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Abstract. We propose a new iterative algorithm to compute the symmetric
solution of the matrix equations AXB = E and CXD = F . The greatest
advantage of this new algorithm is higher speed and lower computational cost
at each step compared with existing numerical algorithms. We state the solu-
tions of these matrix equations as the intersection point of some closed convex
sets, and then we use the alternating projection method to solve them. Finally,
we use some numerical examples to show that the new algorithm is feasible
and effective.

1. Introduction

Denote by Rm×n the set of m × n real matrices, and let AT and A+ be the
transpose and the Moore–Penrose generalized inverse of the matrix A, respec-
tively. We use In and On to stand for the n × n identity matrix and the zero
matrix, respectively. The symbol V1 ⊕ V2 stands for the direct sum of two sub-
spaces V1 and V2. For A,B ∈ Rm×n, 〈A,B〉 = trace(BTA) denotes the inner
product of the matrices A and B. The induced norm is the so-called Frobenius
norm; that is, if ‖A‖ = 〈A,A〉1/2, then Rm×n is a real Hilbert space. As a first
step in the development of this article, we need to give the following definition.

Definition 1.1 ([1, p. 420]). Let M be a closed convex subset in a real Hilbert
space H, and let u be a point in H. Then the point in M nearest to u is called
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the projection of u onto M and denoted by PM(u); that is, PM(u) is the solution
of the following minimization problem

min
x∈M

‖x− u‖, u ∈ H, (1.1)

that is, ∥∥PM(u)− u
∥∥ = min

x∈M
‖x− u‖. (1.2)

In this article, we mainly consider the following problem.

Problem I. Given matrices A ∈ Rp×n, B ∈ Rn×q, C ∈ Rs×n, D ∈ Rn×t, E ∈ Rp×q,
and F ∈ Rs×t, find X ∈ £ such that

AXB = E, CXD = F, (1.3)

where £ is the set of n× n symmetric matrices. Obviously, the set £ is a closed
convex set.

The matrix equations (1.3) have been extensively studied over the past 40 years
or so. Wang [13] gave some conditions for the existence of a solution and some
representations of the common solution to (1.3). Based on the projection theorem
and matrix decompositions, Liao, Lei, and Yuan [9] gave an analytical expression
of the optimal approximate least square symmetric solution of (1.3). However,
these direct methods may be less efficient for the large coefficient matrices due
to limited computer processing power and storage capacity. Therefore, iterative
methods for solving the matrix equations (1.3) have recently attracted much inter-
est. By making use of the idea behind the conjugate gradients method, Sheng
and Chen [12] proposed an efficient iterative method to solve (1.3). Recently,
Ding and Chen [7] presented the gradient-based iterative algorithms and least-
squares-based iterative algorithm for solving (coupled) matrix equations. These
methods represent an innovative, computationally efficient numerical algorithm.
Dehghan and Hajarian [6] (see also [8]) proposed some efficient methods to solve
the coupled matrix equations.

Based on the alternating projection method (see Section 2), we propose a new
algorithm to solve Problem I in Section 3. The new algorithm has the following
advantages: (1) global convergence; (2) faster and with lower computational cost
at each step than the algorithm proposed in [3] and [11]; and (3) involves only
matrix-matrix multiplication at each iteration step, making it suitable for parallel
computation. In Section 4, we use some numerical examples to show that the new
algorithm is feasible and effective.

2. Alternating projection method

Alternating projection is a very simple algorithm for computing a point in the
intersection of some convex sets using a sequence of projections onto the sets.
For example, suppose that C and D are closed convex sets in Rn, and let PC and
PD denote the projection on C and D, respectively. The alternating projection
method starts with any x0 ∈ Rn and then projects into C and D

yk = PD(xk), xk+1 = PC(yk), k = 0, 1, 2, . . . .
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Figure 1. First few iterations of the alternating projection
method. The sequences {xk} and {yk} both converge to the point
x∗ ∈ C ∩D.

This generates two sequences: {xk} ⊂ C and {yk} ⊂ D. According to Theorem 2
in Cheney and Goldstein [4], we know that if C∩D 6= φ, then the sequences {xk}
and {yk} both converge to a point x∗ ∈ C ∩D. That is, alternating projections
find a point in the intersection of the sets, provided they intersect. This can be
illustrated in Figure 1. Later, Brègman [2] extended the alternating projection
method to the case of several closed convex sets, and this process can also be
found in Orsi [10].

Lemma 2.1 ([10, Theorem 2.2]). Let C1, C2, . . . , Cn be a family of closed convex
sets in a finite-dimensional Hilbert space H. If C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅, then the
sequence {xk} generated by the alternating projection method

∀x0 ∈ H, xi+1 = PCφ(i)
, where φ(i) = (imodn) + 1, i = 0, 1, 2, . . . , (2.1)

converges to the point x∗ ∈ C1 ∩ C2 ∩ · · · ∩ Cn.

Remark 2.2. By taking three closed convex sets, for example, the alternating
projection method (2.1) can be equivalently written as

∀x0 ∈ H, yk = PC1(xk),

zk = PC2(yk),

xk+1 = Pc3(zk), k = 0, 1, 2, . . . . (2.2)

3. A new algorithm for solving Problem I

Based on the alternating projection method, we propose a new algorithm to
solve Problem I in this section. We begin with a lemma.

