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Abstract. Let X,Y be Banach spaces, and let T , δT : X → Y be bounded
linear operators. Put T̄ = T + δT . In this article, utilizing the gap between
closed subspaces and the perturbation bounds of metric projections, we first
present some error estimates of the upper bound of ‖T̄M −TM‖ in Lp (1 < p <
+∞) spaces. Then, by using the concept of strong uniqueness and modulus of
convexity, we further investigate the corresponding perturbation bound ‖T̄M −
TM‖ in uniformly convex Banach spaces.

1. Introduction

Let X and Y be Banach spaces, and let B(X,Y ) be the Banach space con-
sisting of all bounded linear operators from X to Y . For T ∈ B(X,Y ), let N (T )
(resp., R(T )) denote the kernel (resp., range) of T . It is well known that for
T ∈ B(X,Y ), if N (T ) and R(T ) are topologically complemented in the spaces
X and Y , respectively, then there exists a linear projection generalized inverse
T+ ∈ B(Y,X) defined by

T+Tx = x, x ∈ N (T )c and T+y = 0, y ∈ R(T )c,

where N (T )c and R(T )c are topologically complemented subspaces of N (T ) and
R(T ), respectively. In this case, T+T is the projection from X onto N (T )c along
N (T ) and TT+ is the projection from Y onto R(T )c along R(T ). It is well
known that when X and Y are Hilbert spaces, and if N (T )c = N (T )⊥ and
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R(T )c = R(T )⊥, then the corresponding generalized inverse T+ defined above
is called the Moore–Penrose orthogonal projection generalized inverse of T . In
general, we denote T+ by T †. In this case, T †T is the orthogonal projection from
X onto N (T ) and TT † is the orthogonal projection from Y onto R(T ). (We refer
the reader to [16] and [17] for more information about generalized inverses.)

The linear projection generalized inverse and its perturbation analysis have
applications and play an important role in many fields, such as computation,
control theory, frame theory, and nonlinear analysis. In the Hilbert space case, the
perturbation problems of the Moore–Penrose orthogonal projection generalized
inverses of linear operators have been widely studied and numerous results have
been obtained. Chen and Xue [5] introduced an important notation, the so-called
stable perturbation of operators on Banach spaces: that is, if R(T̄ ) ∩ N (T+) =
{0}, then T+ is said to be the stable perturbation of T . Lately, there has been
increased interest in the stable perturbation theory of generalized inverses in the
literature. In their previous work, Xue and Chen [18] further investigated this
concept and some of its important applications in Hilbert spaces. As a result,
they got the following important perturbation results. That is, when X, Y are
Hilbert spaces, if T , T̄ = T + δT ∈ B(X,Y ) with R(T ) closed, ‖T †‖‖δT‖ < 1,
and R(T̄ ) ∩N (T †) = {0}, then T̄ † exists and

‖T̄ † − T †‖ ≤ 1 +
√
5

2

‖T †‖2‖δT‖
1− ‖T †‖‖δT‖

. (1.1)

The perturbation bound (1.1) above has many applications, especially in solving
the following so-called least problem and its perturbation:

inf ‖x‖ subject to ‖Tx− b‖ = inf
z∈X

‖Tz − b‖. (1.2)

However, it is generally well known that not every closed subspace in a Banach
space is complemented; thus, the linear generalized inverse T+ of T may not exist.
In this case, in order to solve some approximation problems in Banach spaces,
we may seek other types of generalized inverses for T . For example, generally
speaking, the linear projection generalized inverse cannot deal with the extremal
solution, or the best approximation solution of an ill-posed operator equation
in Banach spaces. To solve the best approximation problems for an ill-posed
linear operator equation in Banach spaces, Nashed and Votruba [12] introduced
the concept of the (set-valued) metric generalized inverse of a linear operator in
Banach spaces. Later, in 2003, Wang and Wang [15] defined the Moore–Penrose
metric generalized inverse for a linear operator with closed range in Banach spaces
and gave some useful characterizations. Then, Ni [13] defined and characterized
the Moore–Penrose metric generalized inverse for an arbitrary linear operator in
a Banach space.

