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Abstract. Let X,Y be Banach spaces. We define

αY (X) = sup
{
|T−1|−1 : T : Y → X is an isomorphism with |T | ≤ 1

}
.

If there is no isomorphism from Y to X, we set αY (X) = 0, and

γY (X) = sup
{
δ(T ) : T : X → Y is a surjective operator with |T | ≤ 1

}
,

where δ(T ) = sup{δ > 0 : δBY ⊆ TBX}. If there is no surjective operator
from X onto Y , we set γY (X) = 0. We prove that for a separable space X,
αl1(X∗) = γc0(X) and αL1

(X∗) = γC(∆)(X) = γC[0,1](X).

1. Introduction and preliminaries

This note is motivated by much of the recent research on quantitative versions
of various theorems and properties of Banach spaces (see [7] and its references).
Our main goal in this note is to prove quantitative versions of two well-known
theorems in the isomorphic theory of Banach spaces: the Johnson–Rosenthal the-
orem and the Bessaga–Pe lczyński theorem. The Johnson–Rosenthal theorem [5,
Theorem IV.3] says that, for a separable space X,

(1) c0 is isomorphic to a quotient of X whenever X∗ contains a (closed) sub-
space isomorphic to l1,
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(2) C(∆) is isomorphic to a quotient of X whenever X∗ contains a subspace
isomorphic to L1, where ∆ = {0, 1}N is the Cantor set.

To quantify the Johnson–Rosenthal theorem, we define a quantity measuring how
well a Banach space is isomorphically embedded into another Banach space as
follows: let X,Y be Banach spaces. We define

αY (X) = sup
{
‖T−1‖−1 : T : Y → X is an isomorphism with ‖T‖ ≤ 1

}
.

If there is no isomorphism from Y to X, we set αY (X) = 0. Obviously, αY (X) = 1
if and only if X contains almost-isometric copies of Y .

The classical Banach–Mazur distance d(X,Y ) between Banach spaces X and
Y , which measures how well a Banach space is isomorphic to another Banach
space, is defined as follows:

d(X,Y ) = inf
{
‖T‖‖T−1‖ : T : X → Y is a surjective isomorphism

}
.

If X is not isomorphic to Y , we set d(X,Y ) = ∞. It should be mentioned that
there are close relationships between quantity αY (X) and the Banach–Mazur
distance d(X,Y ). For example, it is easy to see that

αY (X) =
[
inf

{
d(Y,M) : M is a closed subspace of X

}]−1
.

We also define a quantity measuring how well a Banach space is isomorphic to a
quotient of another Banach space, as follows. Let X,Y be Banach spaces. We set

γY (X) = sup
{
δ(T ) : T : X → Y is a surjective operator with ‖T‖ ≤ 1

}
,

where δ(T ) = sup{δ > 0 : δBY ⊆ TBX}. If there is no surjective operator from
X onto Y , we set γY (X) = 0. It is easy to see that γY (X) = 1 if and only if Y is
a (1 + ε)-(linear) quotient of X for every ε > 0.

Then, using the above quantities, we quantify the Johnson–Rosenthal theorem
as follows.

Theorem 1.1. Let X be a separable Banach space. Then

(a) αl1(X
∗) = γc0(X),

(b) αL1(X
∗) = γC(∆)(X) = γC[0,1](X).

The Bessaga–Pe lczyński theorem [2] states that for a Banach space X, X∗

contains a subspace isomorphic to c0 if and only if X contains a complemented
subspace isomorphic to l1 if and only if X∗ contains a subspace isomorphic to
l∞. To quantify Bessaga–Pe lczyński theorem, we also need a quantity measuring
how close a Banach space is to being isomorphic to a complemented subspace of
another Banach space.

Let X,Y be Banach spaces. We set

βY (X) = sup
{(

‖A‖‖B‖
)−1

: A : X → Y,B : Y → X

are operators such that AB = IY
}
.

