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Abstract. In this paper, we investigate convergence and divergence of partial
sums with respect to the 2-dimensional Walsh system on the martingale Hardy
spaces. In particular, we find some conditions for the modulus of continuity
which provide convergence of partial sums of Walsh–Fourier series. We also
show that these conditions are in a sense necessary and sufficient.

1. Introduction

It is well known (for details, see, e.g., [1], [6]) that the Walsh–Paley system
is not a Schauder basis in L1(G). Moreover, there exists (for details, see [10])
a function in the dyadic martingale Hardy space Hp(G) (0 < p ≤ 1) for which
the corresponding partial sums are not bounded in Lp(G). However, Simon [11,
Theorem 1] (see also [2], [4], [12]) proved that if 0 < p ≤ 1, then there is an
absolute constant cp, depending only on p, such that

1

log[p] n

n∑
k=1

‖Skf‖pp
k2−p

≤ cp‖f‖pHp(G), (n = 2, 3, . . .), (1.1)

for all f ∈ Hp(G), where [p] denotes the integer part of p.
When 0 < p < 1, Tephnadze [13, Theorem 1] proved that the sequence

{1/k2−p}∞k=1 in (1.1) cannot be improved. In [15, Theorem 1] he proved that
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when 0 < p ≤ 1, the weighted maximal operator

S̃∗
pf : = sup

n∈N

|Snf |
(n+ 1)1/p−1 log[p](n+ 1)

is bounded from the Hardy space Hp(G) to the space Lp(G). Moreover, for any
nondecreasing function ϕ : N+ → [1, ∞) satisfying the condition

lim
n→∞

(n+ 1)1/p−1 log[p](n+ 1)

ϕ(n)
= +∞,

there exists a martingale f ∈ Hp(G), 0 < p ≤ 1, such that

sup
n∈N

∥∥∥ Snf

ϕ(n)

∥∥∥
p
= ∞.

Applying the results of [15, Theorem 1], it was also proved that the following
theorems are true (see Tephnadze [15, Theorems 2–4]).

Theorem T1. Let 0 < p ≤ 1, f ∈ Hp(G), and 2k < n ≤ 2k+1. Then there is an
absolute constant cp, depending only on p, such that

‖Snf − f‖Hp(G) ≤ cpn
1/p−1 log[p] nωHp(G)

( 1

2k
, f

)
.

Theorem T2.

(a) Let 0 < p ≤ 1, f ∈ Hp(G), and let

ωHp(G)

( 1

2n
, f

)
= o

( 1

2n(1/p−1)n[p]

)
, as n → ∞.

Then

‖Skf − f‖p → 0, when k → ∞.

(b) For every p ∈ [0, 1] there exists a martingale f ∈ Hp(G) for which

ωHp(G)

( 1

2n
, f

)
= O

( 1

2n(1/p−1)n[p]

)
, as n → ∞

and

‖Skf − f‖p 9 0, as k → ∞.

For the definition of the modulus of continuity wHp and other undefined nota-
tion in this Introduction, see Section 2.

For the 2-dimensional case, it is well known (see [6]) that the Walsh–Paley
system is not a Schauder basis in L1(G

2). Moreover, there exists (for details, see
[10]) a function in the dyadic martingale Hardy space Hp(G

2) (0 < p ≤ 1) for
which the corresponding partial sums are not bounded in Lp(G

2). However, Weisz
[18, Theorem 1] proved that if α ≥ 0 and 0 < p ≤ 1, then there exists an absolute
constant cp, depending only on p, such that

sup
n,m≥2

( 1

log n logm

)[p] ∑
2−α≤k/l≤2α,(k,l)≤(n,m)

‖Sk,lf‖pp
(kl)2−p

≤ cp‖f‖pHp(G2),
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for all f ∈ Hp(G
2), where [p] denotes the integer part of p. Goginava and Gogo-

ladze [5, Theorem 1] proved that for any f ∈ H1(G
2), there exists an absolute

constant c such that
∞∑
n=1

‖Sn,nf‖1
n log2 n

≤ c‖f‖H1(G2), (1.2)

for all f ∈ H1(G
2). Memić, Simon, and Tephnadze [8, Theorem 3.1] (see also [14])

considered the generalized estimate (1.2) and proved that for any 0 < p ≤ 1 and
f ∈ Hp(G

2), there exists an absolute constant cp, depending only on p, such that

∞∑
n=1

‖Sn,nf‖pp
n3−2p log2[p] n

≤ cp‖f‖pHp(G2), (1.3)

for all f ∈ Hp(G
2). The authors in [8] and [14] also proved that the sequence

{1/(n3−2p log2[p] n)}∞n=1 in (1.3) cannot be improved.
In this article, we investigate the 2-dimensional analogies of Theorems T1 and

T2 for 0 < p < 1, and we find some conditions for the modulus of continuity that
provide convergence of the partial sums Sk,l with respect to the Walsh–Fourier
system but in the case when indexes are restricted by the condition 2−α ≤ k/l ≤
2α. We also show that these conditions are in a sense necessary and sufficient.

