≤ ∞) if every
weakly p-compact subset of X is compact.

In other words, if 1 ≤ p < ∞, a Banach space X has the p-Schur property if
and only if every sequence (xn) ∈ `weakp (X) is a norm-null sequence, and X has

the ∞-Schur property if and only if every sequence in cweak0 (X) is norm-null. So
the ∞-Schur property coincides with the Schur property. Also, one can note that
every Schur space has the p-Schur property for all p ≥ 1.

We note that a quantitative version of the Schur property, namely, the “C-Schur
property,” was introduced and studied in [12]. In fact, a Banach space X is said
to have the C-Schur property (where C ≥ 0) if

ca(xk) ≤ Cδ(xk),
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for any bounded sequence (xk) in X, for which

ca(xk) = inf
n∈N

diam{xk : k ≥ n}

and

δ(xk) = sup
x∗∈BX∗

inf
n∈N

diam
{
x∗(xk) : k ≥ n

}
.

In this notion, if X has the C-Schur property for some C ≥ 1, then X has
the Schur property. Moreover, in [12, Example 1.4] Banach spaces with the Schur
property and without the C-Schur property for any C > 0 have been constructed.
Therefore, our definition of the p-Schur property is not equivalent to this quanti-
tative version of the Schur property.

Theorem 2.4. Let X be a Banach space which contains no copy of c0. Then X
has the 1-Schur property.

Proof. Assume that (xn) ∈ `weak1 (X). Then (xn) is WUC. By Theorem 2.2,∑∞
n=1 xn is convergent and so ‖xn‖ → 0. �

Corollary 2.9 shows that the converse of this theorem is also valid.

Example 2.5. It is well known that `1 has the Schur property. Then it has the
p-Schur property for all p ≥ 1. However, it is known that `p (p > 1), L1(µ),
and weakly sequentially complete Banach spaces and reflexive spaces are not
necessarily Schur spaces. But they contain no copy of c0. Therefore, they have
the 1-Schur property.

Example 2.6. Suppose that p, q ≥ 1 such that 1
p
+ 1

q
= 1. Then `p does not have

the q-Schur property. Indeed, if (en) is the standard basis of `p, then we have

∞∑
n=1

∣∣〈x∗, en〉∣∣q = ∞∑
n=1

|xn|q <∞

for all x∗ = (x1, x2, . . .) ∈ `q. But clearly, ‖en‖ = 1 for all n. It is known that
`weakp (X) ⊆ `weakq (X) for all 1 ≤ p ≤ q. Therefore, we conclude that if X has
the q-Schur property, then X has the p-Schur property. This fact and the above
example show that `2 does not have the p-Schur property for all p ≥ 2.

Theorem 2.7. For each 1 ≤ p ≤ ∞, the following statements are equivalent.

(i) X has the p-Schur property.
(ii) Every subspace of X has the p-Schur property.
(iii) Every separable subspace Z of X is contained in a subspace Y ⊆ X which

is p-Schur and is complemented in X.
(iv) X is the direct sum of two p-Schur spaces.

Proof. If Y is a subspace of X, since `weakp (Y ) ⊆ `weakp (X), then the implication
(i)⇒(ii) is obvious.

(ii)⇒(iii) This implication is clear.
(iii)⇒(i) Suppose that E is a weakly p-compact subset of X and that (xn) ⊆ E.

Then there is a subsequence (xnk
) of (xn) that is weakly p-convergent to some
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x ∈ E. On the other hand, the sequence (xn) is contained in a p-Schur subspace
Y and so xnk

→ x in norm.
(i)⇒(iv) We have X = X ⊕ {0}.
(iv)⇒(i) LetX = Y ⊕Z such that Y and Z have the p-Schur property. Consider

the projections PY : X → Y and PZ : X → Z. Assume that E is a weakly
p-compact subset of X. Then PY (E) is a weakly p-compact subset of Y and
so is compact. Similarly, PZ(E) is a compact set. Any sequence (xn) ⊆ E can
be written as xn = yn + zn, where yn ∈ PY (E), zn ∈ PZ(E). Then there are
subsequences (ynk

) and (znk
) and vectors y ∈ PY (E) and z ∈ PZ(E) such that

ynk
→ y and znk

→ z. Hence, xnk
= ynk

+ znk
→ y + z. Since E is weakly

p-compact, we conclude that y + z ∈ E. Therefore, E is compact. �

Corollary 2.8. Every Banach space which contains a copy of c0 does not have
the p-Schur property.

