Ann. Funct. Anal. 9 (2018), no. 1, 137-150
https://doi.org/10.1215/20088752-2017-0032
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

# ON AN APPROXIMATION OF 2-DIMENSIONAL WALSH-FOURIER SERIES IN MARTINGALE HARDY SPACES 

L. E. PERSSON, ${ }^{1^{*}}$ G. TEPHNADZE, ${ }^{2}$ and P. WALL ${ }^{3}$<br>Communicated by C. P. Niculescu


#### Abstract

In this paper, we investigate convergence and divergence of partial sums with respect to the 2-dimensional Walsh system on the martingale Hardy spaces. In particular, we find some conditions for the modulus of continuity which provide convergence of partial sums of Walsh-Fourier series. We also show that these conditions are in a sense necessary and sufficient.


## 1. Introduction

It is well known (for details, see, e.g., [1], [6]) that the Walsh-Paley system is not a Schauder basis in $L_{1}(G)$. Moreover, there exists (for details, see [10]) a function in the dyadic martingale Hardy space $H_{p}(G)(0<p \leq 1)$ for which the corresponding partial sums are not bounded in $L_{p}(G)$. However, Simon [11, Theorem 1] (see also [2], [4], [12]) proved that if $0<p \leq 1$, then there is an absolute constant $c_{p}$, depending only on $p$, such that

$$
\begin{equation*}
\frac{1}{\log ^{[p]} n} \sum_{k=1}^{n} \frac{\left\|S_{k} f\right\|_{p}^{p}}{k^{2-p}} \leq c_{p}\|f\|_{H_{p}(G)}^{p}, \quad(n=2,3, \ldots), \tag{1.1}
\end{equation*}
$$

for all $f \in H_{p}(G)$, where $[p]$ denotes the integer part of $p$.
When $0<p<1$, Tephnadze [13, Theorem 1] proved that the sequence $\left\{1 / k^{2-p}\right\}_{k=1}^{\infty}$ in (1.1) cannot be improved. In [15, Theorem 1] he proved that

[^0]when $0<p \leq 1$, the weighted maximal operator
$$
\widetilde{S}_{p}^{*} f:=\sup _{n \in \mathbb{N}} \frac{\left|S_{n} f\right|}{(n+1)^{1 / p-1} \log ^{[p]}(n+1)}
$$
is bounded from the Hardy space $H_{p}(G)$ to the space $L_{p}(G)$. Moreover, for any nondecreasing function $\varphi: \mathbb{N}_{+} \rightarrow[1, \infty)$ satisfying the condition
$$
\varlimsup_{n \rightarrow \infty} \frac{(n+1)^{1 / p-1} \log ^{[p]}(n+1)}{\varphi(n)}=+\infty
$$
there exists a martingale $f \in H_{p}(G), 0<p \leq 1$, such that
$$
\sup _{n \in \mathbb{N}}\left\|\frac{S_{n} f}{\varphi(n)}\right\|_{p}=\infty
$$

Applying the results of [15, Theorem 1], it was also proved that the following theorems are true (see Tephnadze [15, Theorems 2-4]).

Theorem T1. Let $0<p \leq 1, f \in H_{p}(G)$, and $2^{k}<n \leq 2^{k+1}$. Then there is an absolute constant $c_{p}$, depending only on $p$, such that

$$
\left\|S_{n} f-f\right\|_{H_{p}(G)} \leq c_{p} n^{1 / p-1} \log ^{[p]} n \omega_{H_{p}(G)}\left(\frac{1}{2^{k}}, f\right)
$$

## Theorem T2.

(a) Let $0<p \leq 1, f \in H_{p}(G)$, and let

$$
\omega_{H_{p}(G)}\left(\frac{1}{2^{n}}, f\right)=o\left(\frac{1}{2^{n(1 / p-1)} n^{[p]}}\right), \quad \text { as } n \rightarrow \infty .
$$

Then

$$
\left\|S_{k} f-f\right\|_{p} \rightarrow 0, \quad \text { when } k \rightarrow \infty
$$

(b) For every $p \in[0,1]$ there exists a martingale $f \in H_{p}(G)$ for which

$$
\omega_{H_{p}(G)}\left(\frac{1}{2^{n}}, f\right)=O\left(\frac{1}{2^{n(1 / p-1)} n^{[p]}}\right), \quad \text { as } n \rightarrow \infty
$$

and

$$
\left\|S_{k} f-f\right\|_{p} \nrightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

For the definition of the modulus of continuity $w_{H_{p}}$ and other undefined notation in this Introduction, see Section 2.

For the 2-dimensional case, it is well known (see [6]) that the Walsh-Paley system is not a Schauder basis in $L_{1}\left(G^{2}\right)$. Moreover, there exists (for details, see [10]) a function in the dyadic martingale Hardy space $H_{p}\left(G^{2}\right)(0<p \leq 1)$ for which the corresponding partial sums are not bounded in $L_{p}\left(G^{2}\right)$. However, Weisz [18, Theorem 1] proved that if $\alpha \geq 0$ and $0<p \leq 1$, then there exists an absolute constant $c_{p}$, depending only on $p$, such that

$$
\sup _{n, m \geq 2}\left(\frac{1}{\log n \log m}\right)^{[p]} \sum_{2^{-\alpha} \leq k / l \leq 2^{\alpha},(k, l) \leq(n, m)} \frac{\left\|S_{k, l} f\right\|_{p}^{p}}{(k l)^{2-p}} \leq c_{p}\|f\|_{H_{p}\left(G^{2}\right)}^{p}
$$

for all $f \in H_{p}\left(G^{2}\right)$, where $[p]$ denotes the integer part of $p$. Goginava and Gogoladze [5, Theorem 1] proved that for any $f \in H_{1}\left(G^{2}\right)$, there exists an absolute constant $c$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left\|S_{n, n} f\right\|_{1}}{n \log ^{2} n} \leq c\|f\|_{H_{1}\left(G^{2}\right)} \tag{1.2}
\end{equation*}
$$

