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Abstract. In this paper we describe the complex-valued solutions defined on
a double coset hypergroup of the exponential, additive, and quadratic func-
tional equations. Moreover, the m-sine functions on a double coset hypergroup
are discussed. The double coset hypergroup we consider is closely related to
affine groups and spherical functions on them.

1. Introduction and preliminaries

In this article we consider functional equations and we describe some basic
function classes on some hypergroups called double coset hypergroups (see [2,
Section 1.5]). Throughout, C denotes the set of complex numbers. By a hyper-
group, we mean a locally compact hypergroup. (For basics about hypergroups,
see the monograph [2]; a comprehensive monograph on the subject is [8].)

Let K be a hypergroup with identity o and involution ∨. We call K Hermitian
if involution is the identity mapping. The nonidentically zero continuous function
m is called an exponential on K if m : K → C satisfies m(x ∗ y) = m(x)m(y)
for each x, y in K. The continuous function a : K → C is called an additive
function if it satisfies a(x ∗ y) = a(x) + a(y). The description of exponentials and
additive functions on some types of commutative hypergroups can be found in
[8]. The continuous function f : K → C will be called an m-sine function if it
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satisfies

f(x ∗ y) = f(x)m(y) + f(y)m(x)

for each x, y in K. The function f is called a sine function if it is an m-sine
function for some exponential m. Clearly, every sine function f satisfies f(o) = 0.
For a given exponential m all m-sine functions form a linear space. Obviously,
m ≡ 1 is an exponential on any hypergroup, and 1-sine functions are exactly
the additive functions. The description of sine functions on some types of hyper-
groups can be found in [4]. We note that if K is a commutative group, then
every m-sine function is the product of m and an additive function (see [4, The-
orem 1]). The continuous function q : K → C is called a quadratic function if it
satisfies

q(x ∗ y) + q(x ∗ y∨) = 2q(x) + 2q(y)

for each x, y in K. Obviously, if K is Hermitian, then every quadratic function
on K is additive.

Let G be a locally compact group with identity e, and let K be a compact
subgroup with normed Haar measure ω:

∫
K
dω(k) = 1. As K is unimodular, ω is

left and right invariant, and also inversion invariant. For each x in G we define
the double coset of x as the set

KxK = {kxl : k, l ∈ K}.

We introduce a hypergroup structure on the set L = G//K of all double cosets:
the topology of L is the factor topology, which is locally compact. The identity o
is the coset K = KeK itself, and the involution is defined by

(KxK)∨ = Kx−1K.

Finally, the convolution of δKxK and δKyK is defined by

δKxK ∗ δKyK =

∫
K

δKxkyK dω(k).

It is known that this gives a hypergroup structure on L (see [2], page 12), which
is noncommutative in general. If K is a normal subgroup, then L is isomorphic
to the hypergroup arising from the factor group G/K.

In [5] representations of double coset hypergroups are investigated. Such rep-
resentations can be canonically obtained from those of the group in question.
Nevertheless, not every representation arises in this way. However, our results
show that, on some affine groups, basic representing functions, like exponentials,
additive functions, and quadratic functions, are closely related to the correspond-
ing functions on the original group.

We note that continuous functions on L can be identified with those continuous
functions on G which are K-invariant: f(x) = f(kxl) for each x in G and k, l
in K. Hence, for a continuous function f : L → C, the simplified—and somewhat
loose—notation f(x) can be used for the function value f(KxK). Using this
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convention, we can write, for each continuous function f : L → C and for each
x, y in G,

f(x ∗ y) =
∫
K

f(xky) dω(k).

The following theorem exhibits a close connection between exponentials on
double coset hypergroups and spherical functions on locally compact groups. Fol-
lowing the terminology of [2] (see also [3]), we recall the concept of spherical
functions. Let G be a locally compact group, and let K be a compact subgroup
with Haar measure ω. The continuous bounded K-invariant function f : G → C
is called a K-spherical function if f(e) = 1 and∫

K

f(xky) dω(k) = f(x)f(y) (1.1)

holds for each x, y in G. A generalized K spherical function on G is the same
as above without the boundedness hypothesis. For the sake of simplicity, in this
paper we use the term spherical function for continuous functions satisfying (1.1)
without the boundedness assumption. The following theorem, which is an imme-
diate consequence of the previous considerations, gives the link between spherical
functions and exponentials of double coset hypergroups.