Proof. The Banach space c0 does not have the 1-Schur property. Indeed, the
standard basis (en) ∈ `weak1 (c0) is not a norm-null sequence. So c0 is not p-Schur
for all p ≥ 1. �

Corollary 2.9. The Banach space X has the 1-Schur property if and only if X
contains no copy of c0.

Let K(H) be the algebra of all compact operators on an infinite-dimensional
Hilbert space H. It is known that c0 can be identified with a closed commutative
subalgebra of K(H) (see [19]). It follows that K(H) is not p-Schur. Also, clearly
the Banach spaces C(K) (of all continuous functions on a compact metric space)
and `∞ contain a copy of c0 and so do not have the p-Schur property.

Corollary 2.10. Every Banach space X with an unconditional basis which is not
isomorphic to a dual space fails to have the p-Schur property.

Proof. By Theorems 3.2.10 and 3.3.2 of [1], X contains a copy of c0. �

The following corollary refines a standard argument about the Schur property.

Corollary 2.11. Let X be a Banach space. If X∗ has the p-Schur property for
some p, then X contains no copy of `1.

Proof. Suppose that X contains a copy of `1. Then X
∗ contains a copy of c0. But

c0 is not a p-Schur space. �

Theorem 2.12. The Banach space X has the 1-Schur property if and only if
every operator T : X → Y is unconditionally converging for all Banach spaces Y .

Proof. First, suppose that X contains no copy of c0 and that
∑∞

n=1 xn is WUC
in X. By Theorem 2.2, the series

∑∞
n=1 xn is unconditionally convergent and

so
∑∞

n=1 Txn is unconditionally convergent. The converse also follows by Theo-
rem 2.2, since the identity operator i : X → X is unconditionally converging. �

By similar techniques, we can conclude that the Banach space Y has the 1-Schur
property if and only if every operator T : X → Y is unconditionally converging
for all Banach spaces X. (We recall the property (V) of a Banach space which was
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introduced in [14] by Pelczynski: a Banach space X has the property (V) if for
every Banach space Y , every unconditionally converging operator T ∈ L(X,Y )
is weakly compact.) Since `1 is a Schur space that contains no copy of c0,the
corollaries below follow from Theorem 2.12.

Corollary 2.13. Let X be a Banach space with Pelczynski’s property (V). Then
every operator T : X → `1 is compact.

Corollary 2.14. Let X be a nonreflexive Banach space with the property (V).
Then X contains a copy of c0 and so fails to have the p-Schur property for all p.

Proof. Assume that X contains no copy of c0. By Theorem 2.2, we conclude that
the identity operator i : X → X is unconditionally converging. Since X has the
property (V ), i : X → X is weakly compact. Therefore, X is reflexive. This is a
contradiction. �

Corollary 2.15. Let X be a Banach space with property (V ) which has the
1-Schur property. Then L(X,Y ) = W (X,Y ) for each Banach space Y .

In the following we recall the definition of the DP∗ property of order p from
[11], which plays a critical role in the study of the p-Schur property of some
Banach spaces.

Definition 2.16 ([11, Definition 2.3]). A Banach space X is said to have the DP∗

property of order p (for 1 ≤ p ≤ ∞) if all weakly p-compact sets in X are limited.
In short, we say that X has the DP∗

p property.

Theorem 2.17 ([11, Theorem 2.4]). Let 1 ≤ p ≤ ∞. The Banach space X has
the DP∗

p property if and only if 〈xn, x∗n〉 → 0 as n → ∞ for all (xn) ∈ `weakp (X)
in X and all weak∗ null sequences (x∗n) in X

∗.

Theorem 2.18. If a Banach space X has the DP∗
p property and BX∗ is weak∗

sequentially compact, then X has the p-Schur property.

Proof. Suppose that X is not p-Schur. Then there is (xn) ∈ `weakp (X) such that
‖xn‖ = 1 for all n ≥ 1. Put

En = span{xk : k ≤ n}.

