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Abstract. In this paper, we investigate local Lie derivations of a certain class
of operator algebras and show that, under certain conditions, every local Lie
derivation of such an algebra is a Lie derivation.

1. Introduction and preliminaries

A well-known and active direction in the study of derivations is the local deriva-
tions problem, which was initiated by Kadison [10] and by Larson and Sourour
[11]. Recall that a linear map ϕ of an algebra A is called a local derivation if,
for each A ∈ A, there exists a derivation ϕA of A depending on A such that
ϕ(A) = ϕA(A). The question of determining under what conditions every local
derivation must be a derivation has been studied by many authors (see [6], [7], [13],
and [14]). Recently, Brešar [1] proved that each local derivation of algebras gen-
erated by all their idempotents is a derivation.

A linear map ϕ of an algebra A is called a Lie derivation if ϕ([A,B]) =
[ϕ(A), B] + [A,ϕ(B)] for all A,B ∈ A, where [A,B] = AB −BA is the usual Lie
product, also called a commutator. A Lie derivation ϕ of A is standard if it can
be decomposed as ϕ = d + τ , where d is a derivation from A into itself and τ is
a linear map from A into its center vanishing on each commutator. The classical
problem, which has been studied for many years, is to find conditions on A under
which each Lie derivation is standard or standard-like. This problem has been
investigated for general operator algebras (see [4], [9], and [12]).
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A linear map ϕ of an algebra A is called a local Lie derivation if, for each
A ∈ A, there exists a Lie derivation ϕA of A such that ϕ(A) = ϕA(A). In [3],
Chen et al. proved that each local Lie derivation of B(X) where X is a Banach
space of dimension greater than 2 is a Lie derivation. Later, Chen and Lu [2]
proved that each local Lie derivation of nest algebras on Hilbert spaces is a Lie
derivation. It is quite common to study local derivations in algebras that contain
many idempotents in the sense that the linear span of all idempotents is “large.”
The main novelty of this paper is that we deal with the subalgebra generated by
all idempotents instead of the span. Let M2 be the algebra of 2×2 matrices over
L∞[0, 1]. By [8],M2 is generated by, but not spanned by, its idempotents. In what
follows, we denote by J (A) the subalgebra of A generated by all idempotents
in A. The purpose of the present paper is to study local Lie derivations of a
certain class of operator algebras. We also provide an example of an algebra with
a nontrivial local Lie derivation.

Let X and Y be Banach spaces over a real or complex field F. By B(X)
we denote the algebra of all bounded linear operators on X. Let A and B
be unital subalgebras of B(X) and B(Y ), respectively, and let M be a uni-
tal (A,B)-bimodule, which is faithful as a left A-module and also as a right
B-module. Under the usual matrix operations,

T = Tri(A,M,B) =
{(

A M
0 B

)
: A ∈ A,M ∈ M, B ∈ B

}
is an operator algebra with the unit 1 = (1A 0

0 1B
), where 1A and 1B are the units

of the algebras A and B, respectively.
Let Z(T ) be the center of T . It follows from [4] that

Z(T ) =

{(
A 0
0 B

)
: AM = MB for all M ∈ M

}
.

Let us define two natural projections πA : T → A and πB : T → B by

πA :

(
A M
0 B

)
7→ A and πB :

(
A M
0 B

)
7→ B.

Then πA(Z(T )) ⊆ Z(A) and πB(Z(T )) ⊆ Z(B).
Throughout this paper we will use following notation:

P1 =

(
1A 0
0 0

)
, P2 = 1− P1 =

(
0 0
0 1B

)
,

and

Tij = PiT Pj for 1 ≤ i ≤ j ≤ 2.

It is clear that the algebra T may be represented as

T = T11 ⊕ T12 ⊕ T22.

We close this section with a well-known result concerning Lie derivations.
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Proposition 1.1 ([4, Theorem 11]). Let T = Tri(A,M,B) with Z(A) = πA(Z(T ))
and Z(B) = πB(Z(T )). Then every Lie derivation ϕ : T → T is standard; that
is, ϕ is the sum of a derivation d and a linear central-valued map τ vanishing on
each commutator.

2. Main results

Our main result reads as follows.