Let X, Y be Banach spaces, and let T , δT ∈ B(X,Y ) with R(T ) closed. Put
T̄ = T +δT . Suppose that the Moore–Penrose metric generalized inverse TM of T
exists. Then, motivated by some results obtained in Hilbert spaces, it is natural
to ask the following questions: If R(T̄ ) ∩ N (TM) = {0}, then what additional
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conditions can guarantee that T̄M exists? If T̄M exists, then what is its expres-
sion and can we give any error estimations of the upper bound of ‖T̄M − TM‖?
Furthermore, how does one solve the least problem (1.2) and its perturbation in
Banach spaces?

In recent years, the perturbation problems of the Moore–Penrose metric gen-
eralized inverse have been widely studied, with some important progress made
in this direction by using the concept of quasiadditivity and the theory of stable
perturbation. In a number of recent papers (see [4], [6], [7], [11]), the authors pre-
sented some perturbation results of the Moore–Penrose metric generalized inverse
under certain additional assumptions, and also obtained some descriptions of the
Moore–Penrose metric generalized inverse in Banach spaces. All these results give
some partial answers to the perturbation problems of the Moore–Penrose met-
ric generalized inverse. However, perturbation problems for nonlinear generalized
inverses are still far from being completely solved.

In this article, utilizing the gap between closed subspaces and the perturba-
tion bounds of metric projections, then under the stable perturbation and some
quasiadditivity assumption, we will further study the perturbation problems for
the Moore–Penrose metric generalized inverses in some Banach spaces, especially
for the Lp (1 < p < +∞) spaces and uniformly convex Banach spaces. In the
next section, we give some necessary concepts and preliminary results. We prove
our main results in Sections 3 and 4. Finally, we end with a concluding remark
in Section 5.

2. Preliminaries

In this section, we recall some concepts and results used in this article. Let
T : X → Y be a mapping, and let D be a subset of X. Recall from [16] that D is
said to be homogeneous if λx ∈ D whenever x ∈ D and λ ∈ R, and that a mapping
T : X → Y is said to be a bounded homogeneous operator if T maps every bounded
set in X into a bounded set in Y and T (λx) = λT (x) for every x ∈ X and every
λ ∈ R. Let H(X,Y ) denote the set of all bounded homogeneous operators from
X to Y . Equipped with the usual linear operations on H(X,Y ) and the norm
on T ∈ H(X,Y ) defined by ‖T‖ = sup{‖Tx‖ | ‖x‖ = 1, x ∈ X}, we can easily
prove that (H(X,Y ), ‖ · ‖) is a Banach space. Obviously, B(X,Y ) ⊂ H(X,Y ).
For a bounded homogeneous operator T ∈ H(X,Y ), we always denote by D(T ),
N (T ), and R(T ) the domain, the null space, and the range of T , respectively.

Definition 2.1. Let M ⊂ X be a subset, and let T : X → Y be a mapping. Then
we call T quasiadditive on M if T satisfies

T (x+ z) = T (x) + T (z), ∀x ∈ X, ∀z ∈ M.

For a homogeneous operator T ∈ H(X,X), if T is quasiadditive on R(T ), then
we simply say that T is a quasilinear operator.

Definition 2.2. Let P ∈ H(X,X). If P 2 = P , then we call P a homogeneous
projection. In addition, if P is also quasiadditive on R(P ), that is, for any x ∈ X
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and any z ∈ R(P ),

P (x+ z) = P (x) + P (z) = P (x) + z,

then we call P a quasilinear projection.

The following concept of bounded homogeneous generalized inverse is also a
generalization of bounded linear generalized inverse.

Definition 2.3 ([1, Definition 3.1]). Let T ∈ B(X,Y ). If there is T h ∈ H(Y,X)
such that

TT hT = T, T hTT h = T h,

then we call T h a bounded homogeneous generalized inverse of T .