Theorem 1.1. Let G be a locally compact group, and let K ⊆ G be a compact sub-
group. Then the nonzero continuous complex-valued function m is a K-spherical
function on G if and only if it is an exponential on the double coset hypergroup
G//K. In particular, K-spherical functions on G can be identified with the char-
acters of G//K.

It is obvious that if G is a locally compact Abelian group, and K is a compact
subgroup of G, then K-spherical functions are exactly the exponentials of the
(locally compact) Abelian group G/K.

2. Affine groups

An important type of double coset hypergroup arises form the concept of the
affine group. Let V be an n-dimensional vector space over the field K, and let
GL(V ) denote the general linear group of V , the invertible linear transformations
on V . For each subgroup H of GL(V ) we form the semidirect product

Aff(H) = H n V

in the following way: we equip the set H × V with the following multiplication:

(x, u) · (y, v) = (x · y, x · v + u)

for each x, y in H and u, v in V . Here x · v is the image of v under the linear
mapping x. Then Aff(H) is a group with identity (id, 0), where id is the identity
operator and 0 is the zero of the vector space V . The inverse of (x, u) is

(x, u)−1 = (x−1,−x−1 · u)
for each x in H and u in V . We note that, in general, Aff(H) is noncommutative
even ifH is commutative. In any case, V—as a commutative group—is isomorphic
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to the normal subgroup consisting of all elements of the form (id, u) with u in V
the isomorphism provided by the mapping u 7→ (id, u). Indeed, we have

(x, u) · (id, v) · (x, u)−1 = (id, x · v),

which proves that the image of V , which we identify with V , is normal. The set
of all elements of the form (x, 0) with x in H is a subgroup of Aff(H) isomorphic
to H, and it will be identified with H. Affine groups play an important role in
geometry and physics. For instance, the Poincaré group Aff(O(1, 3)) is the affine
group of the Lorentz group O(1, 3): O(1, 3)n R1,3, where O(1, 3) is the isometry
group of the real vector space R1,3 = R⊕ R3 equipped with the quadratic form

〈v, w〉 =
p∑

t=1

vtwt −
p+q∑

t=p+1

vtwt,

where v = (v1, . . . , vp, vp+1, . . . , vp+q) and w = (w1, . . . , wp, wp+1, . . . , wp+q). For
more about affine groups and geometry, see, for example, [1] and [7].

In the case V = Kn we have GL(V ) = GL(K, n), which is a matrix group.
With the usual euclidean topology, V and GL(V ) are locally compact topological
groups. Suppose that H is a closed subgroup and that K is a compact subgroup
in H. Then K—identified with the set of all elements of the form (x, u) with x
in K and u in V—is a compact subgroup in H n V . Let L denote the double
coset hypergroup Aff(H)//K. As we have seen above, K-invariant continuous
functions on Aff(H) can be identified with the continuous functions on L; we use
the notation f(x, u) for f(K(x, u)K). Using this notation, K-invariance means
f(kx, lu) = f(x, u) for each k, l in K and u in V . If ∗ denotes convolution in L,
then we have

f
(
(x, u) ∗ (y, v)

)
=

∫
K

f(xky, xkv + u) dω(k)

for each x, y in H and u, v in V , where ω is the Haar measure on K.
In the following result we describe the exponential functions on L for commu-

tative H. We recall that this does not mean that L is commutative.

Theorem 2.1. Let H be a closed commutative subgroup of GL(V ), and let K
be a compact subgroup in H with the normalized Haar measure ω. The nonzero
K-invariant continuous function m : Aff(H) → C is an exponential on the double
coset hypergroup L if and only if it has the form

m(x, u) = e(x)ϕ(u) (2.1)

for each x in H and u in V , where e : H → C is a K-invariant exponential and
ϕ : V → C is a nonzero continuous H-invariant function satisfying

ϕ(u)ϕ(v) =

∫
K

ϕ(ku+ v) dω(k) (2.2)

for each u, v in V .
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Proof. Suppose that m 6= 0 is an exponential on L. By the commutativity of H,
we have

m(x, u)m(y, v) = m
(
(x, u) ∗ (y, v)

)
=

∫
K

m(xky, xkv + u) dω(k)