for all $f \in H_{1}\left(G^{2}\right)$. Memić, Simon, and Tephnadze [8, Theorem 3.1] (see also [14]) considered the generalized estimate (1.2) and proved that for any $0<p \leq 1$ and $f \in H_{p}\left(G^{2}\right)$, there exists an absolute constant $c_{p}$, depending only on $p$, such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left\|S_{n, n} f\right\|_{p}^{p}}{n^{3-2 p} \log ^{2[p]} n} \leq c_{p}\|f\|_{H_{p}\left(G^{2}\right)}^{p} \tag{1.3}
\end{equation*}
$$

for all $f \in H_{p}\left(G^{2}\right)$. The authors in [8] and [14] also proved that the sequence $\left\{1 /\left(n^{3-2 p} \log ^{2[p]} n\right)\right\}_{n=1}^{\infty}$ in (1.3) cannot be improved.

In this article, we investigate the 2-dimensional analogies of Theorems T1 and T2 for $0<p<1$, and we find some conditions for the modulus of continuity that provide convergence of the partial sums $S_{k, l}$ with respect to the Walsh-Fourier system but in the case when indexes are restricted by the condition $2^{-\alpha} \leq k / l \leq$ $2^{\alpha}$. We also show that these conditions are in a sense necessary and sufficient.

The article is organized as follows. We present some definitions and notation in Section 2. Section 3 is reserved for some necessary lemmas, some of which are new and of independent interest. The main results are presented and proved in Section 4.

## 2. Definitions and notation

Let $\mathbb{N}_{+}$denote the set of positive integers, $\mathbb{N}:=\mathbb{N}_{+} \cup\{0\}$. Denote by $Z_{2}$ the discrete cyclic group of order 2 ; that is, $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on $Z_{2}$ is given such that the measure of a singleton is $1 / 2$. Let $G$ be the complete direct product of the countable infinite copies of the compact groups $Z_{2}$. The elements of $G$ are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbb{N})$. The group operation on $G$ is the coordinate-wise addition; the measure (denoted by $\mu$ ) and the topology are the product measure and product topology, respectively. The compact abelian group $G$ is called the Walsh group. A base for the neighborhoods of $G$ can be given in the following way:

$$
\begin{aligned}
I_{0}(x) & :=G \\
I_{n}(x) & :=I_{n}\left(x_{0}, \ldots, x_{n-1}\right) \\
& :=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}, \quad(x \in G, n \in \mathbb{N}) .
\end{aligned}
$$

These sets are called the dyadic intervals. Let $0=(0: i \in \mathbb{N}) \in G$ denote the null element of $G, I_{n}:=I_{n}(0)(n \in \mathbb{N})$. Set $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G$ the $n$th coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$. Let $\overline{I_{n}}:=G \backslash I_{n}$.

It is evident that

$$
\begin{equation*}
\overline{I_{N}}=\bigcup_{s=0}^{N-1} I_{s} \backslash I_{s+1} \tag{2.1}
\end{equation*}
$$

If $n \in \mathbb{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$, where $n_{i} \in\{0,1\}(i \in \mathbb{N})$; that is, $n$ is expressed in the base 2 number system. Denote $|n|:=\max \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$. It is easy to show that for every odd number $n$, it holds that $n_{0}=1$, and we can write $n=1+\sum_{i=1}^{|n|} n_{j} 2^{i}$, where $n_{j} \in\{0,1\}, j \in \mathbb{N}_{+}$.

For $k \in \mathbb{N}$ and $x \in G$, let us denote by

$$
r_{k}(x):=(-1)^{x_{k}}, \quad(x \in G, k \in \mathbb{N})
$$

the $k$ th Rademacher function. The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad\left(x \in G, n \in \mathbb{N}_{+}\right)
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that (for details, see, e.g., [6])

$$
D_{2^{n}}(x)= \begin{cases}2^{n} & x \in I_{n}  \tag{2.2}\\ 0 & x \in \bar{I}_{n}\end{cases}
$$

Let $n \in \mathbb{N}$ and $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$. Then

$$
\begin{equation*}
D_{n}(x)=w_{n}(x) \sum_{j=0}^{\infty} n_{j} w_{2^{j}}(x) D_{2^{j}}(x) \tag{2.3}
\end{equation*}
$$

Set $G^{2}:=G \times G$. The norm (or quasinorm) of the space $L_{p}\left(G^{2}\right)$ is defined by

$$
\|f\|_{p}:=\left(\int_{G^{2}}|f|^{p} d \mu\right)^{1 / p} \quad(0<p<\infty)
$$

The space weak- $L_{p}\left(G^{2}\right)$ consists of all measurable functions $f$ for which

$$
\|f\|_{\text {weak- } L_{p}}:=\sup _{\lambda>0} \lambda \mu(f>\lambda)^{1 / p}<+\infty
$$

The rectangular partial sums of the 2-dimensional Walsh-Fourier series of the function $f \in L_{2}\left(G^{2}\right)$ are defined as

$$
S_{M, N} f(x, y):=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \widehat{f}(i, j) w_{i}(x) w_{j}(y)
$$

where the number

$$
\widehat{f}(i, j)=\int_{G^{2}} f(x, y) w_{i}(x) w_{j}(y) d \mu(x, y)
$$

is said to be the $(i, j)$ th Walsh-Fourier coefficient of the function $f$. It is well known (for details, see, e.g., [10]) that

$$
S_{M, N} f(x, y)=\int_{G^{2}} f(x, y) D_{M}(x-t) D_{N}(y-s) d \mu(x, y)
$$

We also consider the maximal operator $\widetilde{S}^{*, p}$ defined by

$$
\begin{equation*}
\widetilde{S}^{*, p} f=\sup _{m, n \geq 1} \frac{\left|S_{m, n} f\right|}{(m+n)^{2 / p-2}} \tag{2.4}
\end{equation*}
$$