If there are no such operators A,B, then we set βY (X) = 0. Clearly, βY (X) = 1
if and only if for every ε > 0 there exists a subspace M of X so that M is
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(1 + ε)-isomorphic to Y and M is (1 + ε)-complemented in X. That is, M = BY
is complemented in X, and BA : X →M is the projection.

In this note, we quantify the Bessaga–Pe lczyński theorem as follows.

Theorem 1.2. Let X be a Banach space. Then(
αc0(X

∗)
)2 ≤ βl1(X) ≤ αl∞(X∗) ≤ αc0(X

∗).

Throughout this article, an operator will always mean a bounded linear oper-
ator. An operator T : X → Y is called an isomorphism if it is one-to-one and
has closed range. If X is a Banach space, we denote by BX its closed unit ball
{x ∈ X : ‖x‖ ≤ 1}. Also, IX : X → X denotes the identity map. Our notation
and terminology are standard, and we refer the readers to [1] and [8] for any
unexplained terms.

2. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. (a) Step 1: αl1(X
∗) ≤ γc0(X).

Let 0 < c < αl1(X
∗) be arbitrary. Then there exists a sequence (x∗n)n in X∗ so

that

c
n∑

k=1

|ak| ≤
∥∥∥ n∑
k=1

akx
∗
k

∥∥∥ ≤
n∑

k=1

|ak| (2.1)

for all scalars a1, a2, . . . , an and all n ∈ N. Since X is separable, by passing to
subsequences, we may assume that (x∗n)n is w∗-convergent. We set fn = x∗2n−1−x∗2n
(n ∈ N). According to (2.1), we get

2c
n∑

k=1

|ak| ≤
∥∥∥ n∑
k=1

akfk

∥∥∥ ≤ 2
n∑

k=1

|ak|, (2.2)

for all scalars a1, a2, . . . , an and all n ∈ N.
Now let gn = fn

‖fn‖ (n ∈ N). Then (gn)n is a w∗-null sequence in SX∗ . In view of

(2.2), we get

c
n∑

k=1

|ak| ≤
∥∥∥ n∑
k=1

akgk

∥∥∥ ≤
n∑

k=1

|ak|, (2.3)

for all scalars a1, a2, . . . , an and all n ∈ N.
Define an operator T : X → c0 by Tx = (〈gn, x〉)n (x ∈ X). Then T ∗e∗n = gn

for all n ∈ N. It follows from (2.3) that T ∗ is an isomorphism, and hence T is

surjective. Let Z = X/ ker(T ). Define an operator T̂ : Z → c0 by T̂ ([x]) = Tx for

[x] ∈ Z. Then T̂ is a surjective isomorphism. For each n ∈ N, we choose zn ∈ Z

with T̂ zn = en. Let (z∗n)n denote the functionals biorthogonal to (zn)n. Since (zn)n
is a shrinking basis for Z, (z∗n)n forms a basis for Z∗. Let Q : X → X/ ker(T ) be
the quotient mapping. It is easy to see that Q∗z∗n = gn for each n ∈ N. Since Q∗

is an isometric embedding, it follows from (2.3) that for all scalars b1, b2, . . . , bn
and all n ∈ N, we have

c
n∑

k=1

|bk| ≤
∥∥∥ n∑
k=1

bkz
∗
k

∥∥∥ ≤
n∑

k=1

|bk|. (2.4)
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We claim that cBc0 ⊆ T̂BZ . Let (tn)n ∈ Bc0 . Set z =
∑∞

n=1 tnzn. By the
Hahn–Banach theorem, we choose z∗ ∈ SZ∗ with 〈z∗, z〉 = ‖z‖. According to
(2.4), we get

‖z‖ = 〈z∗, z〉 =
∞∑
n=1

tn〈z∗, zn〉

≤
∞∑
n=1

∣∣〈z∗, zn〉∣∣
≤ 1

c

∥∥∥ ∞∑
n=1

〈z∗, zn〉z∗n
∥∥∥

=
1

c
.