The article is organized as follows. We present some definitions and notation
in Section 2. Section 3 is reserved for some necessary lemmas, some of which are
new and of independent interest. The main results are presented and proved in
Section 4.

2. Definitions and notation

Let N+ denote the set of positive integers, N := N+ ∪ {0}. Denote by Z2 the
discrete cyclic group of order 2; that is, Z2 = {0, 1}, where the group operation
is the modulo 2 addition and every subset is open. The Haar measure on Z2 is
given such that the measure of a singleton is 1/2. Let G be the complete direct
product of the countable infinite copies of the compact groups Z2. The elements
of G are of the form x = (x0, x1, . . . , xk, . . .) with xk ∈ {0, 1} (k ∈ N). The group
operation on G is the coordinate-wise addition; the measure (denoted by µ) and
the topology are the product measure and product topology, respectively. The
compact abelian group G is called the Walsh group. A base for the neighborhoods
of G can be given in the following way:

I0(x) := G,

In(x) := In(x0, . . . , xn−1)

:=
{
y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)

}
, (x ∈ G,n ∈ N).

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the
null element of G, In := In(0) (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . . ) ∈ G the nth
coordinate of which is 1 and the rest are zeros (n ∈ N). Let In := G\In.
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It is evident that

IN =
N−1⋃
s=0

Is\Is+1. (2.1)

If n ∈ N, then n =
∑∞

i=0 ni2
i, where ni ∈ {0, 1} (i ∈ N); that is, n is expressed

in the base 2 number system. Denote |n| := max{j ∈ N : nj 6= 0}, that is,
2|n| ≤ n < 2|n|+1. It is easy to show that for every odd number n, it holds that

n0 = 1, and we can write n = 1 +
∑|n|

i=1 nj2
i, where nj ∈ {0, 1}, j ∈ N+.

For k ∈ N and x ∈ G, let us denote by

rk(x) := (−1)xk , (x ∈ G, k ∈ N)

the kth Rademacher function. The Walsh–Paley system is defined as the sequence
of Walsh–Paley functions:

wn(x) :=
∞∏
k=0

(
rk(x)

)nk = r|n|(x)(−1)
∑|n|−1

k=0 nkxk (x ∈ G,n ∈ N+).

The Walsh–Dirichlet kernel is defined by

Dn(x) =
n−1∑
k=0

wk(x).

Recall that (for details, see, e.g., [6])

D2n(x) =

{
2n x ∈ In,

0 x ∈ In.
(2.2)

Let n ∈ N and n =
∑∞

i=0 ni2
i. Then

Dn(x) = wn(x)
∞∑
j=0

njw2j(x)D2j(x). (2.3)

Set G2 := G×G. The norm (or quasinorm) of the space Lp(G
2) is defined by

‖f‖p :=
(∫

G2

|f |p dµ
)1/p

(0 < p < ∞).

The space weak-Lp(G
2) consists of all measurable functions f for which

‖f‖weak-Lp := sup
λ>0

λµ(f > λ)1/p < +∞.

The rectangular partial sums of the 2-dimensional Walsh–Fourier series of the
function f ∈ L2(G

2) are defined as

SM,Nf(x, y) :=
M−1∑
i=0

N−1∑
j=0

f̂(i, j)wi(x)wj(y),

where the number

f̂(i, j) =

∫
G2

f(x, y)wi(x)wj(y) dµ(x, y)
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is said to be the (i, j)th Walsh–Fourier coefficient of the function f . It is well
known (for details, see, e.g., [10]) that

SM,Nf(x, y) =

∫
G2

f(x, y)DM(x− t)DN(y − s) dµ(x, y).