Given a fixed k, it follows from Lemma 1.7 of [3] that there exists an indexNk such
that d(xj, Ek) >

1
3
for all j ≥ Nk. Thus, we may choose xnk

/∈ Ek (where nk ≥ Nk)

such that d(xnk
, Ek) >

1
3
(but, of course, d(xnk

, Enk
) = 0 since xnk

∈ Enk
). There

exists y∗k ∈ BX∗ such that 〈y∗k, xnk
〉 ≥ 1

3
and 〈y∗k, x〉 = 0 for all x ∈ Ek. Thus,

we construct a sequence (y∗k) ⊆ BX∗ such that 〈y∗k, xnk
〉 ≥ 1

3
and 〈y∗k, x〉 = 0 for

all x ∈ Ek and for all k. Since BX∗ is weak∗ sequentially compact, there exists a

subsequence (y∗kj) such that y∗kj
w∗
→ y∗ ∈ BX∗ . Since for all j such that kj ≥ k we

have Ek ⊆ Ekj and thus 〈y∗kj , x〉 = 0 for all x ∈ Ek, it follows that 〈y∗, x〉 = 0 for

all x ∈ Ek. Therefore, 〈y∗, xk〉 = 0 for all k. Let x∗kj = y∗kj − y∗. Then x∗kj
w∗
→ 0.

On the other hand, since xnkj
∈ Enkj

, we have

〈x∗kj , xnkj
〉 = 〈y∗kj , xnkj

〉 − 〈y∗, xnkj
〉 ≥ 1

3
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for all j. From Theorem 2.17, it follows that X does not have the DP∗
p property,

which is a contradiction. �

The Banach space c0 illustrates that, in general, a GP space does not have the
p-Schur property. The following theorem gives a sufficient condition for which a
Banach space with the GP property could be a p-Schur space.

Theorem 2.19. Let X be a Banach space with the GP and DP∗
p properties. Then

X has the p-Schur property.

Proof. Let (xn) ∈ `weakp (X). It is well known that (xn) is limited if and only
if 〈xn, x∗n〉 → 0 for all w∗-null sequences (x∗n) ⊆ X∗ (see [10]). Then by Theo-
rem 2.17, since X has the DP∗

p property, we conclude that (xn) is limited. On the
other hand, we know that the Banach space X has the GP property if and only
if every limited weakly null sequence in X is norm-null (see [9]), from which it
follows that ‖xn‖ → 0. �

Theorem 2.20. For a Banach space X and each 1 ≤ p ≤ ∞, the following are
equivalent.

(i) X has the p-Schur property.
(ii) For each Banach space Y , L(X,Y ) = Cp(X,Y ).
(iii) For each Banach space Y , L(Y,X) = Cp(Y,X).

Proof. (i)⇒(ii) Let 1 ≤ p <∞, and let X be a p-Schur space. If T ∈ L(X,Y ) and
(xn) ∈ `weakp (X), then ‖xn‖ → 0. Hence ‖Txn‖ → 0. Therefore, T ∈ Cp(X,Y ).

(ii)⇒(i) If one considers the identity operator on X, then clearly (ii) implies (i).
The implication (i)⇔(iii) is proved similarly.
Note that if p = ∞, the ∞-Schur property coincides with the Schur property

and the ∞-converging operators coincide with the Dunford–Pettis operators. �

The following corollary proves that the validity of Theorem 2.20(ii) for `∞
instead of all Banach spaces Y is a sufficient condition for the p-Schur property
of X.

Corollary 2.21. A Banach space X has the p-Schur property if and only if
L(X, `∞) = Cp(X, `∞).

Proof. Suppose that X does not have the p-Schur property. Then there exists a
normalized sequence (xn) ∈ `weakp (X). We can choose a sequence (x∗n) ∈ BX∗ such
that |〈xn, x∗n〉| = 1 for all integers n. Define T : X → `∞ by Tx = (〈x∗m, x〉). Then
we have

‖Txn‖ = sup
{∣∣〈x∗m, xn〉∣∣ : m ∈ N

}
≥ 1.

Therefore, ‖Txn‖ is not a null sequence and T is not p-converging. �

By Theorem 2.20, every weakly compact operator on a p-Schur space X is
p-converging. Thus X has the DPp property. But the converse is not true in
general. For example, we know that for each compact Hausdorff space K, C(K)
and c0 do not have the p-Schur property. However, they have the DP property
and so have the DPp property (see [8]). Theorem 2.31 shows that in reflexive



130 M. B. DEHGHANI and S. M. MOSHTAGHIOUN

Banach spaces, the converse is true. Also, Theorem 2.30 gives another sufficient
condition for the converse.