Theorem 2.1. Let A and B be unital subalgebras of B(X) and B(Y ), respectively,
let M be a faithful (A,B)-bimodule, and let T = Tri(A,M,B). Suppose that

(1) A = J (A) and B = J (B),
(2) Z(A) = πA(Z(T )) and Z(B) = πB(Z(T )).

Then every local Lie derivation ϕ from T into itself is a Lie derivation.

To prove Theorem 2.1, we need some lemmas. In the following, ϕ is a local Lie
derivation and, for any A ∈ T , the symbol ϕA stands for a Lie derivation from
T into itself such that ϕ(A) = ϕA(A). It follows from A = J (A) and B = J (B)
that every Akk in Tkk can be written as a linear combination of some elements

A
(i1)
kk A

(i2)
kk · · ·A(ini )

kk (i = 1, 2, . . . ,m), where A
(i1)
kk , A

(i2)
kk , . . . , A

(ini )

kk are idempotents
in Tkk (k = 1, 2).

Lemma 2.2. For every idempotent P,Q ∈ T and A ∈ T , there exist linear maps
τ1, τ2, τ3, τ4 : T → Z(T ) vanishing on each commutator such that

ϕ(PAQ) = ϕ(PA)Q+ Pϕ(AQ)− Pϕ(A)Q+ P⊥τ1(PAQ)Q⊥

− Pτ2(P
⊥AQ)Q⊥ + Pτ3(P

⊥AQ⊥)Q− P⊥τ4(PAQ⊥)Q,

where P⊥ = 1− P and Q⊥ = 1−Q.

Proof. Assumption (2) of Theorem 2.1 and Proposition 1.1 imply that, for every
idempotent P,Q ∈ T and A ∈ T , there exist derivations d1, d2, d3, d4 : T → T
and linear maps τ1, τ2, τ3, τ4 : T → Z(T ) vanishing on each commutator such
that

ϕ(PAQ) = ϕPAQ(PAQ) = d1(PAQ) + τ1(PAQ), (2.1)

ϕ(P⊥AQ) = ϕP⊥AQ(P
⊥AQ) = d2(P

⊥AQ) + τ2(P
⊥AQ), (2.2)

ϕ(P⊥AQ⊥) = ϕP⊥AQ⊥(P⊥AQ⊥) = d3(P
⊥AQ⊥) + τ3(P

⊥AQ⊥), (2.3)

ϕ(PAQ⊥) = ϕPAQ⊥(PAQ⊥) = d4(PAQ⊥) + τ4(PAQ⊥). (2.4)

It follows from (2.1)–(2.4) that

P⊥ϕ(PAQ)Q⊥ = P⊥τ1(PAQ)Q⊥,

Pϕ(P⊥AQ)Q⊥ = Pτ2(P
⊥AQ)Q⊥,

Pϕ(P⊥AQ⊥)Q = Pτ3(P
⊥AQ⊥)Q,

P⊥ϕ(PAQ⊥)Q = P⊥τ4(PAQ⊥)Q.
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Hence

ϕ(PAQ)Q⊥ = Pϕ(PAQ)Q⊥ + P⊥ϕ(PAQ)Q⊥

= Pϕ(AQ)Q⊥ − Pϕ(P⊥AQ)Q⊥ + P⊥ϕ(PAQ)Q⊥

= Pϕ(AQ)Q⊥ + P⊥τ1(PAQ)Q⊥ − Pτ2(P
⊥AQ)Q⊥

= Pϕ(AQ)− Pϕ(AQ)Q+ P⊥τ1(PAQ)Q⊥ − Pτ2(P
⊥AQ)Q⊥

and

ϕ(PAQ⊥)Q = Pϕ(PAQ⊥)Q+ P⊥ϕ(PAQ⊥)Q

= Pϕ(AQ⊥)Q− Pϕ(P⊥AQ⊥)Q+ P⊥ϕ(PAQ⊥)Q

= Pϕ(AQ⊥)Q− Pτ3(P
⊥AQ⊥)Q+ P⊥τ4(PAQ⊥)Q.