We also consider the maximal operator S̃∗,p defined by

S̃∗,pf = sup
m,n≥1

|Sm,nf |
(m+ n)2/p−2

. (2.4)

The σ-algebra generated by the dyadic 2-dimensional In(x) × In(y) square of
measure 2−n×2−n will be denoted by zn (n ∈ N). Denote by f = (fn, n ∈ N) the
1-parameter martingale with respect to zn (n ∈ N) (for details, see, e.g., Weisz
[16], [19], [20]; see also [7]). The maximal function f ∗ of a martingale f is defined
by

f ∗ := sup
n∈N

|fn|.

The dyadic maximal function f ∗ of f ∈ L1(G
2) is given by

f ∗(x, y) := sup
n∈N

1

µ(In(x)× In(y))

∣∣∣∫
In(x)×In(y)

f(s, t) dµ(s, t)
∣∣∣, (x, y) ∈ G2.

If f ∈ L1(G
2), then it is easy to show that the sequence (S2n,2nf : n ∈ N) is

a martingale and that its maximal function coincides with the dyadic maximal
function of f ∈ L1(G

2). The dyadic Hardy martingale space Hp(G
2) (0 < p < ∞)

consists of all functions for which

‖f‖Hp(G2) := ‖f ∗‖p < ∞.

If f = (fn, n ∈ N) is a martingale, then the Walsh–Fourier coefficients must be
defined in a slightly different manner:

f̂(i, j) := lim
k→∞

∫
G

fk(x, y)wi(x)wj(y) dµ(x, y).

The Walsh–Fourier coefficients of f ∈ L1(G
2) are the same as those of the martin-

gale (S2n,2nf : n ∈ N) obtained from f . We define the concept of the 2-dimensional
modulus of continuity in Hp(G

2) (p > 0) as follows:

ωHp(G2)

( 1

2n
, f

)
:= ‖f − S2n,2nf‖Hp(G2).

The 1-dimensional modulus of continuity wHp(G) is defined similarly (see, e.g., [3]).
A bounded measurable function a is a p-atom if there exists a dyadic 2-dimensional
square I × I such that∫

I×I

a dµ = 0, ‖a‖∞ ≤ µ(I × I)−1/p, supp(a) ⊂ I × I.
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3. Lemmas

Weisz in [16, Theorem 2.2] and [19, Theorem 1.14] proved that dyadic Hardy
martingale spaces Hp(G

2) for 0 < p ≤ 1 have atomic characterizations (see
also [7]).

Lemma 3.1. A martingale f = (fn : n ∈ N) is in Hp(G
2), 0 < p ≤ 1, if and only

if there exist a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real
numbers such that

∞∑
k=0

µkS2n,2nak = fn (3.1)

and
∞∑
k=0

|µk|p < ∞.

Moreover,

‖f‖Hp v inf
( ∞∑

k=0

|µk|p
)1/p

,

where the infimum is taken over all decompositions of f of the form (3.1).

Weisz [17, Theorem 1] (see also [16], [19]) also proved the following fact.

Lemma 3.2. Suppose that an operator T is σ-sublinear and that, for some 0 <
p ≤ 1, ∫

I×I

|Ta|p dµ ≤ cp < ∞,

for every p-atom a, where I × I denotes the support of the atom. If T is bounded
from L∞ to L∞, then

‖Tf‖p ≤ cp‖f‖Hp(G2).

In [15, Lemma 2] the following was proved.

Lemma 3.3. Let x ∈ Is\Is+1, s = 0, . . . , N − 1. Then∫
IN

∣∣Dn(x+ t)
∣∣ dµ(t) ≤ c2s

2N
,

where c is an absolute constant.

We also need the following estimates of the 2-dimensional Dirichlet kernels of
independent interest.

Lemma 3.4. Let m,n ∈ N, and let (x, y) ∈ IN × (Is\Is+1), s = 0, . . . , N − 1.
Then, for every ε > 0, we have∫

IN×IN

∣∣Dm(x+ t)Dn(y + s)
∣∣ dµ(t) dµ(s) ≤ cmε2s

2N(1+ε)
,

where c is an absolute constant.
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Proof. By combining (2.2) and (2.3), we can conclude that

|Dm| ≤ m

and that

|Dm| ≤ 2s, for Is\Is+1.

Hence, ∫
IN

∣∣Dm(x+ t)
∣∣ dµ(t)

≤ mε

∞∑
s=N

∫
Is\Is+1

∣∣Dm(x+ t)
∣∣1−ε

dµ(t)

≤ cmε

∞∑
s=N

∫
Is\Is+1

2s(1−ε) dµ(t)

≤ cmε

∞∑
s=N

2−εs ≤ cmε

2εN
.