We recall that an operator T : X → Y between two Banach spaces X and Y
is said to be strictly singular if there is no infinite-dimensional subspace E ⊆ X
such that T |E is an isomorphism onto its range (see [1, Definition 2.1.8]).

Theorem 2.22. Suppose that T ∈ Cp(X,Y ) is not strictly singular. Then X
and Y contain simultaneously some infinite-dimensional closed subspaces with
the p-Schur property.

Proof. Let T have a bounded inverse on the closed infinite-dimensional subspace
Z of X. If (xn) ∈ `weakp (Z), then since (xn) ∈ `weakp (X), ‖Txn‖ → 0 and so
‖xn‖ → 0. Hence Z has the p-Schur property. Therefore, T (Z) also has the
p-Schur property. �

By a similar argument, if T ∈ Wp(X,Y ) is not strictly singular, then X and Y
contain simultaneously some infinite-dimensional weakly p-compact subspaces.

Corollary 2.23. Any weakly p-compact operator which is p-converging is strictly
singular.

Proof. Let T ∈ Cp(X,Y )∩Wp(X,Y ) and such that T is not strictly singular. Then
X has an infinite-dimensional closed subspace Z such that the restriction operator
T |Z is an into isomorphism. Then the technique of the proof of Theorem 2.22
shows that Z is weakly p-compact and has the p-Schur property. Hence BZ is
compact, which is impossible. �

Corollary 2.24. Let X and Y be two Banach spaces, and let 1 ≤ p ≤ ∞ and
T ∈ Wp(X,Y ). If X has the DPp property, then T is strictly singular and T 2 is
compact.

Proof. Since X has the DPp property, we have T ∈ Cp(X,Y ) and so by Corol-
lary 2.23 it is strictly singular. Moreover, by assumption, T (BX) is relatively
weakly p-compact. Thus T 2(BX) = T (T (BX)) is relatively compact. �

Corollary 2.25. Let X have the p-Schur property, and let Y be weakly p-compact.
Then every T ∈ L(X,Y ) is strictly singular.

Some necessary and sufficient conditions for the compactness of operators
between Banach spaces have been given in [13]. We try to collect some other
conditions for this situation.

Theorem 2.26. Let X∗ have the 1-Schur property, and assume that Y has the
Schur property. Then every T ∈ L(X,Y ) is compact.

Proof. Assume that there exists an operator T ∈ L(X,Y ) which is not compact.
The Schur property of Y implies that there is a bounded sequence (xn) in X with
no weakly Cauchy subsequence. Then by Rosenthal’s `1-theorem, X contains a
copy of `1. It follows that X

∗ contains a copy of c0, which is a contradiction, since
X∗ has the 1-Schur property. �

Theorem 2.27. For given Banach spaces X and Y , if X is weakly p-compact
and Y has the p-Schur property, then every T ∈ L(X,Y ) is compact.
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Proof. If BX is weakly p-compact and T ∈ L(X,Y ), then T (BX) is also weakly
p-compact and the p-Schur property of Y implies that T (BX) is compact. �

The rest of this article establishes some relations between the DPp and the
p-Schur properties of Banach spaces. Recall that a Banach space X is said to be
smooth if the norm ‖ · ‖ of X is Gâteaux-differentiable on X. Given a smooth
Banach space X, a mapping T : X → X∗ is a dual map if ‖Tx‖ = ‖x‖ and
T (x)(x) = ‖x‖2 for all x ∈ X. It is well known that the dual map is ‖ · ‖ − w∗

continuous (see, e.g., [7]).
The following characterization of spaces having the DPp property plays an

essential role in achieving our subsequent results.

Theorem 2.28 ([4, Proposition 3.2]). For a given Banach space X and 1 ≤ p ≤
∞, the following are equivalent.

(i) X has the DPp property.
(ii) If (xn) ∈ `weakp (X) and (x∗n) ∈ cweak0 (X∗), then 〈xn, x∗n〉 → 0.

Theorem 2.29. Let X be a smooth Banach space. Then the following statements
are equivalent.