Thus

ϕ(PAQ) = ϕ(PAQ)Q⊥ + ϕ(PAQ)Q

= ϕ(PAQ)Q⊥ + ϕ(PA)Q− ϕ(PAQ⊥)Q

= ϕ(PA)Q+ Pϕ(AQ)− Pϕ(A)Q+ P⊥τ1(PAQ)Q⊥

− Pτ2(P
⊥AQ)Q⊥ + Pτ3(P

⊥AQ⊥)Q− P⊥τ4(PAQ⊥)Q,

where we have used ϕ(AQ) = ϕ(A)− ϕ(AQ⊥). �

Lemma 2.3. For any Aij ∈ Tij (1 ≤ i ≤ j ≤ 2), we have

(1) P1ϕ(P1)P1 + P2ϕ(P1)P2 ∈ Z(T ) and ϕ(A12) ∈ T12,
(2) P1ϕ(A11)P2 = A11ϕ(P1)P2 and P1ϕ(A22)P2 = −P1ϕ(P1)A22.

Proof. (1) For any A12 ∈ T12, we have

ϕP1(A12) = ϕP1

(
[P1, A12]

)
=
[
ϕ(P1), A12

]
+
[
P1, ϕP1(A12)

]
= ϕ(P1)A12 − A12ϕ(P1) + P1ϕP1(A12)P2.

Left-multiplying by P1 and right-multiplying by P2, this implies that
P1ϕ(P1)A12 = A12ϕ(P1)P2, and so

P1ϕ(P1)P1 + P2ϕ(P1)P2 ∈ Z(T ).

It follows from A12 = [P1, A12] that

ϕ(A12) = ϕA12

(
[P1, A12]

)
=
[
ϕA12(P1), A12

]
+
[
P1, ϕ(A12)

]
= ϕA12(P1)A12 − A12ϕA12(P1) + P1ϕ(A12)P2.

Multiplying the above equality from both sides by P1 and P2, respectively, we
have P1ϕ(A12)P1 = P2ϕ(A12)P2 = 0. Hence ϕ(A12) = P1ϕ(A12)P2 ∈ T12.
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(2) Let B11 ∈ T11, A12 ∈ T12. Taking P = A
(1)
11 , A = B11, and Q = P1 in

Lemma 2.2, we have from PAQ⊥ = P⊥AQ⊥ = 0 that

ϕ(A
(1)
11 B11) = ϕ(A

(1)
11 B11)P1 + A

(1)
11 ϕ(B11)− A

(1)
11 ϕ(B11)P1

+ (1− A
(1)
11 )τ1(A

(1)
11 B11)P2 − A

(1)
11 τ2(B11 − A

(1)
11 B11)P2

= ϕ(A
(1)
11 B11)P1 + A

(1)
11 ϕ(B11)P2 + τ1(A

(1)
11 B11)P2.

This implies that

P1ϕ(A
(1)
11 B11)P2 = A

(1)
11 ϕ(B11)P2.

In particular,

P1ϕ(A
(1)
11 )P2 = A

(1)
11 ϕ(P1)P2.

By the above two equations, then

P1ϕ(A
(1)
11 A

(2)
11 · · ·A(n)

11 )P2 = A
(1)
11 ϕ(A

(2)
11 · · ·A(n)

11 )P2

= A
(1)
11 A

(2)
11 · · ·A(n−1)

11 ϕ(A
(n)
11 )P2

= A
(1)
11 A

(2)
11 · · ·A(n)

11 ϕ(P1)P2

for any idempotents A
(1)
11 , A

(2)
11 , . . . , A

(n)
11 ∈ T11. It follows from A = J (A) that

P1ϕ(A11)P2 = A11ϕ(P1)P2 for all A11 ∈ T11. Similarly, we can obtain from
Lemma 2.2 and the fact ϕ(1) ∈ Z(T ) that

P1ϕ(A22)P2 = P1ϕ(P2)A22 = −P1ϕ(P1)A22

for all A22 ∈ T22. �

Next we define a linear map δ : T → T by δ(A) = ϕ(A) − [A,P1ϕ(P1)P2].
Then δ is also a local Lie derivation, and by Lemma 2.3, δ(P1) ∈ Z(T ) and

δ(T12) ⊆ T12, δ(Tii) ⊆ T11 ⊕ T22 (i = 1, 2). (2.5)

Remark 2.4. It is easy to verify that, for each derivation d : T → T , we have

d(T12) ⊆ T12, d(Tii) ⊆ Tii ⊕ T12 (i = 1, 2). (2.6)

Lemma 2.5. We have the following.