=

∫
K

m(xy, xkv + u) dω(k) (2.3)

for each x, y in H and u, v in V . Substituting v = 0, y = id, we obtain

m(x, u)m(id, 0) =

∫
K

m(x, u) dω(k) = m(x, u)

for each x in H and u in V ; that is, m(id, 0) = 1. Then substituting u = v = 0,
we have by the commutativity of H and by the K-invariance of m

m(x, 0)m(y, 0) =

∫
K

m(xky, 0) dω(k) = m(xy, 0)

for each x, y in H. Hence m(x, 0) = e(x), where e : H → C is a nonzero
K-invariant homomorphism of H into the multiplicative group of C\{0}; in other
words, it is a K-invariant exponential on H. Now we substitute u = 0, y = id in
(2.3) to get

e(x)m(id, v) =

∫
K

m(xk, xkv) dω(k) = m(x, xv)

for each x in H and v in V . Let u = xv. Then we have

m(x, u) = e(x)m(id, x−1u), (2.4)

which we substitute into (2.3) to obtain

e(x)m(id, x−1u)e(y)m(id, y−1v) =

∫
K

e(xy)m(id, y−1kv + y−1x−1u) dω(k),

which implies that

m(id, x−1u)m(id, y−1v) =

∫
K

m(id, y−1kv + y−1x−1u) dω(k) (2.5)

for each u, v in V . For v = 0 this yields m(id, x−1u) = m(id, y−1x−1u) for each
x, y in H and u in V , and here we can replace u by xu and y by y−1 to conclude

m(id, u) = m(id, yu)

for each y in H and u in V . On the other hand, from (2.5) we derive

m(id, u)m(id, v) =

∫
K

m(id, kv + u) dω(k)

for each u, v in V . Letting ϕ(u) = m(id, u) for each u in V , we have that ϕ : V → C
is H-invariant: ϕ(u) = ϕ(xu) holds for each x in H and u in V . Further, it satisfies
(2.2), and, finally, by (2.4), we have (2.1).
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To prove the converse, suppose that m satisfies (2.1) with the K-invariant
exponential e : H → C and the continuous, H-invariant nonzero ϕ : V → C,
which satisfies equation (2.2). Then we have for each x, y in H and u, v in V

m(x, u)m(y, v) = e(x)ϕ(u)e(y)ϕ(v) = e(xy)ϕ(xu)ϕ(v)

=

∫
K

e(xy)ϕ(kxu+ v) dω(k) =

∫
K

m(xy, xku+ v) dω(k),

which is equation (2.3), as we intended. �

The theorem says that in the given situation exponentials of the double coset
hypergroup Aff(H)//K “split” into K-spherical functions on H and H-invariant
K-spherical functions on V . “Split” means that they are tensor products of the
form given in (2.1). We note that for obvious reasons we call the continuous
function ϕ : V → C a K-spherical function if ϕ satisfies (2.2). The question
whether the same holds if H is noncommutative remains open.

3. Additive functions

Additive functions on the double coset hypergroup L can be described in a
similar manner.

Theorem 3.1. Let H be a closed commutative subgroup of GL(V ), and let K be
a compact subgroup in H with the normalized Haar measure ω. The K-invariant
continuous function a : Aff(H) → C is an additive function on the double coset
hypergroup L if and only if it has the form

a(x, u) = l(x) + ϕ(u) (3.1)

for each x in H and u in V , where l : H → C is a K-invariant additive function,
that is, a function satisfying

l(xy) = l(x) + l(y),

and ϕ : V → C is a H-invariant K-spherical function, that is, a function satis-
fying

ϕ(u) + ϕ(v) =

∫
K

ϕ(kv + u) dω(k). (3.2)

Proof. Let a be an additive function on L. By the commutativity of H, we have

a(x, u) + a(y, v) = a
(
(x, u) ∗ (y, v)

)
=

∫
K

a(xky, xkv + u) dω(k)