Let ε > 0. Clearly, BZ ⊆ (1+ε)QBX . By the claim, we get c
1+ε

Bc0 ⊆ TBX . Con-
sequently, γc0(X) ≥ c

1+ε
. Letting ε → 0, we get γc0(X) ≥ c. Since c is arbitrary,

we conclude Step 1.
Step 2: γc0(X) ≤ αl1(X

∗).
Fix any 0 < c < γc0(X). Then there is an operator T : X → c0 so that ‖T‖ ≤ 1

and cBc0 ⊆ TBX . This means that ‖T ∗z‖ ≥ c‖z‖ for all z ∈ l1. Thus, αl1(X
∗) ≥ c,

and we are done.
(b) Step 1: αL1(X

∗) ≤ γC(∆)(X).
Fix any 0 < c < αL1(X

∗). Then there exist a subspace N of X∗ and an
isomorphism T from N onto L1 such that

‖x∗‖ ≤ ‖Tx∗‖ ≤ 1

c
‖x∗‖, x∗ ∈ N. (2.5)

By the proof of [5, Theorem IV.3], we obtain a sequence (x∗n)n in N such that
(Tx∗n)n is isometrically equivalent to the Haar basis (hn)n for L1. Moreover, the
operator S : X → (span{x∗n : n ∈ N})∗ defined by

〈Sx, x∗〉 = 〈x∗, x〉
(
x ∈ X, x∗ ∈ span{x∗n : n ∈ N}

)
satisfies the following properties:

(i) SX = Z, where Z = span{un : n ∈ N} and (un)n are the functionals
biorthogonal to (x∗n)n,

(ii) SBX = BZ .

Let (h∗n)n denote the functionals biorthogonal to (hn)n. It is known that (h∗n)n
is 1-equivalent to the Haar basis of C(∆). Let U : span{h∗n : n ∈ N} → C(∆) be
a surjective linear isometry. By (2.5), we have∥∥∥ n∑

k=1

akx
∗
k

∥∥∥ ≤
∥∥∥ n∑
k=1

akTx
∗
k

∥∥∥ =
∥∥∥ n∑
k=1

akhk

∥∥∥ ≤ 1

c

∥∥∥ n∑
k=1

akx
∗
k

∥∥∥, (2.6)

for all scalars a1, a2, . . . , an and all n ∈ N.
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Define an operator V : span{x∗n : n ∈ N} → L1 by V x∗n = hn(n ∈ N). Then
V is a surjective isomorphism and hence V ∗h∗n = un for all n ∈ N. According to
(2.6), an easy computation shows∥∥∥ n∑

k=1

akh
∗
k

∥∥∥ ≤
∥∥∥ n∑
k=1

akuk

∥∥∥ ≤ 1

c

∥∥∥ n∑
k=1

akh
∗
k

∥∥∥, (2.7)

for all scalars a1, a2, . . . , an and all n ∈ N.
Define an operator A : Z → span{h∗n : n ∈ N} by Aun = h∗n(n ∈ N). It

follows from (2.7) that cBspan{h∗
n:n∈N} ⊆ ABZ . Let ε > 0. Similarly, by (ii), we get

BZ ⊆ (1 + ε)SBX . Combining this together with the fact that U is a surjective
linear isometry, we get cBC(∆) ⊆ (1 + ε)UASBX . Moreover, combining (ii) and
(2.7), we get ‖UAS‖ ≤ 1. Thus, we have γC(∆)(X) ≥ c

1+ε
. Letting ε → 0, we get

γC(∆)(X) ≥ c. Since c is arbitrary, we finish the proof of Step 1.
Step 2: γC(∆)(X) ≤ γC[0,1](X).
Let 0 < c < γC(∆)(X) be arbitrary. Then there exists an operator T : X →

C(∆) with ‖T‖ ≤ 1 so that cBC(∆) ⊆ TBX . By [1, Lemma 4.4.7], there is a
continuous surjection ψ : ∆ → [0, 1] so that we can find a norm 1 operator R :
C(∆) → C[0, 1] with R(f ◦ ψ) = f for f ∈ C[0, 1]. This yields BC[0,1] ⊆ RBC(∆).
Consequently, cBC[0,1] ⊆ RTBX . In view of ‖R‖ = 1, we get γC[0,1](X) ≥ c. By
the arbitrariness of c, Step 2 is concluded. �

Finally, since L1 is linearly isometric to a subspace of C[0, 1]∗, it is easy to
verify that γC[0,1](X) ≤ αL1(X

∗).

