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Abstract. We give a sufficient and necessary condition for an analytic func-
tion f(z) on the unit ball B in Cn with Hadamard gaps, that is, for f(z) =∑∞

k=1 Pnk
(z) where Pnk

(z) is a homogeneous polynomial of degree nk and
nk+1/nk ≥ c > 1 for all k ∈ N, to belong to the weighted-type space H∞

µ and
the corresponding little weighted-type space H∞

µ,0 under some condition posed
on the weighted funtion µ. We also study the growth rate of those functions
in H∞

µ .

1. Introduction

Let B be the open unit ball in Cn with S as its boundary and let H(B) be
the collection of all holomorphic functions in B. Here H∞(B) denotes the Banach
space consisting of all bounded holomorphic functions in B with the norm ‖f‖∞ =
supz∈B |f(z)|.

A positive continuous function µ on [0, 1) is called normal if there exists positive
numbers α and β, 0 < α < β, and δ ∈ (0, 1) such that

µ(r)

(1− r)α
is decreasing on [δ, 1), lim

r→1

µ(r)

(1− r)α
= 0,

µ(r)

(1− r)β
is increasing on [δ, 1), lim

r→1

µ(r)

(1− r)β
= ∞

(1.1)

(see, e.g., [7]). Note that a normal function µ : [0, 1) → [0,∞) is decreasing in a
neighborhood of 1 and satisfies limr→1− µ(r) = 0.
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An f ∈ H(B) is said to belong to the weighted-type space denoted by H∞
µ =

H∞
µ (B) if

‖f‖ = sup
z∈B

µ
(
|z|

)∣∣f(z)∣∣ < ∞,

where µ is normal on [0, 1). It is well known that H∞
µ is a Banach space with the

norm ‖ · ‖.
The little weighted-type space, denoted by H∞

µ,0, is the closed subspace of H∞
µ

consisting of those f ∈ H∞
µ such that lim|z|→1− µ(|z|)|f(z)| = 0. When µ(|z|) =

(1−|z|2)α, α > 0, the induced spaces H∞
µ and H∞

µ,0 are denoted by H∞
α and H∞

α,0,
respectively.

We say that an f ∈ H(B) has the Hadamard gaps if f(z) =
∑∞

k=0 Pnk
(z), where

Pnk
is a homogeneous polynomial of degree nk and there exists some c > 1,

nk+1

nk

≥ c, ∀k ≥ 0

(see, e.g., [8]).
Hadamard gap series on spaces of holomorphic functions in the unit disk D or

in the unit ball B have been studied quite well. We refer the readers to the related
results in [2], [4], [5], [8], [10]–[14], and the reference therein.

In [12], the authors studied the Hadamard gap series and the growth rate of
the functions in H∞

µ in the unit disk. Motivated by [12], the aim of this paper
is to study the Hadamard gap series in H∞

µ as well as its little space H∞
µ,0 on

the unit ball. Moreover, as an application of our main result, we characterize the
growth rate of those functions in H∞

µ .
Throughout this article, for a, b ∈ R, a . b (a & b, respectively) means that

there exists a positive number C, which is independent of a and b, such that
a ≤ Cb (a ≥ Cb, respectively). Moreover, if both a . b and a & b hold, then we
say that a ' b.

2. Hadamard gap series in H∞
µ and H∞

µ,0

Let f(z) =
∑∞

k=0 Pk(z) be a holomorphic function in B, where Pk(z) is a
homogeneous polynomial with degree k. For k ≥ 0, we denote

Mk = sup
ξ∈S

∣∣Pk(ξ)
∣∣.

We have the following estimations on Mk of a holomorphic function f ∈ H∞
µ

(or f ∈ H∞
µ,0, respectively).

Theorem 2.1. Let µ be a normal function on [0, 1). Let f(z) =
∑∞

k=0 Pk(z), z ∈
B. Then the following statements hold:

(1) if f ∈ H∞
µ , then supk≥0Mkµ(1− 1

k
) < ∞,

(2) if f ∈ H∞
µ,0, then limk→∞Mkµ(1− 1

k
) = 0.