The following lemma characterizes the existence of a homogeneous generalized
inverse of T ∈ B(X,Y ), which turns out to be very useful in our analysis.

Lemma 2.4 ([3, Proposition 2.4]). Let T ∈ B(X,Y ). Then T has a homogeneous
generalized inverse T h ∈ H(Y,X) if and only if R(T ) is closed and there exist
a bounded quasilinear projection PN (T ) : X → N (T ) and a bounded homogeneous
projection QR(T ) : Y → R(T ).

Definition 2.5 ([14, Definition 4.1]). Let G be a subset of X. The set-valued
mapping PG : X → G defined by

PG(x) =
{
s ∈ G

∣∣ ‖x− s‖ = dist(x,G)
}
, ∀x ∈ X

is called the set-valued metric projection, where dist(x,G) = infz∈X ‖x− z‖.

For a subset G ⊂ X, if PG(x) 6= ∅ for each x ∈ X, then G is said to be
approximal ; if PG(x) is at most a singleton for each x ∈ X, then G is said to
be semi-Chebyshev ; if G is simultaneously approximal and a semi-Chebyshev
set, then G is called a Chebyshev set. We denote by πG any selection for the
set-valued mapping PG, that is, any single-valued mapping πG : D(πG) → G with
the property that πG(x) ∈ PG(x) for any x ∈ D(πG), where D(πG) = {x ∈ X :
PG(x) 6= ∅}. For the particular case when G is a Chebyshev set, then D(πG) = X
and PG(x) = {πG(x)}. In this case, the mapping πG is called the metric projection
from X onto G.

Remark 2.6 ([14, Section 3.3]). Let G ⊂ X be a closed convex subset. It is well
known that if X is reflexive, then G is a proximal set, and if X is strictly convex,
then G is a semi-Chebyshev set. Thus, every closed convex subset in a reflexive
and strictly convex Banach space is a Chebyshev set.

The following lemma gives some important properties of the metric projections.

Lemma 2.7 ([14, Theorem 4.1]). Let X be a Banach space, and let L be a
subspace of X. Then

(1) π2
L(x) = πL(x) for any x ∈ D(πL), that is, πL is idempotent;

(2) ‖x− πL(x)‖ ≤ ‖x‖ for any x ∈ D(πL), that is, ‖πL‖ ≤ 2.

In addition, if L is a semi-Chebyshev subspace, then

(3) πL(λx) = λπL(x) for any x ∈ X and λ ∈ R, that is, πL is homogeneous;
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(4) πL(x + z) = πL(x) + πL(z) = πL(x) + z for any x ∈ D(πL) and z ∈ L,
that is, πL is quasiadditive on L.

Now we present the definition of the Moore–Penrose metric generalized inverse
(see [16] for more information about the Moore–Penrose metric generalized
inverses and related knowledge).

Definition 2.8 ([16, Definition 4.3.1], [15, Definition 2.1]). Let T ∈ B(X,Y ).
Suppose that N (T ) and R(T ) are Chebyshev subspaces of X and Y , respectively.
If there exists a bounded homogeneous operator TM : Y → X such that

(1) TTMT = T ,
(2) TMTTM = TM ,
(3) TMT = IX − πN (T ), and
(4) TTM = πR(T ),

then TM is called theMoore–Penrose metric generalized inverse of T , where πN (T )

and πR(T ) are the metric projections onto N (T ) and R(T ), respectively.

Here we only need the following result which characterizes the existence of the
Moore–Penrose metric generalized inverse.

Lemma 2.9 ([16, Theorem 4.3.1], [15, Corollary 2.1]). Let T ∈ B(X,Y ). If N (T )
and R(T ) are Chebyshev subspaces of X and Y , respectively, then there exists a
unique Moore–Penrose metric generalized inverse TM of T .

