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Abstract. Let M be a semifinite von Neumann algebra, and let A be a
tracial subalgebra of M. We show that A is a subdiagonal algebra of M if and
only if it has the unique normal state extension property and is a τ -maximal
tracial subalgebra, which is also equivalent to A having the unique normal
state extension property and satisfying L2-density.

1. Introduction

The noncommutative Hardy space theory has undergone considerable develop-
ment since the seminal paper by Arveson [1] in 1967 which introduced the notion
of finite, maximal, subdiagonal algebras A of M as noncommutative analogues of
weak* Dirichlet algebras. Many classical results of Hardy space have been success-
fully transferred to the noncommutative setting (cf., e.g., [3], [4]). In [4], among
other things, Blecher and Labuschagne transferred a large part of the circle of
theorems characterizing weak* Dirichlet algebras to Arveson’s noncommutative
setting of subalgebras of finite von Neumann algebras. In [3], the first author and
Ospanov proved that if a tracial subalgebra A has LE-factorization, then A is a
subdiagonal algebra, where E is a symmetric quasi Banach space on [0, 1].

We continue this line of investigation. The aim of this paper is to prove some
characterizations of subdiagonal algebras of semifinite von Neumann algebras. We
will define the semifinite version of tracial subalgebras of semifinite von Neumann
algebras.
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This article is organized as follows. Section 2 contains some preliminary defini-
tions. In Section 3, we prove that if a tracial subalgebra A has the unique normal
state extension property and τ -maximal or satisfies the L2-density, then A is a
subdiagonal algebra.

2. Preliminaries

We use standard notation and notions from noncommutative Lp-spaces theory
(see, e.g., [5], [8]).Throughout this article, we denote by M a semifinite von
Neumann algebra on the Hilbert spaceH with a normal faithful semifinite trace τ .
A closed densely defined linear operator x in H with domain D(x) is said to be
affiliated with M if and only if u∗xu = x for all unitary operators u which
belong to the commutant M′ of M. If x is affiliated with M, then x is said to
be τ -measurable if for every ε > 0 there exists a projection e ∈ M such that
e(H) v D(x) and τ(e⊥) < ε (where for any projection e we let e⊥ = 1− e). The
set of all τ -measurable operators will be denoted by L0(M). The set L0(M) is
a ∗-algebra with sum and product being the respective closure of the algebraic
sum and product. For a positive self-adjoint operator x =

∫∞
0

λ deλ (the spectral
decomposition) affiliated with M, we set

τ(x) = sup
n

τ
(∫ n

0

λ deλ

)
=

∫ ∞

0

λ dτ(eλ).

For 0 < p < ∞, Lp(M) is defined as the set of all τ -measurable operators x
affiliated with M such that

‖x‖p = τ
(
|x|p

) 1
p < ∞.

In addition, we put L∞(M) = M, and we denote by ‖ · ‖∞ (= ‖ · ‖) the usual
operator norm. It is well known that Lp(M) is a Banach space under ‖ · ‖p
(1 ≤ p ≤ ∞) satisfying all the expected properties such as duality.

In the following, [K]p denotes the closed linear span of K in Lp(M) (relative
to the w*-topology for p = ∞), and J(K) is the family of the adjoints of the
elements of K.

Henceforth we will assume that D is a von Neumann subalgebra of M such that
the restriction of τ to D is still semifinite. Let E be the (unique) normal positive
faithful conditional expectation of M with respect to D such that τ ◦ E = τ .

Definition 2.1. A w*-closed subalgebra A of M is called a subdiagonal algebra of
M with respect to E (or D) if

(i) A+ J(A) is w*-dense in M,
(ii) E(xy) = E(x)E(y), ∀x, y ∈ A,
(iii) A ∩ J(A) = D.

D is then called the diagonal of A.

It is proved by Ji [6] that a semifinite subdiagonal algebra A is automatically
maximal; that is, A is not properly contained in any other subalgebra of M which
is a subdiagonal algebra with respect to E .
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Since D is semifinite, we can choose an increasing family of {ei}i∈I of τ -finite
projections in D such that ei → 1 strongly, where 1 is the identity of M (see
Theorem 2.5.6 in [9]). Throughout, the {ei}i∈I will be used to indicate this net.

Let B be a von Neumann subalgebra of M such that the restriction of τ to
B is still semifinite, and let N be a subset of M containing B. We call subset
N B-invariant if BNB ⊆ N . We call Φ : N → B the conditional expectation
if Φ(asb) = aΦ(s)b for all a, b ∈ B, s ∈ N . We say that Φ : N → B is normal
if, for any net {xα}α∈Λ ⊂ N with supα∈Λ xα ∈ N , the following equality holds:
Φ(supα∈Λ xα) = supα∈ΛΦ(xα).

Lemma 2.2. Let N be a weak*-closed B-invariant subset of M, and let Φ : N →
B be a normal “conditional expectation” which is preserved by τ . Then Φ(a) = a
for all a ∈ B, and Φ ◦ Φ = Φ.