The $\sigma$-algebra generated by the dyadic 2-dimensional $I_{n}(x) \times I_{n}(y)$ square of measure $2^{-n} \times 2^{-n}$ will be denoted by $\digamma_{n}(n \in \mathbb{N})$. Denote by $f=\left(f_{n}, n \in \mathbb{N}\right)$ the 1-parameter martingale with respect to $\digamma_{n}(n \in \mathbb{N}$ ) (for details, see, e.g., Weisz [16], [19], [20]; see also [7]). The maximal function $f^{*}$ of a martingale $f$ is defined by

$$
f^{*}:=\sup _{n \in \mathbb{N}}\left|f_{n}\right|
$$

The dyadic maximal function $f^{*}$ of $f \in L_{1}\left(G^{2}\right)$ is given by

$$
f^{*}(x, y):=\sup _{n \in \mathbb{N}} \frac{1}{\mu\left(I_{n}(x) \times I_{n}(y)\right)}\left|\int_{I_{n}(x) \times I_{n}(y)} f(s, t) d \mu(s, t)\right|, \quad(x, y) \in G^{2}
$$

If $f \in L_{1}\left(G^{2}\right)$, then it is easy to show that the sequence $\left(S_{2^{n}, 2^{n}} f: n \in \mathbb{N}\right)$ is a martingale and that its maximal function coincides with the dyadic maximal function of $f \in L_{1}\left(G^{2}\right)$. The dyadic Hardy martingale space $H_{p}\left(G^{2}\right)(0<p<\infty)$ consists of all functions for which

$$
\|f\|_{H_{p}\left(G^{2}\right)}:=\left\|f^{*}\right\|_{p}<\infty
$$

If $f=\left(f_{n}, n \in \mathbb{N}\right)$ is a martingale, then the Walsh-Fourier coefficients must be defined in a slightly different manner:

$$
\widehat{f}(i, j):=\lim _{k \rightarrow \infty} \int_{G} f_{k}(x, y) w_{i}(x) w_{j}(y) d \mu(x, y)
$$

The Walsh-Fourier coefficients of $f \in L_{1}\left(G^{2}\right)$ are the same as those of the martingale ( $S_{2^{n}, 2^{n}} f: n \in \mathbb{N}$ ) obtained from $f$. We define the concept of the 2-dimensional modulus of continuity in $H_{p}\left(G^{2}\right)(p>0)$ as follows:

$$
\omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{n}}, f\right):=\left\|f-S_{2^{n}, 2^{n}} f\right\|_{H_{p}\left(G^{2}\right)} .
$$

The 1-dimensional modulus of continuity $w_{H_{p}(G)}$ is defined similarly (see, e.g., [3]). A bounded measurable function $a$ is a $p$-atom if there exists a dyadic 2-dimensional square $I \times I$ such that

$$
\int_{I \times I} a d \mu=0, \quad\|a\|_{\infty} \leq \mu(I \times I)^{-1 / p}, \quad \operatorname{supp}(a) \subset I \times I
$$

3. Lemmas

Weisz in [16, Theorem 2.2] and [19, Theorem 1.14] proved that dyadic Hardy martingale spaces $H_{p}\left(G^{2}\right)$ for $0<p \leq 1$ have atomic characterizations (see also [7]).

Lemma 3.1. A martingale $f=\left(f_{n}: n \in \mathbb{N}\right)$ is in $H_{p}\left(G^{2}\right), 0<p \leq 1$, if and only if there exist a sequence $\left(a_{k}, k \in \mathbb{N}\right)$ of $p$-atoms and a sequence $\left(\mu_{k}, k \in \mathbb{N}\right)$ of real numbers such that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, 2^{n}} a_{k}=f_{n} \tag{3.1}
\end{equation*}
$$

and

$$
\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
$$

Moreover,

$$
\|f\|_{H_{p}} \backsim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}
$$

where the infimum is taken over all decompositions of $f$ of the form (3.1).
Weisz [17, Theorem 1] (see also [16], [19]) also proved the following fact.
Lemma 3.2. Suppose that an operator $T$ is $\sigma$-sublinear and that, for some $0<$ $p \leq 1$,

$$
\int_{\overline{I \times I}}|T a|^{p} d \mu \leq c_{p}<\infty
$$

for every p-atom $a$, where $I \times I$ denotes the support of the atom. If $T$ is bounded from $L_{\infty}$ to $L_{\infty}$, then

$$
\|T f\|_{p} \leq c_{p}\|f\|_{H_{p}\left(G^{2}\right)}
$$

In [15, Lemma 2] the following was proved.
Lemma 3.3. Let $x \in I_{s} \backslash I_{s+1}, s=0, \ldots, N-1$. Then

$$
\int_{I_{N}}\left|D_{n}(x+t)\right| d \mu(t) \leq \frac{c 2^{s}}{2^{N}}
$$

where $c$ is an absolute constant.
We also need the following estimates of the 2-dimensional Dirichlet kernels of independent interest.

Lemma 3.4. Let $m, n \in \mathbb{N}$, and let $(x, y) \in I_{N} \times\left(I_{s} \backslash I_{s+1}\right)$, $s=0, \ldots, N-1$. Then, for every $\varepsilon>0$, we have

$$
\int_{I_{N} \times I_{N}}\left|D_{m}(x+t) D_{n}(y+s)\right| d \mu(t) d \mu(s) \leq \frac{c m^{\varepsilon} 2^{s}}{2^{N(1+\varepsilon)}},
$$

where $c$ is an absolute constant.