The gap function is one of the main tools in this article. Here we only give the
definition (see [8] for more information). Let M , N be two closed subspaces in X.
We denote by SN the unit sphere of N . Set

δ(M,N) =

{
sup{dist(x,N) | x ∈ M, ‖x‖ = 1}, M 6= {0},
0, M = {0}.

We call δ̂(M,N) = max{δ(M,N), δ(N,M)} the gap between M and N .

3. Stable perturbation analysis for TM on Lp-spaces

By using a bounded homogeneous generalized inverse, we first give the following
result.

Lemma 3.1. Let T ∈ B(X,Y ) such that T h ∈ H(Y,X) exists. Assume that
N (T ) and R(T ) are Chebyshev subspaces in X and Y , respectively. Then TM =
(IX − πN (T ))T

hπR(T ).

Proof. SinceN (T ) andR(T ) are Chebyshev subspaces, it follows from Lemma 2.9
that T has the unique Moore–Penrose metric generalized inverse TM which sat-
isfies

TTMT = T, TMTTM = TM , TTM = πR(T ), TMT = IX − πN (T ).

Set T \ = (IX − πN (T ))T
hπR(T ). Then T \ = TMTT hTTM = TMTTM = TM . �

Lemma 3.2. Let X, Y be reflexive and strictly convex Banach spaces, and let
T ∈ B(X,Y ) with R(T ) closed. Put T̄ = T + δT . Then
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(1) the Moore–Penrose metric generalized inverse TM of T exists.

In addition, if TM is quasiadditive on R(δT ) and ‖TM‖‖δT‖ < 1, R(T̄ ) ∩
N (TM) = {0}, then

(2) the Moore–Penrose metric generalized inverse T̄M of T̄ exists. Moreover,

T̄M = (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ ); (3.1)

(3) ‖T̄M‖ ≤ 2‖TM‖
1−‖TM δT‖ .

Proof. (1) Note that X, Y are reflexive and strictly convex Banach spaces. So, for
T ∈ B(X,Y ) with R(T ) closed, we get that TM uniquely exists from Remark 2.6
and Lemma 2.9.

(2) Since TM is quasiadditive onR(δT ) (i.e., TMδT ∈ B(X)) and ‖TM‖‖δT‖ <
1, we get that IX + TMδT is invertible in B(X). Now, by our results in [3,
Theorem 3.4], the stable perturbation condition R(T̄ ) ∩ N (TM) = {0} implies
that T̄ has a bounded homogeneous generalized inverse T̄ h = (IX +TMδT )−1TM .
Consequently, we get that R(T̄ ) is closed from Lemma 2.4, and thus T̄M uniquely
exists from Remark 2.6 and Lemma 2.9. Finally, by using Lemma 3.1, we can
obtain that T̄M has the following form:

T̄M = (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ ).

(3) From Lemma 2.7, we know that ‖IX − πN (T̄ )‖ ≤ 1 and ‖πR(T̄ )‖ ≤ 2.
Therefore, by using the equality (3.1) we get

‖T̄M‖ ≤ ‖IX − πN (T̄ )‖‖(IX + TMδT )−1TM‖‖πR(T̄ )‖ ≤ 2‖TM‖
1− ‖TMδT‖

.

This completes the proof. �

The next lemma, which is an estimate for the stability of the metric projection
in Lp (1 < p < +∞) space, is one of the principal tools we use for establishing
our main theorem.

Lemma 3.3 ([9, Corollary 2.5]). Let M and N be closed linear subspaces in Lp

(1 < p < +∞). Then we have

‖πM − πN‖p ≤

{
10(p− 1)−

1
2 δ̂(M,N)

1
2 (1 < p ≤ 2),

10C
− 1

p
p δ̂(M,N)

1
p (2 ≤ p < +∞),

where Cp = (p − 1)(1 + s)2−p and s is the unique positive zero of the function
tp−1 − (p− 1)t− (p− 2).