Proof. Let e be a τ -finite projection in B, and let

Me = eMe, Ne = eN e, Be = eBe,

and Φe be the restriction of Φ to Ne. Then Ne is a weak*-closed Be-invariant
subset of Me, and Φe is a normal “conditional expectation.” Hence, we have that

τ
(∣∣Φe(e)− e

∣∣2) = τ
((
Φe(e)− e

)∗(
Φe(e)− e

))
= τ

((
Φe(e)

∗ − e
)(
Φe(e)− e

))
= τ

(
Φe(e)

∗Φe(e)
)
− τ

(
Φe(e)

∗e
)
− τ

(
eΦe(e)

)
+ τ(e)

= τ
(
Φe

(
Φe(e)

∗e
))

− τ
(
Φe(e)

∗e
)
− τ

(
Φe(e)

)
+ τ(e)

= τ
(
Φe(e)

∗e
)
− τ

(
Φe(e)

∗e
)
− τ(e) + τ(e) = 0.

From faithfulness of τ , it follows that Φe(e) = e. Since B is semifinite, we can
choose an increasing family of {eα}α∈Λ of τ -finite projections in B such that
eα → 1 strongly. Therefore,

Φ(1) = Φ
(
sup
α∈Λ

eα
)
= sup

α∈Λ
Φ(eα) = sup

α∈Λ
Φeα(eα) = sup

α∈Λ
eα = 1.

From this follows that

Φ(a) = Φ(a1) = aΦ(1) = a for all a ∈ B

and

Φ
(
Φ(x)

)
= Φ

(
Φ(x)1

)
= Φ(x)Φ(1) = Φ(x) for all x ∈ N . �

Lemma 2.3. There is at most one normal “conditional expectation” from any
weak*-closed B-invariant subset N of M containing B onto B which is preserved
by τ .

Proof. Suppose that Φ,Ψ are normal conditional expectations of N onto B which
is preserved by τ . Let {eα}α∈Λ be an increasing family of τ -finite projections in
B such that eα → 1 strongly. Then, using the conditional expectation property,
we have for x ∈ N and α ∈ Λ that

τ
(∣∣Φ(eαxeα)−Ψ(eαxeα)

∣∣2)
= τ

((
Φ(eαxeα)−Ψ(eαxeα)

)∗(
Φ(eαxeα)−Ψ(eαxeα)

))
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= τ
(
Φ(eαxeα)

∗Φ(eαxeα)
)
− τ

(
Ψ(eαxeα)

∗Φ(eαxeα)
)

− τ
(
Φ(eαxeα)

∗Ψ(eαxeα)
)
+ τ

(
Ψ(eαxeα)

∗Ψ(eαxeα)
)

= τ
(
Φ(eαxeα)

∗eαxeα
)
− τ

(
Ψ(eαxeα)

∗eαxeα
)

− τ
(
Φ(eαxeα)

∗eαxeα
)
+ τ

(
Ψ(eαxeα)

∗eαxeα
)
= 0.

Hence Φ(eαxeα) = Ψ(eαxeα), and so eαΦ(x)eβ = eαeβΦ(x)eβ = eαeβΨ(x)eβ =
eαΨ(x)eβ for any α ≤ β. Therefore, for any ξ ∈ H, we have that

eαΦ(x)ξ = lim
β∈Λ

eαΦ(x)eβξ = lim
β∈Λ

eαΨ(x)eβξ = eαΨ(x)ξ.

It follows that eαΦ(x) = eαΨ(x), and so Φ = Ψ. �

Definition 2.4. A weak*-closed subalgebra A of M is called a tracial subalgebra
of M with respect to Φ (or ∆ = A ∩ J(A)) if

(i) ∆(A) is semifinite,
(ii) Φ : A → ∆(A) is a normal homomorphism,
(iii) τ(x) = τ(Φ(x)), ∀x ∈ A.

We claim that if A is a tracial subalgebra of a von Neumann algebra M,
then the map Φ in Definition 2.4 is a unique normal homomorphism. Indeed, the
conditional expectation E from M onto ∆(A) restricts to a normal “conditional
expectation” from A onto ∆(A). Clearly, Φ is a normal “conditional expectation”
from A onto ∆(A). The claim then follows by Lemma 2.3. Hence we may write Φ
as E and write ∆(A) as D. Therefore, A tracial subalgebra A of a von Neumann
algebra M is a subdiagonal algebra of M if and only if A + J(A) is w*-dense
in M.

It is well known that E extends to a contractive projection from Lp(M) onto
Lp(D) for every 1 ≤ p ≤ ∞. The extension will still be denoted by E .

Let A0 = A ∩ ker(E). We call A τ -maximal if

A =
{
x ∈ M : τ(xy) = 0,∀y ∈ A0

}
.

We say that a tracial subalgebraA ofM satisfies the L2- density ifA∩L2(M)+
J(A)∩L2(M) is dense in L2(M) in the usual Hilbert space norm on that space.

Given a projection e in D, let

Me = eMe, Ae = eAe, De = eDe,

and let Ee be the restriction of E to Me. Then we have the following results.