Lemma 3.1 ([5, Theorem 9.3.2]). Given Z ∈ Rn×n, set

< = {X ∈ Rn×n | AXB = E,A ∈ Rp×n, B ∈ Rn×q, E ∈ Rp×q}.
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Then the solution X̂ of the following problem

min
x∈<

‖X − Z‖

is

X̂ = Z + A+(E − AZB)B+;

that is,

‖X̂ − Z‖ = min
x∈<

‖X − Z‖.

Now, to begin our consideration of Problem I, we first define two sets

Ω1 = {X ∈ Rn×n | AXB = E},
Ω2 = {X ∈ Rn×n | CXD = F}.

Obviously, Ω1 and Ω2 are closed convex sets. If Problem I is consistent, then
Ω1 ∩ Ω2 ∩ £ 6= ∅, and the intersection point X∗ ∈ Ω1 ∩ Ω2 ∩ £ is the solution of
Problem I. Hence, we can solve Problem I by finding the intersection point X∗ of
the sets Ω1, Ω2, and £. It is here that we begin to use the alternating projection
method (2.1) to find the intersection point X∗. As a consequence, we can derive
the solution of Problem I.

By Lemma 2.1 and Remark 2.2, we can see that the key problem in implement-
ing the alternating projection method (2.2) is how to compute the projections
PΩ1(Z), PΩ2(Z), and P£(Z) of matrix Z onto Ω1, Ω2, and £, respectively. This
problem may be perfectly solved as follows.

Theorem 3.2. Suppose that the set Ω1 is nonempty. For a given n×n matrix Z,
we have

PΩ1(Z) = Z + A+(E − AZB)B+. (3.1)

Proof. By Definition 1.1, we know that the projection PΩ1(Z) is the solution of
the following minimization problem

min
X∈Ω1

‖X − Z‖,

and according to Lemma 3.1, we get that the solution of this problem is Z +
A+(E − AZB)B+. Hence,

PΩ1(Z) = Z + A+(E − AZb)B+. �

Theorem 3.3. Suppose that the set Ω2 is nonempty. For a given n×n matrix Z,
we have

PΩ2(Z) = Z + C+(E − CZD)D+. (3.2)

Proof. The proof is similar to that of Theorem 3.2 and is omitted here. �

Theorem 3.4. For given n× n matrix Z, we have

P£(Z) =
Z + ZT

2
. (3.3)
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Proof. By Definition 1.1, we know that the projection P£(Z) is the solution of
the following minimization problem

min
X∈£

‖X − Z‖.

Since

‖X − Z‖2 =
∥∥∥(X − Z + ZT

2

)
+

Z + ZT

2

∥∥∥2

=
∥∥∥X − Z + ZT

2

∥∥∥2

+
∥∥∥Z + ZT

2

∥∥∥2

,

minX∈£ ‖X −Z‖ is equivalent to minX∈£ ‖X − Z+ZT

2
‖, and so the solution of the

minimization problem minX∈£ ‖X − Z‖ is also Z+ZT

2
, that is,

P£(Z) =
Z + ZT

2
. �

By the alternation projection method (2.2), and noting the projections PΩ1(Z),
PΩ2(Z), and P£(Z) defined by (3.1)–(3.3), we get a new algorithm to solve Prob-
lem I, which can be stated as follows.

Algorithm 3.5.
Input: The initial matrix X0 ∈ Rn×n.
Output: The solution X of Problem I.

Step 1. Set Ã = A+, B̃ = B+, C̃ = C+, D̃ = D+;
Step 2. for k = 0, 1, 2, 3, . . .:

Step 2.1. Yk = PΩ1(Xk) = Xk + Ã(E − AXkB)B̃,

Step 2.2. Zk = PΩ2(Xk) = Yk + C̃(F − CYkD)D̃,

Step 2.3. Xk+1 = P£(Zk) =
Zk+ZT

k

2
;

and for
Step 3. X = Xk+1.

Remark 3.6. It is easy to obtain the following: (1) Algorithm 3.5 has global
convergence; (2) compared with the least squares with QR (orthogonal trian-
gular)-decomposition (LSQR) algorithm in [3] and the quasi conjugate gradient
(QCG) algorithm in [11], Algorithm 3.5 has lower computational requirements at
each step; and (3) Algorithm 3.5 involves only matrix-matrix multiplication at
each iteration step, making it suitable for parallel computation.

By Lemma 2.1, we get the convergence theorem for Algorithm 3.5.

Theorem 3.7. If Problem I is consistent, then the matrix sequence {Xk} gener-
ated by Algorithm 3.5 converges to the solution X∗ of Problem I, that is, Xk →
X∗, k → +∞.