Now, under the stable perturbation condition R(T̄ ) ∩ N (TM) = {0}, we can
estimate the upper bound of ‖T̄M − TM‖.

Theorem 3.4. Let X = Lp (1 < p < +∞). Let T , δT ∈ B(X) with R(T ) closed
and ‖TM‖‖δT‖ < 1. Suppose that TM is quasiadditive on R(T ) and R(δT ). Put
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T̄ = T + δT . If R(T̄ ) ∩N (TM) = {0}, then T̄M exists and

‖T̄M − TM‖

≤



‖TM‖
1−‖TM δT‖{10(p− 1)−

1
2 δ̂(R(T ),R(T̄ ))

1
2

+ 10(1− ‖TMδT‖)(p− 1)−
1
2 δ̂(N (T̄ ),N (T ))

1
2

+ ‖TMδT‖} (1 < p ≤ 2),
‖TM‖

1−‖TM δT‖{10C
− 1

p
p δ̂(R(T ),R(T̄ ))

1
p

+ 10(1− ‖TMδT‖)C
− 1

p
p δ̂(N (T̄ ),N (T ))

1
p

+ ‖TMδT‖} (2 ≤ p < +∞).

Proof. It is well known that Lp (1 < p < +∞) is a reflexive and strictly convex
Banach space, so TM is well defined. Clearly, under our assumption, T̄M also
uniquely exists by Lemma 3.2.

It follows from Lemma 3.2 that T̄M = (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ ).

Note that we also have TM = (IX − πN (T ))T
MπR(T ) and TMπR(T ) = TM . Hence

T̄M − TM

= (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T̄ )

− (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T )

+ (IX − πN (T̄ ))T
MπR(T ) − (IX − πN (T ))T

MπR(T )

+ (IX − πN (T̄ ))(IX + TMδT )−1TMπR(T ) − (IX − πN (T̄ ))T
MπR(T )

= (IX − πN (T̄ ))(IX + TMδT )−1TM(πR(T̄ ) − πR(T )) (using quasiadditivity)

+ (πN (T ) − πN (T̄ ))T
M + (IX − πN (T̄ ))

(
(IX + TMδT )−1 − IX

)
TM .

Since ‖TM‖‖δT‖ < 1, then we can check easily that∥∥(IX + TMδT )−1
∥∥ ≤ 1

1− ‖TMδT‖
,

∥∥(IX + TMδT )−1 − IX
∥∥ ≤ ‖TMδT‖

1− ‖TMδT‖
.

From Lemma 2.7, we also have ‖IX − πN (T̄ )‖ ≤ 1. Therefore, we obtain

‖T̄M − TM‖ ≤ ‖TM‖
1− ‖TMδT‖

‖πR(T̄ ) − πR(T )‖

+ ‖TM‖‖πN (T ) − πN (T̄ )‖+
‖TM‖‖TMδT‖
1− ‖TMδT‖

. (3.2)

Finally, by using Lemma 3.3 and the inequality (3.2), we can obtain

‖T̄M − TM‖

≤ ‖TM‖
1− ‖TMδT‖

(
‖πR(T̄ ) − πR(T )‖

+
(
1− ‖TMδT‖

)∥∥πN (T ) − πN (T̄ )‖+ ‖TMδT
∥∥)



24 J. CAO AND W. ZHANG

≤



‖TM‖
1−‖TM δT‖{10(p− 1)−

1
2 δ̂(R(T ),R(T̄ ))

1
2

+ 10(1− ‖TMδT‖)(p− 1)−
1
2 δ̂(N (T̄ ),N (T ))

1
2

+ ‖TMδT‖} (1 < p ≤ 2),
‖TM‖

1−‖TM δT‖{10C
− 1

p
p δ̂(R(T ),R(T̄ ))

1
p

+ 10(1− ‖TMδT‖)C
− 1

p
p δ̂(N (T̄ ),N (T ))

1
p

+ ‖TMδT‖} (2 ≤ p < +∞).