Lemma 2.5. Let A be a tracial subalgebra of M with respect to D, and let e be
a projection in D. We have that

(i) Ae is a tracial subalgebra of Me with respect to Ee (or De);
(ii) (Ae)0 = eA0e;
(iii) if A is τ -maximal, then Ae is τ -maximal;
(iv) if A satisfies L2- density, then Ae satisfies L2-density.

Proof. Using the methods as in the proofs (i) and (ii) of Lemma 3.1 in [2], we
obtain (i) and (ii).
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(iii) It is clear that Ae ⊆ {x ∈ Me : τ(xa) = 0,∀a ∈ (Ae)0}. Conversely, let
x ∈ Me and τ(xa) = 0 for all a ∈ (Ae)0}. Then

τ(xy) = τ(exey) = τ(xeye) = 0, y ∈ A0.

Hence x ∈ A since A is τ -maximal, and so x ∈ Ae.
(iv) From (i) and (ii) it follows that [(Ae)0]2 = e[A0 ∩L2(M)]2e, [(J(Ae))0]2 =

e[J(A0)∩L2(M)]2e and [De]2 = e[D ∩L2(M)]2e. On the other hand, L2(Me) =
eL2(M)e. Hence Ae+ J(Ae) is dense in L2(Me) in the usual Hilbert space norm
on that space. �

3. Characterizations of subdiagonal algebra

Proposition 3.1. Let A be a tracial subalgebra of M. Then the following con-
ditions are equivalent:

(i) A is a subdiagonal algebra of M.
(ii) For any i ∈ I, Aei is a subdiagonal algebra of Mei.

Proof. (i) ⇒ (ii) follows from (i) of Lemma 3.1 in [2].
(ii) ⇒ (i) Since ei → 1 strongly, we get limi ‖xei−x‖1 = 0 and limi ‖eix−x‖1 =

0 for any x ∈ L1(M) (cf. Lemma 2.3 in [7]). Hence, for any y ∈ M, we have that

lim
i

∣∣τ((y − eiyei)x
)∣∣ ≤ lim

i

∣∣τ((y − yei)x
)∣∣+ lim

i

∣∣τ((yei − eiyei)x
)∣∣

≤ ‖y‖∞
(
lim
i
‖x− eix‖1 + lim

i

∥∥ei(x− xei)
∥∥
1

)
= 0.

Thus
⋃

i∈I Mei is weak*-dense in M. On the other hand, Aei + J(Aei) is weak*-
dense in Mei (∀i ∈ I), and so

⋃
i∈I(Aei+J(Aei)) is weak*-dense in M. Therefore,

A+ J(A) is weak*-dense in M; that is, A is a subdiagonal algebra of M. �

Definition 3.2. Let A be a tracial subalgebra of M with respect to D. We say
that A has the unique normal state extension property if it satisfies the following:

If x ∈ L1(M)+ and τ(xa) = 0 for all a ∈ A0, then x ∈ L1(D).

Remark 3.3. In [4], for a tracial subalgebra A of a finite von Neumann algebraM,
the unique normal state extension property is defined by the following condition:

If x ∈ L1(M)+ and τ(xa) = τ(a) for all a ∈ A, then x = 1.

By Lemma 4.1 in [4], this definition is equivalent to our definition of the unique
normal state extension property.

Lemma 3.4. Let A be a tracial subalgebra of M with respect to D. Then the
following conditions are equivalent:

(i) A has the unique normal state extension property.
(ii) For any i ∈ I, Aei has the unique normal state extension property.

Proof. (i) ⇒ (ii) Let i ∈ I. Suppose that x ∈ L1(Mei)+ and τ(xa) = 0 for all
a ∈ (Aei)0. By (ii) of Lemma 2.5, we have τ(xeiaei) = 0 for all a ∈ A0. Hence
x ∈ L1(D), and so x ∈ L1(Dei).

(ii) ⇒ (i) If x ∈ L1(M)+ and τ(xa) = 0 for all a ∈ A0, then τ(xeiaei) = 0
for all a ∈ A0 and i ∈ I. It follows that τ(eixeia) = 0 for all a ∈ (Aei)0 and
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i ∈ I. Hence eixei ∈ L1(Dei) for all i ∈ I. Since eixei → x in norm in L1(M), we
conclude that x ∈ L1(D). �

Theorem 3.5. Let A be a tracial subalgebra of M with respect to D. Then the
following conditions are equivalent:

(i) A is a subdiagonal algebra of M.
(ii) A is a τ -maximal tracial subalgebra of M satisfying the unique normal

state extension property.
(iii) A satisfies the L2-density and the unique normal state extension property.

Proof. (i) ⇒ (ii), (iii) are trivial.
(ii) ⇒ (i) Let i ∈ I. By Lemma 2.5 and 3.4, we know that Aei is a τ -maximal

tracial subalgebra of Mei satisfying the unique normal state extension property.
Using Theorem 1.1 in [4], we obtain that Aei is a subdiagonal algebra of Mei ,
and so, by Proposition 3.1, it follows that A is a subdiagonal algebra of M.

(iii) ⇒ (i) Similar to the above, we use Theorem 1.1 in [4], Lemmas 2.5 and
3.4, and Proposition 3.1 to obtain the desired result. �
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