(1) δ([A11, A12]) = [δ(A11), A12]+[A11, δ(A12)] for all A11 ∈ T11 and A12 ∈ T12,
(2) δ([A12, A22]) = [δ(A12), A22]+[A12, δ(A22)] for all A12 ∈ T12 and A22 ∈ T22.

Proof. (1) To prove this statement, we only need to prove that

δ
(
[A

(1)
11 A

(2)
11 · · ·A(n)

11 , A12]
)

=
[
δ(A

(1)
11 A

(2)
11 · · ·A(n)

11 ), A12

]
+
[
A

(1)
11 A

(2)
11 · · ·A(n)

11 , δ(A12)
]

(2.7)

for any idempotents A
(1)
11 , A

(2)
11 , . . . , A

(n)
11 ∈ T11 and A12 ∈ T12.
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Let B11 ∈ T11, and let A12 ∈ T12. Taking P = A
(1)
11 , A = B11, and Q = P1+A12

in (2.2) and Lemma 2.2, it follows from the facts P⊥AQ⊥ and PAQ⊥ can be
written as commutators that τ3(P

⊥AQ⊥) = τ4(PAQ⊥) = 0. Then we can get

δ(B11 +B11A12 − A
(1)
11 B11 − A

(1)
11 B11A12)

= d2(B11 +B11A12 − A
(1)
11 B11 − A

(1)
11 B11A12)

+ τ2(B11 +B11A12 − A
(1)
11 B11 − A

(1)
11 B11A12)

= d2(B11 +B11A12 − A
(1)
11 B11 − A

(1)
11 B11A12)

+ τ2(B11 − A
(1)
11 B11) (2.8)

and

δ(A
(1)
11 B11 + A

(1)
11 B11A12)

= δ(A
(1)
11 B11)(P1 + A12) + A

(1)
11 δ(B11 +B11A12)− A

(1)
11 δ(B11)(P1 + A12)

+ (1− A
(1)
11 )τ1(A

(1)
11 B11 + A

(1)
11 B11A12)(P2 − A12)

− A
(1)
11 τ2(B11 +B11A12 − A

(1)
11 B11 − A

(1)
11 B11A12)(P2 − A12)

= δ(A
(1)
11 B11)(P1 + A12) + A

(1)
11 δ(B11 +B11A12)− A

(1)
11 δ(B11)(P1 + A12)

+ (1− A
(1)
11 )τ1(A

(1)
11 B11)(P2 − A12)− A

(1)
11 τ2(B11 − A

(1)
11 B11)(P2 − A12)

= δ(A
(1)
11 B11)P1 + δ(A

(1)
11 B11)A12 + A

(1)
11 δ(B11A12)− A

(1)
11 δ(B11)A12

+ τ1(A
(1)
11 B11)P2 − A12τ1(A

(1)
11 B11) + A

(1)
11 A12τ1(A

(1)
11 B11)

+ A
(1)
11 A12τ2(B11 − A

(1)
11 B11), (2.9)

where we have used (2.5) in the third equality. It follows from (2.5), (2.6), and
(2.8) that

P2δ(B11 − A
(1)
11 B11)P2 = τ2(B11 − A

(1)
11 B11)P2. (2.10)

It follows from (2.5) and (2.9) that

P2δ(A
(1)
11 B11)P2 = τ1(A

(1)
11 B11)P2. (2.11)

By (2.10) and (2.11), then A12τ1(A
(1)
11 B11) = A12δ(A

(1)
11 B11) and

A
(1)
11 A12τ2(B11 − A

(1)
11 B11) = A

(1)
11 A12δ(B11 − A

(1)
11 B11)

= A
(1)
11 A12δ(B11)− A

(1)
11 A12δ(A

(1)
11 B11)

= A
(1)
11 A12δ(B11)− A

(1)
11 A12τ1(A

(1)
11 B11).