(i) X has the p-Schur property.
(ii) X has the DPp property and every dual mapping on X is p-weak-norm

sequentially continuous; that is, it maps all weakly p-convergent sequences
into norm-convergent ones.

(iii) X has the DPp property and there exists a dual mapping on X which
is pw-w sequentially continuous; that is, it maps all weakly p-convergent
sequences into weakly convergent ones.

Proof. (i)⇒(ii) Let X be a p-Schur space, and let (xn) ∈ `weakp (X). Then ‖xn‖ →
0. If T : X → X∗ is a dual mapping, then we conclude that ‖Txn‖ → 0.

(ii)⇒(iii) This implication is clear.
(iii)⇒(i) In contrast, assume that X does not have the p-Schur property and

that T : X → X∗ is a pw-w sequentially continuous dual map. Then there is a
normalized sequence (xn) ∈ `weakp (X). Since T is pw-w continuous, we conclude
that (Txn) is a weakly null sequence in X∗. Theorem 2.28 implies that

‖xn‖2 = 〈xn, Txn〉 → 0,

which is impossible. �

Theorem 2.30. If X has the DPp property, then either X is not weakly p-compact
or X∗ has the Schur (p-Schur) property.

Proof. Suppose thatX has the DPp property and that BX is weakly p-compact. If
X∗ is not a Schur space, then there exists a normalized weakly null sequence (x∗n)
in X∗. Then we can find (xn) in X with ‖xn‖ = 1 and x∗n(xn) >

1
2
. Hence there

is a subsequence (xnk
) and x0 ∈ X such that (xnk

− x0) ∈ `weakp (X). Now, from
Theorem 2.28 it follows that 〈x∗nk

, xnk
−x0〉 → 0. On the other hand, 〈x∗nk

, x0〉 → 0.
Therefore, 〈x∗nk

, xnk
〉 → 0, which is a contradiction. �
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It is clear that every weakly p-compact space is reflexive, but the converse is
not true in general. For example, `2 is a reflexive space, which is not a Schur space
and has the DP1 property. So by Theorem 2.30, `2 is not weakly 1-compact.

We have now shown that every reflexive Banach space has the 1-Schur property.
The following theorem gives us a sufficient condition for which a reflexive Banach
space has the p-Schur property.

Theorem 2.31. Let X be a reflexive Banach space with the DPp property. Then
X has the p-Schur property.

Proof. Let X fail to have the p-Schur property. Then there is a normalized
sequence (xn) ∈ `weakp (X). By the Hahn–Banach theorem, there is x∗n ∈ X∗ with
‖x∗n‖ = 1 and 〈x∗n, xn〉 = 1 for all positive integers n. Since X is reflexive, we con-

clude that there is x∗ ∈ X∗ such that for a subsequence (x∗nk
) of (x∗n), x

∗
nk

w→ x∗.
By Theorem 2.28, we have

‖xnk
‖ − 〈x∗, xnk

〉 = 〈x∗nk
− x∗, xnk

〉 → 0,

from which it follows that ‖xnk
‖ → 0. This is a contradiction. �

3. Some operator spaces with the p-Schur property

In this section, we give some operator spaces which have the p-Schur property.
The following theorem is a refinement of Theorem 3.3 of [15], which guarantees
that the Schur property of X∗ and Y is a sufficient condition for the Schur prop-
erty of L(X,Y ).

Theorem 3.1. If X∗ has the p-Schur property and Y is a Schur space, then
L(X,Y ) has the p-Schur property.

Proof. In order to prove that L(X,Y ) has the p-Schur property, it is enough
to show that every weakly p-convergent sequence (Tn) ⊆ L(X,Y ) is norm-
convergent. Let (Tn) ⊆ L(X,Y ) be a weakly p-convergent sequence to T0 ∈
L(X,Y ), and suppose that (xn) is a sequence in X such that ‖xn‖ = 1 and
‖Tn − T0‖ < ‖(Tn − T0)xn‖ + 1

n
, for all n. For a fixed y∗ ∈ Y ∗, the sequence

(T ∗
n − T ∗

0 )(y
∗) is weakly p-summable in X∗, since for each x∗∗ ∈ X∗∗ we have〈

x∗∗, (T ∗
n − T ∗

0 )(y
∗)
〉
= φ(Tn − T0),

where φ(T ) = x∗∗(T ∗y∗) defines a bounded linear functional on L(X,Y ). Since
X∗ has the p-Schur property, we have ‖(T ∗

n − T ∗
0 )(y

∗)‖ → 0. Then∣∣〈(Tn − T0)(xn), y
∗〉∣∣ ≤ ∥∥(T ∗

n − T ∗
0 )(y

∗)
∥∥ → 0.