=

∫
K

a(xy, xkv + u) dω(k) (3.3)

for each x, y in H and u, v in V . Substituting v = 0, y = id, we obtain

a(x, u) + a(id, 0) =

∫
K

a(x, u) dω(k) = a(x, u)
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for each x in H and u in V ; that is, a(id, 0) = 0. Then substituting u = v = 0,
we have by the commutativity of H and by the K-invariance of m

a(x, 0) + a(y, 0) =

∫
K

a(xky, 0) dω(k) = a(xy, 0)

for each x, y in H. Hence a(x, 0) = l(x), where l : H → C is a nonzero K-invariant
homomorphism of H into the additive group of C; in other words, it is a K-invari-
ant additive function on H. Now we substitute u = 0, y = id in (3.3) to get by
the commutativity of K

a(x, 0) + a(id, v) =

∫
K

a(xk, xkv) dω(k) = a(x, xv)

for each x in H and v in V . Let u = xv. Then we have

a(x, u) = l(x) + a(id, x−1u), (3.4)

which we substitute into (3.3) to obtain

l(x)+a(id, x−1u)+ l(y)+a(id, y−1v) =

∫
K

(
l(xy)+a(id, y−1kv+y−1x−1u)

)
dω(k),

which implies that

a(id, x−1u) + a(id, y−1v) =

∫
K

a(id, y−1kv + y−1x−1u) dω(k) (3.5)

for each u, v in V . For v = 0 this yields a(id, x−1u) = a(id, y−1x−1u) for each x, y
in H and u in V , and here we can replace u by xu and y by y−1 to conclude

a(id, u) = a(id, yu)

for each y in H and u in V . On the other hand, from (3.5) we derive

a(id, u) + a(id, v) =

∫
K

a(id, kv + u) dω(k)

for each u, v in V . Letting ϕ(u) = a(id, u) for each u in V , we have that ϕ : V → C
is H-invariant: ϕ(u) = ϕ(xu) holds for each x in H and u in V . Further, it satisfies
(3.2), and finally, by (3.4), we have (3.1).

To prove the converse, suppose that a satisfies (3.1) with the K-invariant addi-
tive function l : H → C and the continuous, H-invariant K-spherical function
ϕ : V → C, which satisfies equation (3.2). Then we have for each x, y in H and
u, v in V

a(x, u) + a(y, v) = l(x) + ϕ(u) + l(y) + ϕ(v) = l(xy) + ϕ(xu) + ϕ(v)

=

∫
K

(
l(xy) + ϕ(kxu+ v)

)
dω(k) =

∫
K

a(xy, xku+ v) dω(k),

which is equation (3.3), as we intended to prove. �
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4. Sine functions

In this paragraph we describe sine functions on the double coset hypergroup L.

Theorem 4.1. Let H be a closed commutative subgroup of GL(V ), and let
K be a compact subgroup in H with the normalized Haar measure ω, and let
m : Aff(H) → C be an exponential on the double coset hypergroup L. The K-in-
variant continuous function f : Aff(H) → C is an m-sine function on the double
coset hypergroup L if and only if it has the form

f(x, u) =
[
a(x)ϕ(u) + s(u)

]
e(x) (4.1)

for each x in H and u in V , where e : H → C is a K-invariant exponential,
a : H → C is a K-invariant additive function, ϕ : V → C is a H-invariant
K-spherical function on V , and s : V → C is a continuous H-invariant function
satisfying ∫

K

s(ku+ v) dω(k) = s(u)ϕ(v) + s(v)ϕ(u) (4.2)

for each u, v in V .

Proof. Let f : Aff(H) → C be an m-sine function on the double coset hyper-
group L. By Theorem 2.1, m has the form (2.1), where e : H → C is an expo-
nential, and ϕ : V → C is a H-invariant K-spherical function. Then we have by
definition that f is an m-sine function if and only if∫

K

f(xy, xkv + u) dω(k) = f(x, u)e(y)ϕ(v) + f(y, v)e(x)ϕ(u) (4.3)

holds for each x, y in H and u, v in V . Substituting x = y = id and u = v = 0,
we get f(id, 0) = 0, and the substitution u = v = 0 in (4.3) gives

f(xy, 0) = f(x, 0)e(y) + f(y, 0)e(x)

for each x, y in H; hence x 7→ f(x, 0) is a K-invariant e-sine function on H. It
follows that we have

f(x, 0) = a(x)e(x)

for each x in H, where a : H → C is a K-invariant additive function.
Now we substitute y = id and u = 0 in (4.3) to obtain

f(x, xv) = f(x, 0)ϕ(v) + f(id, v)e(x)

for each x in H and v in V . Here, putting x−1v for v, we conclude that

f(x, v) = f(x, 0)ϕ(x−1v) + f(id, x−1v)e(x) (4.4)

whenever x is in H and v is in V . We substitute this into (4.3), and after
simplification using the H-invariance of ϕ and the additivity of the function
x 7→ f(x, 0)/e(x), we obtain the functional equation∫