This together with (2.9) gives us that

δ(A
(1)
11 B11 + A

(1)
11 B11A12)

= δ(A
(1)
11 B11)P1 + δ(A

(1)
11 B11)A12 + A

(1)
11 δ(B11A12)− A

(1)
11 δ(B11)A12

+ P2δ(A
(1)
11 B11)P2 − A12δ(A

(1)
11 B11) + A

(1)
11 A12δ(B11). (2.12)



276 D. LIU and J. ZHANG

It follows from δ(T11) ⊆ T11⊕T22 that δ(A
(1)
11 B11) = δ(A

(1)
11 B11)P1+P2δ(A

(1)
11 B11)P2,

and so, by (2.12),

δ(A
(1)
11 B11A12) = δ(A

(1)
11 B11)A12 + A

(1)
11 δ(B11A12)− A

(1)
11 δ(B11)A12

− A12δ(A
(1)
11 B11) + A

(1)
11 A12δ(B11). (2.13)

Taking B11 = P1 in (2.13), we have from δ(T12) ⊆ T12, T12T11 = 0 and δ(P1) ∈
Z(T ) that

δ
(
[A

(1)
11 , A12]

)
=
[
δ(A

(1)
11 ), A12

]
+
[
A

(1)
11 , δ(A12)

]
.

This shows that (2.7) is true for n = 1. One can verify that (2.7) follows easily by
induction based on (2.13). Similarly, we can show that statement (2) is valid. �

Lemma 2.6. We have the following.

(1) δ([A11, B11]) = [δ(A11), B11] + [A11, δ(B11)] for all A11, B11 ∈ T11,
(2) δ([A22, B22]) = [δ(A22), B22] + [A22, δ(B22)] for all A22, B22 ∈ T22.

Proof. Let A11, B11 ∈ T11. The assumption (2) of Theorem 2.1 and Proposition 1.1
imply that there exist a derivation d : T → T and a linear map τ : T → Z(T )
vanishing on each commutator such that

δ
(
[A11, B11]

)
= δ[A11,B11]

(
[A11, B11]

)
= d
(
[A11, B11]

)
+ τ
(
[A11, B11]

)
= d
(
[A11, B11]

)
.

This and the facts δ(T11) ⊆ T11 ⊕ T22 and d(T11) ⊆ T11 ⊕ T12 imply that
δ([A11, B11]) ∈ T11.

For any C12 ∈ T12, we have from Lemma 2.5 that

δ
([
[A11, B11], C12

])
= δ
(
[A11, B11C12]

)
− δ
(
[B11, A11C12]

)
=
[
δ(A11), B11C12

]
+
[
A11, δ(B11C12)

]
−
[
δ(B11), A11C12

]
−
[
B11, δ(A11C12)

]
=
[
δ(A11), B11C12

]
+
[
A11,

[
δ(B11), C12

]
+
[
B11, δ(C12)

]]
−
[
δ(B11), A11C12

]
−
[
B11,

[
δ(A11), C12

]
+
[
A11, δ(C12)

]]
=
[
δ(A11), B11

]
C12 +

[
A11, δ(B11)

]
C12 + [A11, B11]δ(C12),

where we have used (2.5) in the fourth equality. On the other hand, we have from
δ([A11, B11]) ∈ T11 and δ(C12) ∈ T12 that

δ
([
[A11, B11], C12

])
=
[
δ
(
[A11, B11]

)
, C12

]
+
[
[A11, B11], δ(C12)

]
= δ
(
[A11, B11]

)
C12 + [A11, B11]δ(C12).

Comparing the above two equalities, we have{
δ
(
[A11, B11]

)
−
[
δ(A11), B11

]
−
[
A11, δ(B11)

]}
C12 = 0
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for any C12 ∈ T12. Since T12 is a faithful left T11-module, we get

δ
(
[A11, B11]

)
=
[
δ(A11), B11

]
+
[
A11, δ(B11)

]
for all A11, B11 ∈ T11. Similarly, we can show that statement (2) is valid. �

Proof of Theorem 2.1. Let A,B ∈ T . Then

A = A11 + A12 + A22, B = B11 +B12 +B22

for some Aij, Bij ∈ Tij. It follows from (2.11) that

P2δ(T11)P2 ⊆ Z(T )P2 and P1δ(T22)P1 ⊆ Z(T )P1.