Proof. If Problem I is consistent, then Ω1 ∩Ω2 ∩£ 6= ∅. By Lemma 2.1, we know
that if the set Ω1 ∩ Ω2 ∩ £ 6= ∅, then the matrix sequence {Xk} generated by
Algorithm 3.5 converges to the intersection pointX∗ ∈ Ω1∩Ω2∩£, noting that the
intersection point X∗ is the solution of Problem I. Therefore, the matrix sequence
{Xk} generated by Algorithm 3.5 converges to the solution X∗ of Problem I. �
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4. Numerical experiments

In this section, we give some numerical examples to illustrate that the new
algorithm is feasible and effective for solving Problem I. (All tests were performed
using MATLAB R2013a on a PC with a Pentium(R) Dual-Core CPU at 2.8 GHz.)
We denote

E(k) = ‖E − AXkB‖+ ‖F − CXkD‖,

and we use the practical stopping criterion Error ≤ 1.0× 10−9.

Example 4.1. Consider Problem I with

A =


1 3 −1 3 −2 −3 1
4 −2 −1 −2 1 0 −5
−1 −3 1 −3 2 3 −1
5 1 −2 1 −1 −3 −4
3 −5 0 −5 3 3 6
−4 2 1 2 −1 0 5

 ,

B =



2 3 5 1 −2 3
−1 1 0 2 1 1
4 −2 2 −6 −4 −2
−5 −6 1 −1 5 −8
−1 1 0 2 1 1
−3 −2 −5 1 3 −2
1 4 5 3 −1 4


,

C =


1 2 −1 3 −4 0 −1
−1 −3 1 −3 2 3 1
−1 −4 1 −3 0 6 1
0 −1 0 0 −2 3 0
1 3 −1 3 −2 −3 −1

 ,

D =



2 1 3 −2
−3 −1 −4 3
1 2 3 −1
0 4 4 0
−2 0 −2 2
1 −5 −4 −1
−1 −2 −3 1


,

E =


0.9712 3.5021 −2.1723 2.5309 −0.9712 4.6097
10.0548 13.8518 0.1898 3.7970 −10.0548 17.8046
−0.9712 −3.5021 2.1723 −2.5309 0.9712 −4.6097
11.0260 17.3539 −1.9825 6.3279 −11.0260 22.4143
−8.3152 −30.9627 35.7533 −22.6475 8.3152 −43.4679
−10.0548 −13.8518 −0.1898 −3.7970 10.548 −17.8046

 ,
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F =


39.8207 −4.9069 34.9138 −39.8207
−18.0400 7.0162 −11.0238 18.0400
3.7407 9.1255 12.8662 −3.7407
21.7807 2.1093 23.8900 −21.7807
18.0400 −7.0162 11.0238 −18.0400

 .

We use Algorithm 3.5 to solve Problem I. LetX0 = I7. After twenty-eight
iterations, we get the solution of Problem I as follows:

X̂ ≈ X28

=



1.1889 −0.1572 0.0761 0.2460 −0.6019 0.1987 −0.4129
−0.1572 0.3337 −0.0625 −0.7588 0.6397 0.1959 −0.2890
0.0761 −0.0625 0.9666 −0.1515 0.0694 0.2631 0.5798
0.2460 −0.7588 −0.1515 0.6134 −0.2046 0.5212 0.6396
−0.6019 0.6397 0.0694 −0.2046 1.9315 −0.3662 0.4055
0.1987 0.1959 0.2631 0.5212 −0.3662 0.7248 0.1193
−0.4129 −0.2890 0.5798 0.6396 0.4055 0.1193 0.728


,

and its residual error

E(28) ≈ ‖E − AX28B‖+ ‖F − CX28D‖ = 8.81× 10−10.

Example 4.1 shows that Algorithm 3.5 can feasibly solve Problem I.

Example 4.2. Consider Problem I with

A = rand(50, n),

B = rand(n, 30),

E = A ∗ ones(n) ∗B,

C = rand(65, n),

D = rand(n, 51),

F = C ∗ ones(n) ∗D,

where rand(s, t) stands for an s × t random matrix and ones(n) stands for an
n× n matrix whose entries are all 1. Let the initial matrix be X0 = On. We use
Algorithm 3.5 (denoted by APM) and the algorithms proposed in [3] and [11],
which were denoted by LSQR and QCG, respectively, to compute the symmet-
ric solution of (1.3). The experimental results are presented in Figure 2. From
Figure 2 we can see that our algorithm has a faster convergence rate than the
algorithms proposed in [3] and [11].

5. Conclusion

We state Problem I as finding the intersection point of three closed convex sets
in the vector space Rn×n. From this point of view, we can use the alternating
projection algorithm to compute the intersection point, after which we can derive
the solution of Problem I. The new algorithm has a number of advantages. One is
higher speed and lower computational cost at each step than the existing numeri-
cal algorithms. It also involves only matrix-matrix multiplication at each iteration



SYMMETRIC SOLUTION OF THE MATRIX EQUATIONS 15

Figure 2. Convergence curves of the function E(k) = ‖E −
AXkB‖+ ‖F − CXkD‖.

step, so it is suitable for parallel computation. Finally, this new algorithm can be
extended to the generalized matrix equations

A1XB1 = C1,

A2XB2 = C2,
...

AnXBn = Cn,

over an arbitrary closed convex set £, as long as the projection P£(Z) can be
derived.
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