This completes the proof. �

When the perturbed operator δT satisfies R(T̄ ) = R(T ) and N (T̄ ) = N (T ),
then it is easy to get the following result from Theorem 3.4.

Corollary 3.5 ([3, Corollary 4.7]). Let X = Lp (1 < p < +∞). Let T ∈ B(X)
with R(T ) closed. Assume that TM is quasiadditive on R(T ). Let δT ∈ B(X)
such that TM is quasiadditive on R(δT ) and ‖TM‖‖δT‖ < 1. Put T̄ = T + δT .
If R(T̄ ) = R(T ) and N (T̄ ) = N (T ), then T̄M exists and

‖T̄M − TM‖ ≤ ‖TMδT‖‖TM‖
1− ‖TMδT‖

.

Remark 3.6. Let X = Lp (1 < p < +∞). Let T , δT ∈ B(X) such that TM exists.
Put T̄ = T + δT . From [6, Lemma 2.14], we know that ‖TM‖ ≥ γ(T )−1 (here,
γ(T ) is the reduced minimum module of T ). Then, similar to [17, Lemma 1.3.5],
we can check that

δ
(
R(T ),R(T̄ )

)
≤ ‖TM‖‖δT‖, δ

(
N (T̄ ),N (T )

)
≤ ‖TM‖‖δT‖. (3.3)

So from Theorem 3.4 and Lemma 3.2, we also have the following corollary.

Corollary 3.7. Let X = Lp (1 < p < +∞). Let T, δT ∈ B(X) with R(T )
closed. Assume that TM is quasiadditive on R(T ) and R(δT ). Put T̄ = T + δT .
If ‖TM‖‖δT‖ < 1 and R(T̄ ) ∩N (TM) = {0}, then T̄M exists and

‖T̄M − TM‖

≤



‖TM‖
1−‖TM δT‖{20(p− 1)−

1
2η

+ ‖TMδT‖(1− 10(p− 1)−
1
2η)} (1 < p ≤ 2),

‖TM‖
1−‖TM δT‖{20C

− 1
p

p η

+ ‖TMδT‖(1− 10C
− 1

p
p η)} (2 ≤ p < +∞),

where η = max{‖TM‖‖δT‖, 2‖T
M‖2‖δT‖

1−‖TM δT‖ }.

Proof. From Lemma 3.2(3), we know that ‖T̄M‖ ≤ 2‖TM‖
1−‖TM δT‖ . Then, similar to

inequalities (3.3), for T̄M , we also get

δ
(
R(T̄ ),R(T )

)
≤ ‖T̄M‖‖δT‖ ≤ 2‖TM‖2‖δT‖

1− ‖TMδT‖
,
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δ
(
N (T ),N (T̄ )

)
≤ ‖T̄M‖‖δT‖ ≤ 2‖TM‖2‖δT‖

1− ‖TMδT‖
.

Now, set η = max{‖TM‖‖δT‖, 2‖T
M‖2‖δT‖

1−‖TM δT‖ }. Then from the definition of gap func-

tion and Theorem 3.4, we can get our estimations easily by simple computa-
tion. �

In order to give an example in Lp (1 < p < +∞), we need the definition of
dual mapping for Banach spaces. Recall that (see [2]) the set-valued mapping
FX : X → X∗ defined by

FX(x) =
{
f ∈ X∗ ∣∣ f(x) = ‖x‖2 = ‖f‖2

}
, ∀x ∈ X,

is called the dual mapping of X, where X∗ is the dual space of X. It is well known
that the dual mapping FX is a homogeneous set-valued mapping (we refer the
reader to [2] for more information about the mapping FX and the geometric prop-
erties of Banach spaces, such as strict convexity, reflexivity, and complemented
subspaces). In particular, if X is a reflexive and strictly convex Banach space,
and L ⊂ X is a hyperplane, then we have the following useful result.