Proof. By combining (2.2) and (2.3), we can conclude that

$$
\left|D_{m}\right| \leq m
$$

and that

$$
\left|D_{m}\right| \leq 2^{s}, \quad \text { for } I_{s} \backslash I_{s+1}
$$

Hence,

$$
\begin{aligned}
& \int_{I_{N}}\left|D_{m}(x+t)\right| d \mu(t) \\
& \quad \leq m^{\varepsilon} \sum_{s=N}^{\infty} \int_{I_{s} \backslash I_{s+1}}\left|D_{m}(x+t)\right|^{1-\varepsilon} d \mu(t) \\
& \quad \leq c m^{\varepsilon} \sum_{s=N}^{\infty} \int_{I_{s} \backslash I_{s+1}} 2^{s(1-\varepsilon)} d \mu(t) \\
& \quad \leq c m^{\varepsilon} \sum_{s=N}^{\infty} 2^{-\varepsilon s} \leq \frac{c m^{\varepsilon}}{2^{\varepsilon N}}
\end{aligned}
$$

Therefore, by using Lemma 3.3, we obtain

$$
\begin{aligned}
& \int_{I_{N} \times I_{N}}\left|D_{m}(x+t) D_{n}(y+s)\right| d \mu(t) d \mu(s) \\
& \quad \leq \int_{I_{N}}\left|D_{m}(x+t)\right| d \mu(t) \int_{I_{N}}\left|D_{n}(y+s)\right| d \mu(s) \\
& \quad \leq \frac{c m^{\varepsilon} 2^{s}}{2^{N(1+\varepsilon)}}
\end{aligned}
$$

Thus the proof is complete.
Lemma 3.5. Let $m, n \in \mathbb{N}$, and let $(x, y) \in\left(I_{s} \backslash I_{s+1}\right) \times I_{N}, s=0, \ldots, N-1$. Then, for every $\varepsilon>0$, we have

$$
\int_{I_{N} \times I_{N}}\left|D_{m}(x+t) D_{n}(y+s)\right| d \mu(t) d \mu(s) \leq \frac{c n^{\varepsilon} 2^{s}}{2^{N(1+\varepsilon)}}
$$

where $c$ is an absolute constant.
Proof. The proof is quite analogous to that of Lemma 3.4. Hence, we leave out the details.

Lemma 3.6. Let $m, n \in \mathbb{N}$, and let $(x, y) \in\left(I_{s_{1}} \backslash I_{s_{1}+1}\right) \times\left(I_{s_{2}} \backslash I_{s_{2}+1}\right), s_{1}, s_{2}=$ $0, \ldots, N-1$. Then

$$
\int_{I_{N}}\left|D_{n}(x+t) D_{m}(y+s)\right| d \mu(t) d \mu(s) \leq \frac{c 2^{s_{1}+s_{2}}}{2^{2 N}}
$$

where $c$ is an absolute constant.

Proof. By applying Lemma 3.3, we obtain

$$
\begin{aligned}
& \int_{I_{N} \times I_{N}}\left|D_{m}(x+t) D_{n}(y+s)\right| d \mu(t) d \mu(s) \\
& \quad \leq \int_{I_{N}}\left|D_{m}(x+t)\right| d \mu(t) \int_{I_{N}}\left|D_{n}(y+s)\right| d \mu(s) \leq \frac{c 2^{s_{1}+s_{2}}}{2^{2 N}} .
\end{aligned}
$$

Thus the proof is complete.

## 4. The main results

Our main results read as follows.

## Theorem 4.1.

(a) Let $0<p<1$ and $f \in H_{p}\left(G^{2}\right)$. Then the maximal operator $\widetilde{S}^{*, p}$ defined by (2.4) is bounded from the martingale Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$.
(b) (Sharpness). Let $\varphi: \mathbb{N} \rightarrow[1, \infty)$ be a nondecreasing function satisfying the condition

$$
\sup _{m, n \in \mathbb{N}} \frac{(m+n)^{2 / p-2}}{\varphi(m, n)}=+\infty
$$

Then

$$
\sup _{m, n \in \mathbb{N}}\left\|\frac{S_{m, n} f}{\varphi(m, n)}\right\|_{\text {weak }-L_{p}\left(G^{2}\right)}=\infty
$$

Theorem 4.2. Let $0<p<1,2^{-\alpha}<m / n \leq 2^{\alpha}$, and $2^{k}<m, n \leq 2^{k+1+[\alpha]}$. Then there exists an absolute constant $c_{p}$ such that

$$
\left\|S_{m, n} f-f\right\|_{p} \leq c_{p} 2^{k(2 / p-2)} \omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{k}}, f\right)
$$

## Theorem 4.3.

(a) Let $0<p<1,2^{-\alpha} \leq m / n \leq 2^{\alpha}$, and

$$
\omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{k}}, f\right)=o\left(\frac{1}{2^{k(2 / p-2)}}\right), \quad \text { as } k \rightarrow \infty
$$

Then

$$
\left\|S_{m, n} f-f\right\|_{H_{p}\left(G^{2}\right)} \rightarrow 0, \quad \text { when } n \rightarrow \infty .
$$