Proof. (1). Suppose that f ∈ H∞
µ . Fix a ξ ∈ S, and denote

fξ(w) =
∞∑
k=0

Pk(ξ)w
k =

∞∑
k=0

Pk(ξw), w ∈ D.
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Since f ∈ H(B), it is known that, for a fixed ξ ∈ S, fξ(w) is holomorphic in D
(see, e.g., [6]). Hence, for any r ∈ (0, 1), we have

Mk = sup
ξ∈S

∣∣Pk(ξ)
∣∣ = sup

ξ∈S

∣∣∣ 1

2πi

∫
|w|=r

fξ(w)

wk+1
dw

∣∣∣ (2.1)

=
1

2π
sup
ξ∈S

∣∣∣∫
|w|=r

f(ξw)

wk+1
dw

∣∣∣
≤ 1

2π
sup
ξ∈S

∫
|w|=r

|f(ξw)|
rk+1

| dw|

=
1

2π
sup
ξ∈S

∫
|w|=r

|f(ξw)|µ(|ξw|)
rk+1µ(r)

| dw| ≤ ‖f‖
rkµ(r)

.

In (2.1), letting r = 1− 1
k
, k ≥ 2, k ∈ N, we have

Mk ≤
‖f‖

(1− 1
k
)kµ(1− 1

k
)
.

Thus, for each k ≥ 2,

Mkµ
(
1− 1

k

)
≤ ‖f‖

(1− 1
k
)k

≤ 4‖f‖,

which implies that

sup
k≥1

Mkµ
(
1− 1

k

)
≤ max

{
µ(0)M1, 4‖f‖

}
< ∞.

(2). Suppose f ∈ H∞
µ,0; that is, for any ε > 0, there exists a δ ∈ (0, 1) when

δ < |z| < 1, µ(|z|)|f(z)| < ε. Take N0 ∈ N satisfying δ < 1− 1
k
< 1 when k > N0.

Then for any k > N0 and r = 1− 1
k
, as the proof in the previous part, we have

Mk ≤
1

(1− 1
k
)kµ(1− 1

k
)
· sup
δ<|z|<1

µ
(
|z|

)∣∣f(z)∣∣ < ε

(1− 1
k
)kµ(1− 1

k
)
,

which implies

Mkµ
(
1− 1

k

)
≤ ε

(1− 1
k
)k

≤ 4ε, k > N0.

Hence we have limk→∞Mkµ(1− 1
k
) = 0. �

Theorem 2.2. Let µ be a normal function on [0, 1). Let f(z) =
∑∞

k=0 Pnk
(z)

with Hadamard gaps, where Pnk
is a homogeneous polynomial of degree nk. Then

the following assertions hold:

(1) f ∈ H∞
µ if and only if supk≥1 µ(1− 1

nk
)Mnk

< ∞,

(2) f ∈ H∞
µ,0 if and only if limk→∞ µ(1− 1

nk
)Mnk

= 0.

Proof. By Theorem 2.1, it suffices to show the sufficiency of both statements.
(1). Noting that∣∣f(z)∣∣ = ∣∣∣ ∞∑

k=0

Pnk

( z

|z|

)
|z|nk

∣∣∣ ≤ ∞∑
k=0

Mnk
|z|nk .

∞∑
k=0

|z|nk

µ(1− 1
nk
)
,
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from the proof of [12, Theorem 2.3], we have

|f(z)|
1− |z|

.
∞∑

m=1

( ∑
nk≤m

1

µ(1− 1
nk
)

)
|z|m .

∞∑
m=1

|z|m

µ(1− 1
m
)

.
1

(1− |z|)µ(|z|)
,

which implies f ∈ H∞
µ , as desired.

(2). Since limk→∞ µ(1− 1
nk
)Mnk

= 0, we have supk≥1 µ(1− 1
nk
)Mnk

< ∞. Hence,

by part (1), we have f ∈ H∞
µ . For any ε > 0, there exists a N0 ∈ N satisfying

when m > N0

Mnmµ
(
1− 1

nm

)
< ε.

For each m ∈ N, put fm(z) =
∑m

k=0 Pnk
(z), which clearly belongs to H∞

µ,0 since it
is a polynomial. Hence it suffices to show that ‖fm − f‖ → 0 as m → ∞. Indeed,
for m > N0, we have∣∣fm(z)− f(z)

∣∣ = ∣∣∣ ∞∑
k=m+1

Pnk
(z)

∣∣∣ ≤ ∞∑
k=m+1

Mnk
|z|nk ≤ ε

∞∑
k=m+1

|z|nk

µ(1− 1
nk
)
.

From this, the result easily follows from the proof of part (1). �

3. Growth rate

As an application of Theorem 2.2, in this section, we show the following result.

Theorem 3.1. Let µ be a normal function on [0, 1). Then there exists a positive
integer M = M(n) with the following property: there exists fi ∈ H∞

µ , 1 ≤ i ≤ M ,
such that

M∑
i=1

∣∣fi(z)∣∣ & 1

µ(|z|)
, z ∈ B.