This implies that [δ(Aii), Bjj] = 0 for all Aii ∈ Tii and that Bjj ∈ Tjj (1 ≤ i 6=
j ≤ 2). Hence we have from δ(T12) ⊆ T12 that[

δ(A), B
]
+
[
A, δ(B)

]
=
[
δ(A11 + A12 + A22), B11 +B12 +B22

]
+
[
A11 + A12 + A22, δ(B11 +B12 +B22)

]
=
[
δ(A11), B11

]
+
[
A11, δ(B11)

]
+
[
δ(A11), B12

]
+
[
A11, δ(B12)

]
+
[
δ(A12), B11

]
+
[
A12, δ(B11)

]
+
[
δ(A12), B22

]
+
[
A12, δ(B22)

]
+
[
δ(A22), B12

]
+
[
A22, δ(B12)

]
+
[
δ(A22), B22

]
+
[
A22, δ(B22)

]
.

On the other hand, it follows from Lemmas 2.5 and 2.6 that

δ
(
[A,B]

)
= δ
(
[A11, B11]

)
+ δ
(
[A11, B12]

)
+ δ
(
[A12, B11]

)
+ δ
(
[A12, B22]

)
+ δ
(
[A22, B12]

)
+ δ
(
[A22, B22]

)
=
[
δ(A11), B11

]
+
[
A11, δ(B11)

]
+
[
δ(A11), B12

]
+
[
A11, δ(B12)

]
+
[
δ(A12), B11

]
+
[
A12, δ(B11)

]
+
[
δ(A12), B22

]
+
[
A12, δ(B22)

]
+
[
δ(A22), B12

]
+
[
A22, δ(B12)

]
+
[
δ(A22), B22

]
+
[
A22, δ(B22)

]
.

Then δ([A,B]) = [δ(A), B] + [A, δ(B)] for all A,B ∈ T ; that is, δ is a Lie deriva-
tion. By the definition of δ, we have ϕ(A) = δ(A)+ [A,P1ϕ(P1)P2] for all A ∈ T .
Hence ϕ is a Lie derivation as required. �

LetN be a von Neumann algebra acting on a separable Hilbert space H. A nest
β in N is a totally operator-ordered family of projections in N , which is closed
in the strong operator topology, and which include 0 and I. The nest subalgebras
of N associated to a nest β, denoted by AlgNβ, is the set

AlgNβ = {T ∈ N : PTP = TP for all P ∈ β}.

Corollary 2.7. Let β be a nontrivial finite nest in a factor von Neumann alge-
bra N . Then every local Lie derivation of AlgNβ is a Lie derivation.

Proof. Let P ∈ β be a nontrivial projection. Write N1 = PN|PH , N2 =
P⊥N|P⊥H . Let β1 = {QP : Q ∈ β}, and let β2 = {QP⊥ : Q ∈ β}. Then β1

and β2 are nests in factor von Neumann algebras N1 and N2, respectively. Let



278 D. LIU and J. ZHANG

M = PN|P⊥H . Then M is a faithful (AlgN1
β1,AlgN2

β2)-bimodule. The nest
subalgebra AlgNβ can be represented as(

AlgN1
β1 M

0 AlgN2
β2

)
.

Since Z(AlgNβ) = CI, Z(AlgN1
β1) = CP , and Z(AlgN2

β2) = CP⊥, the second
condition of Theorem 2.1 is satisfied. The first condition is also satisfied because
β1 and β2 are finite. It follows from Theorem 2.1 that every local Lie derivation
of AlgNβ is a Lie derivation. �

Let A and B be norm-closed unital subalgebras of B(H) and B(K), respec-
tively. In [5], Gilfeather and Smith defined an operator algebra analog A]B, which
is called the join of A and B, as a subalgebra of B(H ⊕K) of the form(

A 0
B(H,K) B

)
.

Corollary 2.8. Let A and B be factor von Neumann algebras of B(H) and B(K),
respectively. Then every local Lie derivation of A]B is a Lie derivation.