It follows that (Tn−T0)xn
w→ 0 and so ‖(Tn−T0)(xn)‖ → 0, by the Schur property

of Y . Therefore, ‖Tn − T0‖ → 0. �

Corollary 3.2. Let X and Y be two Banach spaces. If X∗ has the Schur property
and Y ∗∗ has the p-Schur property, then L(X,Y ) has the p-Schur property.

Proof. The mapping T 7→ T ∗ maps L(X,Y ) onto a closed subspace of L(Y ∗, X∗),
which has the p-Schur property by virtue of Theorem 3.1. �
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In the following corollary, the projective tensor product of X and Y is denoted
by X ⊗̃π Y . (We refer the reader to [6] and [13] for undefined terminology.)

Corollary 3.3. If X∗ has the p-Schur property and Y ∗ is a Schur space, then

(i) (X ⊗̃π Y )∗ has the p-Schur property;
(ii) every operator from X ⊗̃π Y into `1 is compact.

Proof. (i) This follows easily from the fact that L(X,Y ∗) = (X ⊗̃π Y )∗ (see [16]).
Now (ii) is a consequence of Theorem 2.26. �

As another corollary, one sees that the spaces L(`p, `1) and L(H, `1) have the
1-Schur property, for each 1 < p <∞ and for each Hilbert space H.

Refer to [6] for the definition of a Banach operator ideal. Later in this article,
U will be an arbitrary Banach operator ideal with ideal norm A. For all Banach
spaces X and Y , the components U(X,Y ) are Banach spaces with respect to the
norm A. If M is a closed subspace of U(X,Y ), then for arbitrary elements x ∈ X
and y∗ ∈ Y ∗, the evaluation operators φx :M → Y and ψy∗ :M → X∗ on M are
defined by

φx(T ) = Tx, ψy∗(T ) = T ∗y∗ (T ∈M).

Also, the point evaluation sets related to x ∈ X and y∗ ∈ Y ∗ are the images of
the closed unit ball BM of M , under the evaluation operators φx and ψy∗ , and
they are denoted by M(x) and M∗(y∗), respectively (see [13], [17]). As an easy
consequence of Theorem 2.20, we have the following result.

Corollary 3.4. Let X and Y be Banach spaces. If the closed subspace M of
U(X,Y ) has the p-Schur property, then all evaluation operators φx and ψy∗ are
p-converging.

Theorem 3.5. Let X and Y be two Banach spaces such that Y has the Schur
property. If M is a closed subspace of U(X,Y ) such that each evaluation operator
ψy∗ is p-converging on M , then M has the p-Schur property.

Proof. Suppose that M does not have the p-Schur property. Then there is a
sequence (Tn) ∈ `weakp (M) such that ‖Tn‖ > ε for all positive integers n and some
ε > 0. Choose a sequence (xn) in BX such that ‖Tnxn‖ > ε. In addition, for each
y∗ ∈ Y ∗, the evaluation operator ψy∗ is p-converging. So ‖T ∗

ny
∗‖ = ‖ψy∗(Tn)‖ → 0.

Then |〈Tnxn, y∗〉| ≤ ‖T ∗
ny

∗‖‖xn‖ → 0. Therefore, (Tnxn) is weakly null and so is
norm-null, since Y has the Schur property. This is a contradiction. �

In the sequel, we give a sufficient condition for the p-Schur property of closed
subspaces of the Lw∗(X∗, Y ) of all bounded w∗-w continuous operators fromX∗ to
Y . Note that if T ∈ Lw∗(X∗, Y ), then for every y∗ ∈ Y ∗ and every weak∗-null net
(x∗α) ⊆ X∗, one has 〈T ∗y∗, x∗α〉 = 〈y∗, Tx∗α〉 → 0. This means that T ∗y∗ belongs
to (X∗, w∗)∗ = X and so T ∗ transfers Y ∗ into X.