K

f(id, ky−1v + y−1x−1u) dω(k) = f(id, x−1u)ϕ(v) + f(id, y−1v)ϕ(u)



FUNCTIONAL EQUATIONS ON DOUBLE COSET HYPERGROUPS 419

for each x, y in H and u, v in V . We put yv for v and xyu for u to get∫
K

f(id, kv + u) dω(k) = f(id, yu)ϕ(v) + f(id, v)ϕ(u)

for each y in H and u, v in V . If ϕ ≡ 0, then we have f(id, u) = 0 for each u in V .
However, if ϕ 6≡ 0, then the above equation implies that f(id, yu) = f(id, u) for
each y in H and u in V ; that is, the function s(u) = f(id, u) is H-invariant and
satisfies (4.2) for each u, v in V . Obviously, this holds in the case ϕ ≡ 0, too.
Finally, from (4.4), the H-invariance of ϕ, we infer (4.1).

Conversely, suppose that f has the form given by (4.1). Then we have for each
x, y in H and u, v in V∫

K

f(xy, xkv + u) dω(k)

= a(xy)e(xy)

∫
K

ϕ(xkv + u) dω(k) + e(xy)

∫
K

s(xkv + u) dω(k)

= a(xy)e(xy)ϕ(xv)ϕ(u) + e(xy)
[
s(xv)ϕ(u) + s(u)ϕ(xv)

]
= a(xy)e(xy)ϕ(v)ϕ(u) + e(xy)

[
s(v)ϕ(u) + s(u)ϕ(v)

]
=

[
e(x)a(x)ϕ(u) + e(x)s(u)

]
e(y)ϕ(v) +

[
e(y)a(y)ϕ(v) + e(y)s(v)

]
e(x)ϕ(u)

= f(x, u)e(y)ϕ(v) + f(y, v)e(x)ϕ(u),

which is (4.3), as we intended to prove. The proof is complete. �

5. Quadratic functions

In this section we describe quadratic functions on the double coset hyper-
group L.

Theorem 5.1. Let H be a closed commutative subgroup of GL(V ), and let K be
a compact subgroup in H with the normalized Haar measure ω. The K-invariant
continuous function f : Aff(H) → C is a quadratic function on the double coset
hypergroup L if and only if it has the form

f(x, u) = k(x) + q(u) (5.1)

for each x in H and u in V , where k : H → C is a K-invariant quadratic function,
and q : V → C is a continuous H-invariant function satisfying∫

K

[
q(kv + u) + q(kv − u)

]
dω(k) = 2q(u) + 2q(v) (5.2)

for each u, v in V .

Proof. Suppose that f : Aff(H) → C is a K-invariant quadratic function on the
double coset hypergroup L. Then it satisfies∫

K

[
f(xy, xkv + u) + f(xy−1,−xky−1v + u)

]
dω(k) = 2f(x, u) + 2f(y, v) (5.3)

for each x, y in H and u, v in V . Substituting y = id and v = 0, we have

2f(x, u) = 2f(x, u) + 2f(id, 0);
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hence f(id, 0) = 0. On the other hand, substituting u = v = 0 in (5.3) gives

f(xy, 0) + f(xy−1, 0) = 2f(x, 0) + 2f(y, 0)

for each x, y in H; hence k(x) = f(x, 0) is a K-invariant quadratic function on H.
Now we substitute y = id and u = 0 in (5.3) to obtain∫

K

[
f(x, xkv) + f(x,−xkv)

]
dω(k) = 2f(x, 0) + 2f(id, v),

or, by the K-invariance of f and the commutativity of H,

f(x, xv) + f(x,−xv) = 2f(x, 0) + 2f(id, v)

for each x in H and v in V . This implies that the function q(u) = f(id, u) is even,
and it satisfies

f(x, u) = k(x) + q(id, x−1u)

for each x in H and u in V . We substitute this into (5.3) after simplification.
Then we conclude that∫

K

[
q(y−1kv + y−1x−1u) + q(kv − yx−1u)

]
dω(k) = 2q(x−1u) + 2q(y−1v)

for each x, y in H and u, v in V . Here the substitution v = 0 and x = id yields
q(u) = q(yu) for each y in H and u in V ; hence the function q is H-invariant,
which implies, by the above equation applied for x = id, that∫