Lemma 3.8 ([16, Theorem 1.2.17]). Let X be a reflexive and strictly convex
Banach space. Let f ∈ X∗. Suppose that L = {x ∈ X | f(x) = 0} (i.e., L ⊂ X is
a hyperplane). Then πL is a bounded linear operator on X and

πL(x) = x− f(x)

‖f‖2
F−1
X (f), ∀x ∈ X.

We now consider the following example in Lp (1 < p < +∞).

Example 3.9. Let X be the Banach space Lp (1 < p < +∞). Fix an element
s ∈ X \ {0} and a continuous linear functional f : X → C with f(s) = 1. We
consider the following operator T : X → X defined by

T (x) = x− f(x)s.

Then, we can check easily that T is a bounded linear operator on X and that
N (T ) = {λs | λ ∈ C} and R(T ) = N (f). So, in general, the operator T is not
invertible in B(X). But by Remark 2.6 and Lemma 2.9, we can obtain that the
Moore–Penrose metric generalized inverse TM uniquely exists.

Noting that N (f) ⊂ X is a maximum linear subspace and that s /∈ N (f) =
R(T ), we have X = N (T )uR(T ). Now we define

T0 : R(T ) → R(T ) by T0(x) = T (x),∀x ∈ R(T ).

Clearly, T0 is invertible with T−1
0 = IR(T ) ∈ B(R(T )). Put

By =

{
T−1
0 y, y ∈ R(T ),

0, y ∈ N (T ).

Then, it is easy to check that the operator B is a bounded homogeneous gen-
eralized inverse of T with BπR(T ) = πR(T ). Thus, we obtain that TM = (IX −
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πN (T ))πR(T ) by Lemma 3.1. From Lemma 2.7, we get ‖πR(T )‖ ≤ 2. Note that
‖IX − πN (T )‖ ≤ 1, so we obtain ‖TM‖ ≤ 2.

When the perturbed operator δT ∈ B(X) satisfiesR(δT ) ⊂ R(T ) with ‖δT‖ <
1
2
, for example, we can take δT (x) = 1

3(1+‖f‖‖s‖p)T (x). Put T̄ = T + δT . Then, it

follows fromR(δT ) ⊂ R(T ) thatR(T̄ ) ⊂ R(T ) and TTMδT = δT . Consequently,
we get

T̄ = T + δT = T (IX + TMδT ). (3.4)

If ‖δT‖ < 1/2, then ‖TM‖‖δT‖ < 1, so (IX + TMδT ) is invertible in B(X).
Thus, from (3.4), we have R(T̄ ) = R(T ), which means that R(T̄ ) ∩ N (TM) =
R(T )∩N (TM) = {0}. Now, from the error estimates in Theorem 3.4, we can get
the following:

‖T̄M − TM‖

≤


2

1−‖TM δT‖{10(1− ‖TMδT‖)(p− 1)−
1
2 δ̂(N (T̄ ),N (T ))

1
2

+ ‖TMδT‖} (1 < p ≤ 2),

2
1−‖TM δT‖{10(1− ‖TMδT‖)C

− 1
p

p δ̂(N (T̄ ),N (T ))
1
p

+ ‖TMδT‖} (2 ≤ p < +∞).

4. Perturbation for TM in uniformly convex Banach spaces

Finally, in this short section, we consider the perturbation problems in uni-
formly convex Banach spaces based on strong uniqueness-type results. It is well
known that uniformly convex Banach spaces are reflexive and strictly convex
Banach spaces [2].

Let X be a Banach space, and let SX = {x ∈ X : ‖x‖ = 1} be its unit
sphere. The moduli of convexity and smoothness of X are the functions defined,
respectively, by the formulas

δX(ε) = inf
{
1−

∥∥∥x+ y

2

∥∥∥ : x, y ∈ SX , ‖x− y‖ = ε
}
, 0 < ε ≤ 2.

The space X is said to be uniformly convex if δX(ε) > 0 for every ε > 0. If, in
addition, δX(ε) ≥ Cεq for some constant C > 0 and q ≥ 2, we say that X has
modulus of convexity of power type q.