Proof. It is clear that A and B are generated by their idempotents. Since Z(A) =
CIH , Z(B) = CIK , and Z(A]B) = CIH⊕K , the second condition of Theorem 2.1
is satisfied. It follows from Theorem 2.1 that every local Lie derivation of A]B is
a Lie derivation. �

Let Mn×k(F) be the set of all n × k matrices over F. For n ≥ 2 and m ≤ n,

the block upper triangular matrix algebra T k̄
n (F) is a subalgebra of Mn(F) of the

form 
Mk1(F) Mk1×k2(F) · · · Mk1×km(F)

0 Mk2(F) · · · Mk2×km(F)
...

...
. . .

...
0 0 · · · Mkm(F)

 ,

where k̄ = (k1, k2, . . . , km) ∈ Nm is an ordered m-vector of positive integers such
that k1 + k2 + · · ·+ km = n.

Corollary 2.9. Every local Lie derivation of a block upper triangular matrix
algebra T k̄

n (F) is a Lie derivation.

Proof. The block upper triangular matrix algebra T k̄
n (F) can be represented as(

T k̄1
l (F) Ml×(n−l)(F)
0 T k̄2

n−l(F)

)
,

where 1 ≤ l < m and k̄1 ∈ Nl, k̄2 ∈ Nn−l. It is clear that T k̄1
l (F) and T k̄2

n−l(F) satisfy
the condition (1) of Theorem 2.1. Since Z(T k̄

n (F)) = FIn, Z(T k̄1
l (F)) = FIl, and

Z(T k̄2
n−l(F)) = FIn−l, the condition (2) of Theorem 2.1 is satisfied. �

Corollary 2.10. Let A be a unital algebra over F. Then every local Lie derivation
of the algebra T = Tri(Mn(A),Mn×k(A),Mk(A)) is a Lie derivation for n, k ≥ 2.
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Proof. For n, k ≥ 2, it follows from the result of [1] that Mn(A) and Mk(A) are
generated by their idempotents. On the other hand, we have Z(T ) = Z(A)In+k,
Z(Mn(A)) = Z(A)In, and Z(Mk(A)) = Z(A)Ik. Hence, by Theorem 2.1, every
local Lie derivation of T is a Lie derivation. �

We denote by {Eij} the standard matrix units ofM3(F). The following example
shows that the conditions (1) and (2) of Theorem 2.1 cannot both be dropped.

Example 2.11. Let A = span{E11 + E22, E12}, let B = span{E33}, let M =
span{E13, E23}, and let T = Tri(A,M,B). Then there exists a local Lie derivation
of T which is not a Lie derivation.

Proof. It is clear that A 6= J (A) and Z(A) 6= πA(Z(T )). It can be shown that a
linear map ϕ : T → T is a Lie derivation if there exist scalars λ1, λ2, λ3 ∈ F such
that

ϕ(I) = 0, ϕ(E12) = λ1E12, ϕ(E23) = λ2E13 + λ3E23,

and

ϕ(E13) = (λ1 + λ3)E13.

We define a linear map Φ : T → T by

Φ(A) = (2a13 − a23)E13 + a12E12

for each A = (aij) ∈ T . It is easy to check that

Φ(I) = 0, Φ(E12) = E12, Φ(E23) = −E13, and Φ(E13) = 2E13.

If a23 6= 0, then let ϕ1 be the linear map of T with ϕ1(I) = 0, ϕ1(E12) = E12,
ϕ1(E23) = (a−1

23 a13 − 1)E13, and ϕ1(E13) = E13. Then ϕ1 is a Lie derivation
of T . It follows from the definition of Φ that Φ(A) = ϕ1(A). If a23 = 0, then
let ϕ2 be a linear map with ϕ2(I) = 0, ϕ2(E12) = E12, ϕ2(E23) = E23, and
ϕ2(E13) = E13. Then ϕ2 is a Lie derivation of T . By the definition of Φ, we
have Φ(A) = ϕ2(A). Therefore, Φ is a local Lie derivation. Let A = E12 and
B = E12 + E23. Then Φ([A,B]) = Φ(E13) = 2E13 and [Φ(A), B] + [A,Φ(B)] =
[E12, E12 + E23] + [E12, E12 − E13] = E13. Hence

Φ
(
[A,B]

)
6=
[
Φ(A), B

]
+
[
A,Φ(B]

)
.

We conclude that Φ is a local Lie derivation, which is not a Lie derivation. �
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