K

[
q(kv + u) + q(kv − yu)

]
dω(k) = 2q(u) + 2q(v)

for each y in H and u, v in V . Putting y = id, we have (5.2).
Now suppose that f has the form given in (5.1). Obviously, (5.2) implies that

q is an even function; further, by H-invariance, it satisfies∫
K

[
q(xkv + u) + q(xkv − yu)

]
dω(k) = 2q(u) + 2q(v)

for each x, y in H and u, v in V . We can proceed as follows:∫
K

[
f(xy, xkv + u) + f(xy−1,−xky−1v + u)

]
dω(k)

=

∫
K

[
k(xy) + q(xkv + u) + k(xy−1) + q(−xky−1v + u)

]
dω(k)

= 2k(x) + 2k(y) +

∫
K

[
q(xkv + u) + q(−xky−1v + u)

]
dω(k)

= 2k(x) + 2k(y) +

∫
K

[
q(xkv + u) + q(xkv − yu)

]
dω(k)

= 2k(x) + 2k(y) + 2q(u) + 2q(v) = 2f(x, u) + 2f(y, v),

as we intended. �
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6. An example

In this section we consider the following group G: it is the multiplicative group
of matrices of the form (

x u
0 1

)
,

where x, u are complex numbers, x 6= 0. All these matrices form a subgroup of
GL(2,C) which can be identified with a subset of C2, and it is a locally compact
topological group G when equipped with the topology inherited from C2. As we
have (

x u
0 1

)
·
(
y v
0 1

)
=

(
xy xu+ v
0 1

)
,

we can describe the group operation on the set G = {(x, u) : x, u ∈ C, x 6= 0} in
the following way:

(x, u) · (y, v) = (xy, xv + u).

Let H denote the set of all matrices of the form(
x 0
0 1

)
,

where x 6= 0 is a complex number, and let K denote the set of all matrices of the
form (

z 0
0 1

)
,

where z is a complex number with |z| = 1. Then H is topologically isomorphic to
the multiplicative group C\{0} of nonzero complex numbers, and K is topologi-
cally isomorphic to the complex unit circle group with multiplication. Clearly, K
is a compact subgroup of the locally compact Abelian group H, which is a closed
subgroup of GL(2,C). Finally, G is topologically isomorphic to the affine group
Aff(H) = H n C. For more about this group see, for example, [6], page 201 (see
also [4]).

The Haar measure on K is given by∫
K

ϕ(z, 0) du =
1

2π

∫ 2π

0

ϕ(eit, 0) dt

for each continuous function ϕ : K → C. It is easy to check thatK is not a normal
subgroup; hence the hypergroup structure on the double coset space G//K is not
induced by a group operation. The function f : G → C is K-invariant if and only
if it satisfies the compatibility condition

f(x, u) = f(eitx, eisu)

for each (x, u) in G and t, s in R. Moreover, the continuous function ϕ : C → C
is H-invariant if and only if it is constant. Hence, by Theorem 2.1, we have the
following result.
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Theorem 6.1. The nonzero continuous function m : L → C is an exponential
on L if and only if it has the form

m(x, u) = |x|λ

for each (x, u) in G with some complex number λ. In particular, the exponential
family on L is of the form

Φ(x, u, λ) = |x|λ.

Proof. Clearly, the K invariant exponentials on the multiplicative group C\{0}
are the functions x 7→ |x|λ, where λ is any complex number. �

The following result follows in a similar manner by Theorem 3.1.

Theorem 6.2. The continuous function a : L → C is an additive function on L
if and only if it has the form

a(x, u) = c ln |x|
for each (x, u) in G with some complex number c.

The following theorem, as a corollary of Theorem 4.1, characterizes sine func-
tions on the double coset hypergroup L.

Theorem 6.3. Let λ be a complex number, and let mλ denote the exponential
(x, u) 7→ |x|λ on L. The continuous function s : L → C is an mλ-sine function if
and only if it has the form

s(x, u) = c|x|λ ln |x|
for each x, u in C with x 6= 0 with some complex number c.

Finally, our following theorem describes all quadratic functions on L using the
result in Theorem 5.1.

Theorem 6.4. The continuous function q : L → C is a quadratic function on L
if and only if it has the form

q(x, u) = c ln2 |x|
for each (x, u) in G with some complex number c.
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