(b) (Sharpness). Let $0<p<1$ and $2^{-\alpha}<m / n \leq 2^{\alpha}$. Then there exists a martingale $f \in H_{p}\left(G^{2}\right)$ such that

$$
\omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{k}}, f\right)=O\left(\frac{1}{2^{k(2 / p-2)}}\right), \quad \text { as } k \rightarrow \infty
$$

and

$$
\left\|S_{m, n} f-f\right\|_{\text {weak }-L_{p}\left(G^{2}\right)} \nrightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Proof of Theorem 4.1. Since $\widetilde{S}_{p}^{*}$ is bounded from $L_{\infty}$ to $L_{\infty}$, by using Lemma 3.2 we conclude that the proof of part (a) will be complete if we show that

$$
\begin{equation*}
\int_{\overline{I \times I}}\left|\tilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \leq c<\infty, \quad \text { when } 0<p<1 \tag{4.1}
\end{equation*}
$$

for every $p$-atom $a$, where $I \times I$ denotes the support of the atom.
Let $a$ be an arbitrary $p$-atom with support $I \times I$ and $\mu(I \times I)=2^{-2 N}$. We may assume that $I \times I=I_{N} \times I_{N}$, where $I_{N}:=I_{N}(0)$. It is easy to see that $S_{m, n} a=0$ when $m \leq 2^{N}$ and $n \leq 2^{N}$. Therefore, we can suppose that $m>2^{N}$ or that $n>2^{N}$. Since $\|a\|_{\infty} \leq 2^{2 N / p}$, we find that

$$
\begin{align*}
\left|S_{m, n}(a)\right| & \leq \int_{I_{N} \times I_{N}}\left|a\left(t_{1}, t_{2}\right)\right|\left|D_{m, n}\left(x+t_{1}, y+t_{2}\right)\right| d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) \\
& \leq\|a\|_{\infty} \int_{I_{N} \times I_{N}}\left|D_{m, n}\left(x+t_{1}, y+t_{2}\right)\right| d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) \\
& \leq 2^{2 N / p} \int_{I_{N} \times I_{N}}\left|D_{m, n}\left(x+t_{1}, y+t_{2}\right)\right| d \mu\left(t_{1}\right) d \mu\left(t_{2}\right) . \tag{4.2}
\end{align*}
$$

Let $0<p<1$ and $(x, y) \in I_{N} \times\left(I_{s_{2}} \backslash I_{s_{2}+1}\right)$. We choose $\varepsilon$, so that $2 / p-2-\varepsilon>0$ and then from Lemma 3.4 it follows that

$$
\begin{align*}
\frac{\left|S_{m, n} a(x, y)\right|}{(m+n+1)^{2 / p-2}} & \leq \frac{2^{2 N / p} 2^{s_{2}} m^{\varepsilon}}{(m+n+1)^{2 / p-2} 2^{N(\varepsilon+1)}} \\
& \leq \frac{2^{2 N / p} 2^{s_{2}}(m+n)^{\varepsilon}}{(m+n+1)^{2 / p-2} 2^{N(\varepsilon+1)}} \\
& \leq \frac{2^{N(2 / p-2-\varepsilon)} 2^{s_{2}} 2^{N}}{(m+n+1)^{2 / p-2-\varepsilon}} \leq 2^{s_{2}} 2^{N} \tag{4.3}
\end{align*}
$$

According to (2.1) and (4.3), we have

$$
\begin{align*}
& \int_{I_{N} \times \overline{I_{N}}}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad=\sum_{s_{2}=0}^{N-1} \int_{I_{N} \times\left(I_{s_{2}} \backslash I_{s_{2}+1}\right)}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad \leq \sum_{s_{2}=0} \frac{2^{p s_{2}}}{2^{s_{2}}}<c_{p}<\infty . \tag{4.4}
\end{align*}
$$

If we apply (2.1), (4.2), and Lemma 3.5 analogously to (4.4), we get

$$
\begin{align*}
& \int_{\overline{I_{N}} \times I_{N}}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad=\sum_{s_{1}=0}^{N-1} \int_{\left(I_{\left.s_{1} \backslash I_{s_{1}+1}\right) \times I_{N}}\right.}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad \leq \sum_{s_{1}=0} \frac{2^{p s_{1}}}{2^{s_{1}}}<c_{p}<\infty \tag{4.5}
\end{align*}
$$

Let $0<p<1$, and let $(x, y) \in\left(I_{s_{1}} \backslash I_{s_{1}+1}\right) \times\left(I_{s_{2}} \backslash I_{s_{2}+1}\right)$. By using Lemma 3.6 now, we get

$$
\begin{equation*}
\frac{\left|S_{m, n} a(x, y)\right|}{(m+n+1)^{1 / p-1}} \leq \frac{2^{2 N(1 / p-1)} 2^{s_{1}+s_{2}}}{(m+n+1)^{1 / p-1}} \leq 2^{s_{1}+s_{2}} \tag{4.6}
\end{equation*}
$$

In view of (2.1) and (4.6), we can conclude that

$$
\begin{align*}
& \int_{\overline{I_{N}} \times \overline{I_{N}}}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad=\sum_{s_{1}=0}^{N-1} \sum_{s_{2}=0}^{N-1} \int_{\left(I_{s_{1}} \backslash I_{s_{1}+1}\right) \times\left(I_{s_{2}} \backslash I_{s_{2}+1}\right)}\left|\widetilde{S}_{p}^{*} a(x, y)\right|^{p} d \mu(x) d \mu(y) \\
& \quad \leq \sum_{s_{1}=0}^{N-1} \sum_{s_{2}=0}^{N-1} \frac{2^{\left(s_{1}+s_{2}\right) p}}{2^{s_{1}+s_{2}}}<c_{p}<\infty \tag{4.7}
\end{align*}
$$

Since

$$
\overline{I_{N} \times I_{N}}=\left(I_{N} \times \overline{I_{N}}\right) \cup\left(\overline{I_{N}} \times I_{N}\right) \cup\left(\overline{I_{N}} \times \overline{I_{N}}\right),
$$

by combining (4.4), (4.5), and (4.7), we get that (4.1) holds for every $p$-atom, and the proof of part (a) is complete.