Theorem 3.6. Let X and Y be two Banach spaces such that X has the Schur
property. If M is a closed subspace of Lw∗(X∗, Y ) such that each evaluation oper-
ator φx∗ is p-converging on M , then M has the p-Schur property.
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Proof. Assume that one can choose (Tn) ∈ `weakp (M) such that ‖Tn‖ > ε for some
ε > 0 and all positive integers n. Then by our assumption, for each x∗ ∈ X∗,
‖Tnx∗‖ = ‖φx∗(Tn)‖ → 0 as n→ ∞. Since ‖T ∗

n‖ > ε, there exists a sequence (y∗n)
in BY ∗ such that ‖T ∗

ny
∗
n‖ > ε for all n ≥ 1. Hence |〈T ∗

ny
∗
n, x

∗〉| ≤ ‖Tnx∗‖ → 0 for
each x∗ ∈ X∗ and so (T ∗

ny
∗
n) is a weakly null sequence in the Schur space X. This

yields a contradiction. �

By considering p = ∞ in Theorem 3.6, we have the following corollary.

Corollary 3.7. Let X and Y be two Banach spaces such that X has the Schur
property. If M is a closed subspace of Lw∗(X∗, Y ) such that each evaluation oper-
ator φx∗ is completely continuous, then M has the Schur property.

Definition 3.8. A bounded subset K of a Banach space X is p-Limited if

lim
n

sup
x∈K

∣∣〈x, x∗n〉∣∣ = 0

for every (x∗n) ∈ `weakp (X∗).

Theorem 3.9. Let X and Y be two Banach spaces, and let the dual M∗ of a
closed subspace M ⊆ U(X,Y ) have the p-Schur property. Then all of the point
evaluations M(x) and M∗(y∗) are p-Limited.

Proof. SinceM∗ has the p-Schur property, by Theorem 2.20 the adjoint operators
φ∗
x and ψ∗

y∗ are p-converging. Now suppose that (y∗n) ∈ `weakp (Y ∗). Then ‖φ∗
xy

∗
n‖ →

0 as n→ ∞ for all x ∈ X. On the other hand,

‖φ∗
xy

∗
n‖ = sup

{∣∣〈φ∗
xy

∗
n, T 〉

∣∣ : T ∈ BM

}
= sup

{∣∣〈y∗n, Tx〉∣∣ : T ∈ BM

}
.

This shows thatM(x) is p-Limited in Y for all x ∈ X. A similar proof shows that
M∗(y∗) is a p-Limited set in X∗. �

In the sequel, we give some conditions for which the point evaluations M(x)
and M∗(y∗) are relatively compact for all x ∈ X and all y∗ ∈ Y ∗. If X∗ and Y
are Schur spaces and M∗ has the 1-Schur property, then Theorem 2.26 implies
that M(x) and M∗(y∗) are relatively compact. In addition, we have the following
theorem.

Theorem 3.10. Suppose that X∗∗ and Y ∗ are weakly p-compact and that M ⊆
U(X,Y ) is a closed subspace. If the natural restriction operator R : U(X,Y )∗ →
M∗ is p-converging, then all of the point evaluations M(x) and M∗(y∗) are rela-
tively compact.

Proof. Let T ∈ U(X,Y ). Since ‖T‖ ≤ A(T ), the mapping Ψ : X∗∗ ⊗̃π Y
∗ →

U(X,Y )∗, which is defined by

v 7→
(
T 7→ tr(T ∗∗v) :=

∞∑
n=1

〈T ∗∗x∗∗n , y
∗
n〉
)
,

is linear and continuous, where v =
∑∞

n=1 x
∗∗
n ⊗ y∗n ∈ X∗∗ ⊗̃π Y

∗. So the operator
φ = R ◦ Ψ is p-converging. Now fix x ∈ X, and define the operator Ux : Y ∗ →
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X∗∗ ⊗̃π Y
∗ by Ux(y

∗) = x ⊗ y∗. Since φ ◦ Ux is p-converging and Y ∗ is weakly
p-compact, we conclude that φ∗

x = φ◦Ux is compact. So φx is compact. Similarly,
for y∗ ∈ Y ∗, define Vy∗ : X∗∗ → X∗∗ ⊗̃π Y

∗ by Vy∗(x
∗∗) = x∗∗ ⊗ y∗. Then (Ψy∗)

∗

is p-converging and so is compact. This completes the proof. �
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