Corollary 2.1. If c0 is isomorphic to a quotient of a Banach space X, then c0
is a (1 + ε)-quotient of X for every ε > 0.

Proof. First, we will consider the case where X is a separable Banach space
having a quotient isomorphic to c0. Then X∗ contains a subspace isomorphic to
l1. It follows from James’s l1-distortion theorem that αl1(X

∗) = 1. According to
Theorem 1.1(a), we get γc0(X) = 1.

For the general case, suppose that the quotient space X/M is isomorphic to c0.
It follows from the separable case that γc0(X/M) = 1. Let ε > 0 be arbitrary. Then
there exists an operator T : X/M → c0 with ‖T‖ ≤ 1 so that (1−ε)Bc0 ⊆ TBX/M .
Since BX/M ⊆ (1 + ε)QMBX , it follows that (1 − ε)Bc0 ⊆ (1 + ε)TQMBX , where
QM : X → X/M is the natural quotient map. Therefore, γc0(X) ≥ 1−ε

1+ε
. Letting

ε→ 0, we also get γc0(X) = 1. The proof is completed. �

Combining the main results of [9, Theorem 3.4] and [10, Theorem 1], one can
deduce the following corollary (see the proof of [6, Theorem 2.1]). But, this corol-
lary is also an immediate consequence of Theorem 1.1(b).

Corollary 2.2. If C[0, 1] (or C(∆)) is isomorphic to a quotient of a Banach
space X, then C[0, 1] (resp., C(∆)) is a (1 + ε)-quotient of X for every ε > 0.

Proof. If C[0, 1] is isomorphic to a quotient of a separable Banach space X, then
X∗ contains a subspace isomorphic to L1. It follows from [3, Theorem 4] that
αL1(X

∗) = 1. By Theorem 1.1(b), we get γC[0,1](X) = 1. For the general case, the
argument is analogous to Corollary 2.1. �
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Now we need a quantitative version of the Bessaga–Pe lczyński selection prin-
ciple. Its proof is identical to the standard gliding hump arguments (see [1]).

Lemma 2.3. Let (xn)n be a basis for a Banach space X, and let (x∗n)n be the
sequence of coefficient functionals. If (yn)n is a seminormalized sequence in X
satisfying limn→∞〈x∗k, yn〉 = 0 for each k ∈ N, then, for every ε > 0, there exist a
subsequence (ykn)n of (yn)n and a (skipped) block basic sequence (zn)n with respect
to (xn)n such that

(1 − ε)
∥∥∥ n∑

i=1

aizi

∥∥∥ ≤
∥∥∥ n∑

i=1

aiyki

∥∥∥ ≤ (1 + ε)
∥∥∥ n∑

i=1

aizi

∥∥∥,
for all scalars a1, a2, . . . , an and all n ∈ N. If every seminormalized (skipped) block
basic sequence with respect to (xn)n is C-complemented in X (where the constant
C depends only on X), then span{ykn : n ∈ N} is (C · 1+ε

1−ε
)-complemented in X.

Proof of Theorem 1.2. We only prove (αc0(X
∗))2 ≤ βl1(X). Inequalities βl1(X) ≤

αl∞(X∗) and αl∞(X∗) ≤ αc0(X
∗) are straightforward.