Now, we prove the second part of the theorem. Let $\varphi: \mathbb{N} \rightarrow[1, \infty)$ be a nondecreasing function, and let $\left\{\alpha_{k}: k \in \mathbb{N}\right\}$ be a sequence of natural numbers satisfying the condition

$$
\lim _{k \rightarrow \infty} \frac{\left(2^{\alpha_{k}}+1\right)^{2 / p-2}}{\varphi\left(2^{\alpha_{k}}+1,1\right)}=+\infty
$$

Set, for $k \in \mathbb{N}_{+}$,

$$
f_{k}(x, y)=\left(D_{2^{\alpha_{k}+1}}(x)-D_{2^{\alpha_{k}}}(x)\right) D_{2^{\alpha_{k}}}(y)
$$

It is evident that

$$
\widehat{f}_{k}(i, j)= \begin{cases}1 & \text { if }(i, j) \in\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\} \times\left\{1, \ldots, 2^{\alpha_{k}}-1\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Therefore,

$$
\begin{align*}
& S_{i, j}\left(f_{k} ; x, y\right) \\
& \quad=\left\{\begin{array}{l}
\left(D_{i}(x)-D_{2^{\alpha_{k}}}(x)\right) D_{j}(y) \\
\quad \text { if }(i, j) \in\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\} \times\left\{1, \ldots, 2^{\alpha_{k}}-1\right\}, \\
f_{k}(x, y) \\
\quad \text { if } i \geq 2^{\alpha_{k}+1}, \text { and } j \geq 2^{\alpha_{k}}, \\
0 \quad \text { otherwise. }
\end{array}\right. \tag{4.8}
\end{align*}
$$

From (4.8) it follows that

$$
\begin{align*}
\left\|f_{k}\right\|_{H_{p}} & =\left\|\sup _{n \in \mathbb{N}} S_{2^{n}, 2^{n}} f_{k}\right\|_{p} \\
& =\left\|\left(D_{2^{\alpha_{k}+1}}(x)-D_{2^{\alpha_{k}}}(x)\right) D_{2^{\alpha_{k}}}(y)\right\|_{p} \\
& \leq\left\|D_{2^{\alpha_{k}}}(x) D_{2^{\alpha_{k}}}(y)\right\|_{p} \leq 2^{2 \alpha_{k}(1-1 / p)} \tag{4.9}
\end{align*}
$$

Let $(x, y) \in G^{2}$. Moreover, (4.8) also implies that

$$
\begin{aligned}
\frac{\left|S_{2^{\alpha_{k}+1,1}}\left(f_{k} ; x, y\right)\right|}{\varphi\left(2^{\alpha_{k}}+1,1\right)} & =\frac{\left|\left(D_{2^{\alpha_{k}}+1}(x)-D_{2^{\alpha_{k}}}(x)\right) D_{1}(y)\right|}{\varphi\left(2^{\alpha_{k}}+1,1\right)} \\
& =\frac{\left|w_{2^{\alpha_{k}}}(x) w_{0}(y)\right|}{\varphi\left(2^{\alpha_{k}}+1,1\right)}=\frac{1}{\varphi\left(2^{\alpha_{k}}+1,1\right)} .
\end{aligned}
$$

Hence, by also using (4.9), we find that

$$
\begin{aligned}
& \frac{\frac{1}{\varphi\left(2^{\left.\alpha_{k}+1,1\right)}\right.}\left(\mu\left\{(x, y) \in G^{2}: \frac{S_{2^{\alpha_{k+1,1}}}\left(f_{k} ; x, y\right)}{\varphi\left(2^{\left.\alpha_{k}+1,1\right)}\right.} \geq \frac{1}{\varphi\left(2^{\left.\alpha_{k}+1,1\right)}\right.}\right\}\right)^{1 / p}}{\left\|f_{k}\right\|_{H_{p}}} \\
& \quad \geq \frac{1}{\varphi\left(2^{\alpha_{k}}+1,1\right) 2^{2 \alpha_{k}(1-1 / p)}} \geq \frac{\left(2^{\alpha_{k}}+1\right)^{2 / p-2}}{\varphi\left(2^{\alpha_{k}}+1,1\right)} \rightarrow \infty, \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

The proof is complete.
Proof of Theorem 4.2. Let $0<p<1$, let $2^{-\alpha} \leq m / n \leq 2^{\alpha}$, and let $2^{k}<m, n \leq$ $2^{k+1+[\alpha]}$. According to Theorem 4.1, we can conclude that

$$
\left\|S_{m, n} f\right\|_{p} \leq c_{p}^{1}(m+n)^{2 / p-2}\|f\|_{H_{p}\left(G^{2}\right)} \leq c_{p}^{2} 2^{k(2 / p-2)}\|f\|_{H_{p}\left(G^{2}\right)} .
$$

Hence,

$$
\begin{aligned}
& \left\|S_{m, n} f-f\right\|_{p}^{p} \\
& \quad \leq\left\|S_{m, n} f-S_{2^{k}, 2^{k}} f\right\|_{p}^{p}+\left\|S_{2^{k}, 2^{k}} f-f\right\|_{p}^{p} \\
& \quad=\left\|S_{m, n}\left(S_{2^{k}, 2^{k}} f-f\right)\right\|_{p}^{p}+\left\|S_{2^{k}, 2^{k}} f-f\right\|_{p}^{p} \\
& \quad \leq c_{p}^{2}\left(2^{k(2-2 p)}+1\right) \omega_{H_{p}\left(G^{2}\right)}^{p}\left(\frac{1}{2^{k}}, f\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|S_{m, n} f-f\right\|_{p} \leq c_{p} 2^{k(2 / p-2)} \omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{k}}, f\right) \tag{4.10}
\end{equation*}
$$