Therefore, by using Lemma 3.3, we obtain∫
IN×IN

∣∣Dm(x+ t)Dn(y + s)
∣∣ dµ(t) dµ(s)

≤
∫
IN

∣∣Dm(x+ t)
∣∣ dµ(t)∫

IN

∣∣Dn(y + s)
∣∣ dµ(s)

≤ cmε2s

2N(1+ε)
.

Thus the proof is complete. �

Lemma 3.5. Let m,n ∈ N, and let (x, y) ∈ (Is\Is+1) × IN , s = 0, . . . , N − 1.
Then, for every ε > 0, we have∫

IN×IN

∣∣Dm(x+ t)Dn(y + s)
∣∣ dµ(t) dµ(s) ≤ cnε2s

2N(1+ε)
,

where c is an absolute constant.

Proof. The proof is quite analogous to that of Lemma 3.4. Hence, we leave out
the details. �

Lemma 3.6. Let m,n ∈ N, and let (x, y) ∈ (Is1\Is1+1) × (Is2\Is2+1), s1, s2 =
0, . . . , N − 1. Then∫

IN

∣∣Dn(x+ t)Dm(y + s)
∣∣ dµ(t) dµ(s) ≤ c2s1+s2

22N
,

where c is an absolute constant.
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Proof. By applying Lemma 3.3, we obtain∫
IN×IN

∣∣Dm(x+ t)Dn(y + s)
∣∣ dµ(t) dµ(s)

≤
∫
IN

∣∣Dm(x+ t)
∣∣ dµ(t)∫

IN

∣∣Dn(y + s)
∣∣ dµ(s) ≤ c2s1+s2

22N
.

Thus the proof is complete. �

4. The main results

Our main results read as follows.

Theorem 4.1.

(a) Let 0 < p < 1 and f ∈ Hp(G
2). Then the maximal operator S̃∗,p defined

by (2.4) is bounded from the martingale Hardy space Hp(G
2) to the space

Lp(G
2).

(b) (Sharpness). Let ϕ : N → [1,∞) be a nondecreasing function satisfying
the condition

sup
m,n∈N

(m+ n)2/p−2

ϕ(m,n)
= +∞.

Then

sup
m,n∈N

∥∥∥ Sm,nf

ϕ(m,n)

∥∥∥
weak-Lp(G2)

= ∞.

Theorem 4.2. Let 0 < p < 1, 2−α < m/n ≤ 2α, and 2k < m,n ≤ 2k+1+[α]. Then
there exists an absolute constant cp such that

‖Sm,nf − f‖p ≤ cp2
k(2/p−2)ωHp(G2)

( 1

2k
, f

)
.

Theorem 4.3.

(a) Let 0 < p < 1, 2−α ≤ m/n ≤ 2α, and

ωHp(G2)

( 1

2k
, f

)
= o

( 1

2k(2/p−2)

)
, as k → ∞.

Then

‖Sm,nf − f‖Hp(G2) → 0, when n → ∞.

(b) (Sharpness). Let 0 < p < 1 and 2−α < m/n ≤ 2α. Then there exists a
martingale f ∈ Hp(G

2) such that

ωHp(G2)

( 1

2k
, f

)
= O

( 1

2k(2/p−2)

)
, as k → ∞

and

‖Sm,nf − f‖weak-Lp(G2) 9 0, as n → ∞.
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Proof of Theorem 4.1. Since S̃∗
p is bounded from L∞ to L∞, by using Lemma 3.2

we conclude that the proof of part (a) will be complete if we show that∫
I×I

∣∣∼S∗

pa(x, y)
∣∣p dµ(x) dµ(y) ≤ c < ∞, when 0 < p < 1, (4.1)

for every p-atom a, where I × I denotes the support of the atom.
Let a be an arbitrary p-atom with support I × I and µ(I × I) = 2−2N . We

may assume that I × I = IN × IN , where IN := IN(0). It is easy to see that
Sm,na = 0 when m ≤ 2N and n ≤ 2N . Therefore, we can suppose that m > 2N or
that n > 2N . Since ‖a‖∞ ≤ 22N/p, we find that∣∣Sm,n(a)

∣∣ ≤ ∫
IN×IN

∣∣a(t1, t2)∣∣∣∣Dm,n(x+ t1, y + t2)
∣∣ dµ(t1) dµ(t2)

≤ ‖a‖∞
∫
IN×IN

∣∣Dm,n(x+ t1, y + t2)
∣∣ dµ(t1) dµ(t2)