Let 0 < c < αc0(X
∗) be arbitrary. Then there exists an operator T : c0 → X∗

with ‖T‖ ≤ 1 so that c‖z‖ ≤ ‖Tz‖ for all z ∈ c0. This yields

cBl1 ⊆ T ∗BX∗∗ ⊆ T ∗BX
w∗

. (2.8)

Let S be the restriction of T ∗ to X. Then Sx = (〈Ten, x〉)n for all x ∈ X.
Let ε > 0. According to (2.8), we obtain a sequence (xn)n in X so that ‖xn‖ ≤ 1

c
for each n and so that∣∣〈e∗n − Sxn, ek〉

∣∣ < ε

2n
, k = 1, 2, . . . , n;n = 1, 2, . . . . (2.9)

By (2.9), we get limn→∞〈Sxn, ek〉 = 0 for each k and 1− ε ≤ ‖Sxn‖ ≤ 1
c

for all n.
It follows from Lemma 2.3 that there exist a subsequence (Sxkn)n of (Sxn)n

and a block basic sequence (un)n of (e∗n)n so that

(1 − ε)
∥∥∥ n∑

i=1

aiui

∥∥∥ ≤
∥∥∥ n∑

i=1

aiSxki

∥∥∥ ≤ (1 + ε)
∥∥∥ n∑

i=1

aiui

∥∥∥ (2.10)

for all scalars a1, a2, . . . , an and all n ∈ N. Moreover, span{Sxkn : n ∈ N} is
1+ε
1−ε

-complemented in l1. By (2.10), we have 1−ε
1+ε

≤ ‖un‖ ≤ 1
c(1−ε)

for each n. Since

(un)n is a block basic sequence of (e∗n)n, we get

1 − ε

1 + ε

n∑
i=1

|ai| ≤
∥∥∥ n∑

i=1

aiui

∥∥∥ ≤ 1

c(1 − ε)

n∑
i=1

|ai| (2.11)

for all scalars a1, a2, . . . , an and all n ∈ N. Combining (2.10) with (2.11), we get

(1 − ε)2

1 + ε

n∑
i=1

|ai| ≤
∥∥∥ n∑

i=1

aiSxki

∥∥∥ ≤
∥∥∥ n∑

i=1

aixki

∥∥∥ ≤ 1

c

n∑
i=1

|ai|, (2.12)

for all scalars a1, a2, . . . , an and all n ∈ N.
Let M = span{xkn : n ∈ N}. It follows from (2.12) that S|M : M → l1 is

an isomorphism with ‖(S|M)−1‖ ≤ 1+ε
c(1−ε)2

. Let P be a projection from l1 onto
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span{Sxkn : n ∈ N} with ‖P‖ ≤ 1+ε
1−ε

. Then (S|M)−1PS is a projection from

X onto M with ‖(S|M)−1PS‖ ≤ (1+ε)2

c(1−ε)3
. Define an operator U : M → l1 by

Uxkn = e∗n (n ∈ N). According to (2.12), U is a surjective isomorphism with
‖U‖ ≤ 1+ε

(1−ε)2
.

Finally, we define operators A : X → l1 by A = U(S|M)−1PS and B : l1 → X

by Be∗n = xkn (n ∈ N). Then AB = Il1 and ‖A‖‖B‖ ≤ (1+ε)3

c2(1−ε)5
. Thus, we get

βl1(X) ≥
(
‖A‖‖B‖

)−1 ≥ c2(1 − ε)5

(1 + ε)3
.

Letting ε→ 0, we get βl1(X) ≥ c2. The proof is completed. �

The following corollary is due to Dowling, Randrianantoanina, and Turett [4].
As an immediate application of Theorem 1.2, we give a short proof.

Corollary 2.4 ([4, Theorem 5]). If a Banach space X contains a complemented
subspace isomorphic to l1, then, for every ε > 0, there exists a subspace M of X
so that M is (1 + ε)-isomorphic to l1 and M is (1 + ε)-complemented in X.

Proof. If X contains a complemented subspace isomorphic to l1, it follows from
the Bessaga–Pe lczyński theorem [2] that X∗ contains a subspace isomorphic to
c0. By James’s c0-distortion theorem, αc0(X

∗) = 1. According to Theorem 1.2,
we get βl1(X) = 1. The proof is completed. �
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