The proof is complete.
Proof of Theorem 4.3. Let $0<p<1, f \in H_{p}\left(G^{2}\right), 2^{-\alpha} \leq m / n \leq 2^{\alpha}, 2^{k}<$ $m, n \leq 2^{k+1+[\alpha]}$, and

$$
\omega_{H_{p}\left(G^{2}\right)}\left(\frac{1}{2^{k}}, f\right)=o\left(\frac{1}{2^{k(2 / p-2)}}\right) \quad \text { as } k \rightarrow \infty
$$

By using (4.10), we immediately get that

$$
\left\|S_{m, n} f-f\right\|_{p} \rightarrow \infty \quad \text { when } n \rightarrow \infty
$$

and the proof of part (a) is complete.
To prove part (b) of the theorem, we use a similar construction of martingale, which was used in [9]. Let

$$
f_{n}=\sum_{\left\{k ; \alpha_{k}+1<n\right\}} \lambda_{k} a_{k},
$$

where

$$
\lambda_{k}=2^{-\alpha_{k}(2 / p-2)}
$$

and

$$
a_{k}(x, y)=2^{\alpha_{k}(2 / p-2)}\left(D_{2^{\alpha_{k}+1}}(x)-D_{2^{\alpha_{k}}}(x)\right)\left(D_{2^{\alpha_{k}+1}}(y)-D_{2^{\alpha_{k}}}(y)\right)
$$

Since

$$
\begin{gathered}
S_{2^{n}, 2^{n}} a_{k}= \begin{cases}a_{k} & \alpha_{k}+1<n \\
0 & \alpha_{k}+1 \geq n\end{cases} \\
\operatorname{supp}\left(a_{k}\right)=I_{\alpha_{k}}^{2}, \quad \int_{I_{\alpha_{k}}^{2}} a_{k} d \mu=0, \quad\left\|a_{k}\right\|_{\infty} \leq 2^{2 \alpha_{k} / p}=\left(\operatorname{supp} a_{k}\right)^{-1 / p}
\end{gathered}
$$

from Lemma 3.1 and given the fact that

$$
\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
$$

we conclude that $f \in H_{p}\left(G^{2}\right)$.
Moreover,

$$
\begin{align*}
f & -S_{2^{n}, 2^{n}} f \\
& =\left(f_{1}-S_{2^{n}, 2^{n}} f_{1}, \ldots, f_{n}-S_{2^{n}, 2^{n}} f_{n}, \ldots, f_{n+k}-S_{2^{n}, 2^{n}} f_{n+k}\right) \\
& =\left(0, \ldots, 0, f_{n+1}-f_{n}, \ldots, f_{n+k}-f_{n}, \ldots\right) \\
& =\left(0, \ldots, 0, \sum_{i=n}^{n+k} \frac{a_{i}(x, y)}{2^{i(2 / p-2)}}, \ldots\right), \quad k \in \mathbb{N}_{+}, \tag{4.11}
\end{align*}
$$

is a martingale and (4.11) is its atomic decomposition. By using Lemma 3.1, we find that

$$
\omega_{H_{p}}\left(\frac{1}{2^{n}}, f\right):=\left\|f-S_{2^{n}, 2^{n}} f\right\|_{H_{p}} \leq \sum_{i=n}^{\infty} \frac{1}{2^{i(2 / p-2)}} \leq \frac{c}{2^{n(2 / p-2)}}
$$

Moreover, it is easy to show that

$$
\widehat{f}(i, j)= \begin{cases}1 & \text { if }(i, j) \in\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\} \times\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\}  \tag{4.12}\\ & k \in \mathbb{N} \\ 0 & \text { if }(i, j) \notin \bigcup_{k=1}^{\infty}\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\} \times\left\{2^{\alpha_{k}}, \ldots, 2^{\alpha_{k}+1}-1\right\}\end{cases}
$$

In view of (4.12), we can conclude that

$$
\begin{equation*}
S_{2^{\alpha_{k}+1}, 2^{\alpha_{k}+1}} f(x, y)=S_{2^{\alpha_{k}}, 2^{\alpha_{k}}} f(x, y)+w_{2^{\alpha_{k}}}(x) w_{2^{\alpha_{k}}}(y)=: I+I . \tag{4.13}
\end{equation*}
$$

It is obvious that

$$
|I I|=\left|w_{2^{2 \alpha_{k}}}(x) w_{2^{\alpha_{k}}}(y)\right|=1 .
$$

Hence,

$$
\begin{align*}
& \|I I\|_{\text {weak }-L_{p}\left(G^{2}\right)}^{p} \\
& \quad \geq \frac{1}{2^{p}}\left(\mu\left\{(x, y) \in G \times G:|I I| \geq \frac{1}{2}\right\}\right) \\
& \quad \geq \frac{1}{2^{p}} \mu(G \times G) \geq \frac{1}{2^{p}} . \tag{4.14}
\end{align*}
$$

Since (for details, see, e.g., Weisz [16], [19])

$$
\left\|f-S_{2^{n}, 2^{n}} f\right\|_{\text {weak }-L_{p}\left(G^{2}\right)} \rightarrow 0, \quad \text { as } n \rightarrow \infty,
$$

according to (4.13) and (4.14), we get

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty}\left\|f-S_{2^{\alpha_{k}+1,2^{\alpha_{k}}+1}} f\right\|_{\text {weak }-L_{p}\left(G^{2}\right)}^{p} \\
& \quad \geq \limsup _{k \rightarrow \infty}\|I I\|_{\text {weak }-L_{p}\left(G^{2}\right)}^{p} \\
& \quad \quad-\limsup _{k \rightarrow \infty}\left\|f-S_{2^{\alpha_{k}, 2^{\alpha} k}} f\right\|_{\text {weak }-L_{p}\left(G^{2}\right)}^{p} \geq c>0 .
\end{aligned}
$$

The proof is complete.
Acknowledgments. The research of the second author was supported by Swedish Institute scholarship no. 10374-2015 and by Shota Rustaveli National Science Foundation (Georgia) grant YS15-2.1.1-47.