≤ 22N/p

∫
IN×IN

∣∣Dm,n(x+ t1, y + t2)
∣∣ dµ(t1) dµ(t2). (4.2)

Let 0 < p < 1 and (x, y) ∈ IN×(Is2\Is2+1). We choose ε, so that 2/p−2−ε > 0
and then from Lemma 3.4 it follows that

|Sm,na(x, y)|
(m+ n+ 1)2/p−2

≤ 22N/p2s2mε

(m+ n+ 1)2/p−22N(ε+1)

≤ 22N/p2s2(m+ n)ε

(m+ n+ 1)2/p−22N(ε+1)

≤ 2N(2/p−2−ε)2s22N

(m+ n+ 1)2/p−2−ε
≤ 2s22N . (4.3)

According to (2.1) and (4.3), we have∫
IN×IN

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
=

N−1∑
s2=0

∫
IN×(Is2\Is2+1)

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
≤

∑
s2=0

2ps2

2s2
< cp < ∞. (4.4)

If we apply (2.1), (4.2), and Lemma 3.5 analogously to (4.4), we get∫
IN×IN

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
=

N−1∑
s1=0

∫
(Is1\Is1+1)×IN

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
≤

∑
s1=0

2ps1

2s1
< cp < ∞. (4.5)
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Let 0 < p < 1, and let (x, y) ∈ (Is1\Is1+1) × (Is2\Is2+1). By using Lemma 3.6
now, we get

|Sm,na(x, y)|
(m+ n+ 1)1/p−1

≤ 22N(1/p−1)2s1+s2

(m+ n+ 1)1/p−1
≤ 2s1+s2 . (4.6)

In view of (2.1) and (4.6), we can conclude that∫
IN×IN

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
=

N−1∑
s1=0

N−1∑
s2=0

∫
(Is1\Is1+1)×(Is2\Is2+1)

∣∣S̃∗
pa(x, y)

∣∣p dµ(x) dµ(y)
≤

N−1∑
s1=0

N−1∑
s2=0

2(s1+s2)p

2s1+s2
< cp < ∞. (4.7)

Since
IN × IN = (IN × IN) ∪ (IN × IN) ∪ (IN × IN),

by combining (4.4), (4.5), and (4.7), we get that (4.1) holds for every p-atom, and
the proof of part (a) is complete.

Now, we prove the second part of the theorem. Let ϕ : N → [1, ∞) be a
nondecreasing function, and let {αk : k ∈ N} be a sequence of natural numbers
satisfying the condition

lim
k→∞

(2αk + 1)2/p−2

ϕ(2αk + 1, 1)
= +∞.

Set, for k ∈ N+,

fk(x, y) =
(
D2αk+1(x)−D2αk (x)

)
D2αk (y).

It is evident that

f̂k(i, j) =

{
1 if (i, j) ∈ {2αk , . . . , 2αk+1 − 1} × {1, . . . , 2αk − 1},
0 otherwise.

Therefore,

Si,j(fk;x, y)

=



(Di(x)−D2αk (x))Dj(y)

if (i, j) ∈ {2αk , . . . , 2αk+1 − 1} × {1, . . . , 2αk − 1},
fk(x, y)

if i ≥ 2αk+1, and j ≥ 2αk ,

0 otherwise.

(4.8)

From (4.8) it follows that

‖fk‖Hp =
∥∥sup
n∈N

S2n,2nfk
∥∥
p

=
∥∥(D2αk+1(x)−D2αk (x)

)
D2αk (y)

∥∥
p

≤
∥∥D2αk (x)D2αk (y)

∥∥
p
≤ 22αk(1−1/p). (4.9)
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Let (x, y) ∈ G2. Moreover, (4.8) also implies that

|S2αk+1,1(fk;x, y)|
ϕ(2αk + 1, 1)

=
|(D2αk+1(x)−D2αk (x))D1(y)|

ϕ(2αk + 1, 1)

=
|w2αk (x)w0(y)|
ϕ(2αk + 1, 1)

=
1

ϕ(2αk + 1, 1)
.

Hence, by also using (4.9), we find that

1
ϕ(2αk+1,1)

(µ{(x, y) ∈ G2 :
S2αk+1,1(fk;x,y)

ϕ(2αk+1,1)
≥ 1

ϕ(2αk+1,1)
})1/p

‖fk‖Hp

≥ 1

ϕ(2αk + 1, 1)22αk(1−1/p)
≥ (2αk + 1)2/p−2

ϕ(2αk + 1, 1)
→ ∞, as k → ∞.