Definition 4.1 ([9, Definition 2.1]). The metric projection πM is said to be strongly
unique of order p > 0 at M if for each x ∈ X and every m ∈ M we have

γM(x)‖πMx−m‖α ≤ ‖x−m‖α − ‖x− πMx‖α (4.1)

with some constant γM(x) > 0 depending only on x and M .

Lemma 4.2 ([10, Theorem 1]). Let X be a uniformly convex Banach space of
power type p, and let M be a closed subspace of X. Then the best approximation
to x ∈ X from M is strongly unique of order p; that is, the metric projection πM

satisfies the strong uniqueness condition (4.1).
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Lemma 4.3 ([9, Theorem 2.1]). Let M be a closed linear subspace of the normed
linear space X such that the metric projection πM satisfies the strong uniqueness
condition (4.1). Then for any x ∈ X and every other closed linear subspace
N ⊂ X we have

‖πM − πN‖ ≤ 10γM(x)−
1
α δ̂(M,N)

1
α . (4.2)

We now present the main result of this section.

Theorem 4.4. Let X be a uniformly convex Banach space of power type p. Let
T , δT ∈ B(X) with R(T ) closed. Assume that TM is quasiadditive on R(T ) and
R(δT ). Put T̄ = T + δT . If ‖TM‖‖δT‖ < 1 and R(T̄ )∩N (TM) = {0}, then T̄M

exists and

‖T̄M − TM‖

≤ ‖TM‖
1− ‖TMδT‖

{
10γR(T̄ )(x)

− 1
α δ̂

(
R(T̄ ),R(T )

) 1
α

+ 10
(
1− ‖TMδT‖

)
γN (T̄ (x)

− 1
α δ̂

(
N (T̄ ),N (T )

) 1
α + ‖TMδT‖

}
, ∀x ∈ X.

Proof. First, from Lemma 3.2, we see that T̄M = (IX−πN (T̄ ))(IX+TMδT )−1TM ×
πR(T̄ ). Then, similar to the proof of Theorem 3.4, but using Lemma 4.3, we get
our desired estimate

‖T̄M − TM‖

≤ ‖TM‖
1− ‖TMδT‖

(
‖πR(T̄ ) − πR(T )‖

+
(
1− ‖TMδT‖

)
‖πN (T ) − πN (T̄ )‖+ ‖TMδT‖

)
≤ ‖TM‖

1− ‖TMδT‖
{
10γR(T̄ )(x)

− 1
α δ̂

(
R(T̄ ),R(T )

) 1
α

+ 10
(
1− ‖TMδT‖

)
γN (T̄ (x)

− 1
α δ̂

(
N (T̄ ),N (T )

) 1
α + ‖TMδT‖

}
, ∀x ∈ X.

This completes the proof. �

5. Concluding remark

In this article, based on some error estimates of metric projections and the
tool of stable perturbation, we obtained some new perturbation bounds for the
Moore–Penrose metric generalized inverses in some Banach spaces, particularly
in Lp (1 < p < +∞) space and uniformly convex Banach space of power type p.
We should note that, in a recent paper [6], using the gap between homoge-
neous subsets, under range-preserving, kernel-preserving, and other more general
cases, respectively, the author also considered some perturbation problems for
the Moore–Penrose metric generalized inverse in reflexive strictly convex Banach
space. However, we have proved different results. It is well known that the theory
of the Moore–Penrose metric generalized inverses has its genesis in the context
of the so-called ill-posed problems. It is our hope that such new perturbation
bounds obtained in these papers can find applications in the solution of the least
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problem (1.2) and its perturbation analysis in some Banach spaces. We will inves-
tigate these applications in a future research topic. It would also be interesting
to extend our results from bounded linear operators to more general closed oper-
ators (see [7]). Since various differential operators in mathematical physics are
unbounded closed operators, we would similarly like to propose this issue as an
interesting project for further research.
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