Moreover, we thank the careful referees for several comments which helped improve the final version of this paper.

## References

1. G. N. Agaev, N. Y. Vilenkin, G. M. Dzhafarly, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Èlm, Baku, 1981. Zbl 0588.43001. MR0679132. 137
2. I. Blahota, On a norm inequality with respect to Vilenkin-like systems, Acta Math. Hungar. 89 (2000), no. 1-2, 15-27. Zbl 0973.42020. MR1912235. DOI 10.1023/A:1026769207159. 137
3. S. Fridli, P. Manchanda, and A. H. Siddiqi, Approximation by Walsh-Nörlund means, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 593-608. Zbl 1199.42124. MR2487934. 141
4. G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993), no. 1-2, 131-149. Zbl 0805.42019. MR1200968. DOI 10.1007/ BF01872107. 137
5. U. Goginava and L. D. Gogoladze, "Strong convergence of cubic partial sums of twodimensional Walsh-Fourier series" in Constructive Theory of Functions (Sozopol, 2010), Prof. Marin Drinov Acad. Publ., Sofia, 2012, 108-117. MR3051102. 139
6. B. Golubov, A. Efimov, and V. Skvortsov, Walsh Series and Transforms: Theory and Applications, Math. Appl. (Soviet Series) 64, Kluwer Acad., Dordrecht, 1991. Zbl 0785.42010. MR1155844. DOI 10.1007/978-94-011-3288-6. 137, 138, 140
7. Y. Jiao, D. Zhou, Z. Hao, and W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 (2016), no. 4, 750-770. Zbl 1354.42042. MR3548624. DOI 10.1215/17358787-3649326. 141, 142
8. N. Memić, I. Simon, and G. Tephnadze, Strong convergence of two-dimensional VilenkinFourier series, Math. Nachr. 289 (2016), no. 4, 485-500. Zbl 1335.42035. MR3481301. DOI 10.1002/mana.201400239. 139
9. K. Nagy and G. Tephnadze, The Walsh-Kaczmarz-Mancinkiewicz means and Hardy spaces, Acta Math. Hungar. 149 (2016), no. 2, 346-374. MR3518642. DOI 10.1007/ s10474-016-0617-y. 147
10. F. Schipp, W. R. Wade, P. Simon, and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Zbl 0727.42017. MR1117682. 137, 138, 141
11. P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar. 49 (1987), no. 3-4, 425-431. Zbl 0643.42020. MR0891055. DOI 10.1007/BF01951006. 137
12. P. Simon, Strong convergence theorem for Vilenkin-Fourier series, J. Math. Anal. Appl. 245 (2000), no. 1, 52-68. Zbl 0987.42022. MR1756576. DOI 10.1006/jmaa.2000.6732. 137
13. G. Tephnadze, $A$ note on the Fourier coefficients and partial sums of VilenkinFourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 28 (2012), no. 2, 167-176. Zbl 1289.42084. MR3048092. 137
14. G. Tephnadze, Strong convergence of two-dimensional Walsh-Fourier series (in Russian), Ukraïn. Mat. Zh. 65 (2013), no. 6, 822-834; English translation in Ukranian Math. J. 65 (2013), 914-927. Zbl 1285.42024. MR3138182. DOI 10.1007/s11253-013-0828-0. 139
15. G. Tephnadze, On the partial sums of Vilenkin-Fourier series (in Russian), Izv. Nats. Akad. Nauk. Armenii Mat. 49 (2014), no. 1, 60-72; English translation in J. Contemp. Math. Anal. 49 (2014), 23-32. Zbl 1345.43002. MR3237573. DOI 10.3103/S1068362314010038. 137, 138, 142
16. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl 0796.60049. MR1320508. DOI 10.1007/ BFb0073448. 141, 142, 149
17. F. Weisz, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), no. 3, 229-242. Zbl 0866.42020. MR1627638. DOI 10.1007/BF02205221. 142
18. F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric Fourier series, Studia Math. 117 (1996), no. 2, 173-194. Zbl 0839.42009. MR1367443. 138
19. F. Weisz, Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Math. Appl. 541, Kluwer Acad., Dordrecht, 2002. Zbl 1306.42003. MR2009144. DOI 10.1007/ 978-94-017-3183-6. 141, 142, 149
20. F. Weisz, Triangular summability and Lebesgue points of 2-dimensional Fourier transforms, Banach J. Math. Anal. 11 (2017), no. 1, 223-238. Zbl 1354.42013. MR3582397. DOI 10.1215/17358787-3796829. 141
${ }^{1}$ Department of Engineering Sciences and Mathematics, LuleÅ University of Technology, SE-971 87 Luleå, Sweden and Uit, The Artic University of Norway, P.O. Box 385, N-8505, Narvik, Norway.

E-mail address: larserik@ltu.se
${ }^{2}$ The University of Georgia, IV, 77a Merab Kostava St, Tbilisi, 0128, Georgia, and Department of Engineering Sciences and Mathematics, Lulea University of Technology, SE-971 87 LuleÅ, Sweden.

E-mail address: giorgitephnadze@gmail.com
${ }^{3}$ Department of Engineering Sciences and Mathematics, LuleÅ University of Technology, SE-971 87 Luleí, Sweden.

E-mail address: Peter.Wall@ltu.se


[^0]:    Copyright 2018 by the Tusi Mathematical Research Group.
    Received Nov. 29, 2016; Accepted Mar. 11, 2017.
    First published online Oct. 5, 2017.
    *Corresponding author.
    2010 Mathematics Subject Classification. Primary 42C10; Secondary 42B25.
    Keywords. Fourier series, Walsh system, strong summability, martingale Hardy space, 2-dimensional modulus of continuity.