The proof is complete. �

Proof of Theorem 4.2. Let 0 < p < 1, let 2−α ≤ m/n ≤ 2α, and let 2k < m,n ≤
2k+1+[α]. According to Theorem 4.1, we can conclude that

‖Sm,nf‖p ≤ c1p(m+ n)2/p−2‖f‖Hp(G2) ≤ c2p2
k(2/p−2)‖f‖Hp(G2).

Hence,

‖Sm,nf − f‖pp
≤ ‖Sm,nf − S2k,2kf‖pp + ‖S2k,2kf − f‖pp
=

∥∥Sm,n(S2k,2kf − f)
∥∥p

p
+ ‖S2k,2kf − f‖pp

≤ c2p(2
k(2−2p) + 1)ωp

Hp(G2)

( 1

2k
, f

)
and

‖Sm,nf − f‖p ≤ cp2
k(2/p−2)ωHp(G2)

( 1

2k
, f

)
. (4.10)

The proof is complete. �

Proof of Theorem 4.3. Let 0 < p < 1, f ∈ Hp(G
2), 2−α ≤ m/n ≤ 2α, 2k <

m,n ≤ 2k+1+[α], and

ωHp(G2)

( 1

2k
, f

)
= o

( 1

2k(2/p−2)

)
as k → ∞.

By using (4.10), we immediately get that

‖Sm,nf − f‖p → ∞ when n → ∞,

and the proof of part (a) is complete.
To prove part (b) of the theorem, we use a similar construction of martingale,

which was used in [9]. Let

fn =
∑

{k;αk+1<n}

λkak,

where

λk = 2−αk(2/p−2)
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and

ak(x, y) = 2αk(2/p−2)
(
D2αk+1(x)−D2αk (x)

)(
D2αk+1(y)−D2αk (y)

)
.

Since

S2n,2nak =

{
ak αk + 1 < n,

0 αk + 1 ≥ n,

supp(ak) = I2αk
,

∫
I2αk

ak dµ = 0, ‖ak‖∞ ≤ 22αk/p = (supp ak)
−1/p

from Lemma 3.1 and given the fact that
∞∑
k=0

|µk|p < ∞,

we conclude that f ∈ Hp(G
2).

Moreover,

f − S2n,2nf

= (f1 − S2n,2nf1, . . . , fn − S2n,2nfn, . . . , fn+k − S2n,2nfn+k)

= (0, . . . , 0, fn+1 − fn, . . . , fn+k − fn, . . . )

=
(
0, . . . , 0,

n+k∑
i=n

ai(x, y)

2i(2/p−2)
, . . .

)
, k ∈ N+, (4.11)

is a martingale and (4.11) is its atomic decomposition. By using Lemma 3.1, we
find that

ωHp

( 1

2n
, f

)
:= ‖f − S2n,2nf‖Hp ≤

∞∑
i=n

1

2i(2/p−2)
≤ c

2n(2/p−2)
.

Moreover, it is easy to show that

f̂(i, j) =


1 if (i, j) ∈ {2αk , . . . , 2αk+1 − 1} × {2αk , . . . , 2αk+1 − 1},

k ∈ N,
0 if (i, j) /∈

⋃∞
k=1{2αk , . . . , 2αk+1 − 1} × {2αk , . . . , 2αk+1 − 1}.

(4.12)

In view of (4.12), we can conclude that

S2αk+1,2αk+1f(x, y) = S2αk ,2αkf(x, y) + w2αk (x)w2αk (y) =: I + II . (4.13)

It is obvious that

|II | =
∣∣w22αk (x)w2αk (y)

∣∣ = 1.

Hence,

‖II ‖pweak-Lp(G2)

≥ 1

2p

(
µ
{
(x, y) ∈ G×G : |II | ≥ 1

2

})
≥ 1

2p
µ(G×G) ≥ 1

2p
. (4.14)
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Since (for details, see, e.g., Weisz [16], [19])

‖f − S2n,2nf‖weak-Lp(G2) → 0, as n → ∞,

according to (4.13) and (4.14), we get

lim sup
k→∞

‖f − S2αk+1,2αk+1f‖pweak-Lp(G2)

≥ lim sup
k→∞

‖II ‖pweak-Lp(G2)

− lim sup
k→∞

‖f − S2αk ,2αkf‖pweak-Lp(G2) ≥ c > 0.

The proof is complete. �
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