Note that the result in [12, Theorem 2.5] in the unit disk is a particular case
of Theorem 3.1 when n = 1.

Remark 3.2. We observe that M cannot be 1. Indeed, assume that there exists a
f ∈ H∞

µ such that ∣∣f(z)∣∣ & 1

µ(|z|)
, z ∈ B.

It implies that f(z) has no zero in B, and it follows that there exists g ∈ H(B)
such that f = eg. Thus ∣∣f(z)∣∣ = |eg(z)| = eRe g(z),

which implies that eRe g(z) & 1
µ(|z|) , and hence Re g(z) & log 1

µ(|z|) . For each r ∈
(0, 1), integrating on both sides of the above inequality on rS = {z ∈ B, |z| = r},
we have ∫

rS
Re g(z) dσ &

∫
rS
log

( 1

µ(|z|)

)
dσ = log

( 1

µ(r)

)
· σ(rS).
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By the mean value property, we have Re g(0) & log( 1
µ(r)

), ∀r ∈ (0, 1), which is

impossible.

Before we formulate the proof of our main result, we need some preliminary
results. In the sequel, for ξ, ζ ∈ S, denote

d(ξ, ζ) =
(
1−

∣∣〈ξ, ζ〉∣∣2) 1
2 .

Then d satisfies the triangle inequality (see, e.g., [1]). Moreover, we write Eδ(ζ)
for the d-ball with radius δ ∈ (0, 1) and center at ζ ∈ S:

Eδ(ζ) =
{
ξ ∈ S : d(ξ, ζ) < δ

}
.

We say that a subset Γ of S is d-separated by δ > 0 if d-balls with radius δ and
center at points of Γ are pairwise disjoint.

We begin with several lemmas which play an important role in the proof of our
main result.

Lemma 3.3 ([3, Lemma 2.2], [9]). For each a > 0, there exists a positive integer
M = Mn(a) with the following property: if δ > 0, and if Γ ⊂ S is d-separated

by aδ, then Γ can be decomposed into Γ =
⋃M

j=1 Γj in such a way that each Γj is
d-separated by δ.

Lemma 3.4 ([3, Lemma 2.3]). Suppose that Γ ⊂ S is d-separated by δ, and let k
be a positive integer. If

P (z) =
∑
ζ∈Γ

〈z, ζ〉k, z ∈ B,

then ∣∣P (z)
∣∣ ≤ 1 +

∞∑
m=1

(m+ 2)2n−2e
−m2δ2k

2 .

Proof of Theorem 3.1. We will prove the theorem by constructing fi ∈ H∞
µ sat-

isfying the given property only near the boundary (then, by adding a proper
constant, one obtains the given property on all of the unit ball). Since µ is nor-
mal, by the definition of normal function, there exists positive numbers α, β with
0 < α < β, and δ ∈ (0, 1) satisfy (1.1). Take and fix some small positive number
A < 1 such that

∞∑
m=1

(m+ 2)2n−2e
−m2

2A2 ≤ 1

27
. (3.1)

Let M = Mn(
A
2
) be a positive integer provided by Lemma 3.3 with A

2
in place of

a. Let p be a sufficiently large positive integer so that

1− 1

p
≥ δ,

1

3
≤

(
1− 1

p

)p

≤ 1

2
, (3.2)

1

pαM − 1
≤ 1

200
, (3.3)
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and
pβM · 2−pM−0.5

1− pβM · 2−(p2M−0.5−pM−0.5)
≤ 1

200
. (3.4)

For each postive integer j ≤ M , set δj,0 such that

A2pjδ2j,0 = 1, (3.5)

and inductively choose δj,v such that

pMδ2j,v = δ2j,v−1, v = 1, 2, . . . . (3.6)

From (3.5) and (3.6), we get

A2pvM+jδ2j,v = 1. (3.7)

For each fixed j and v, let Γj,v be a maximal subset of S subject to the condition
that Γj,v is d-separated by Aδj,v/2. Then, by Lemma 3.3, write

Γj,v =
M⋃
l=1

Γj,vM+l (3.8)

in such a way that each Γj,vM+l is d-separated by δj,v.
For each i, j = 1, 2, . . . ,M and v ≥ 0, set

Pi,vM+j(z) =
∑

ξ∈Γj,vM+τi(j)

〈z, ξ〉pvM+j

,

where τ i is the ith iteration of the permutation τ on {1, 2, . . . ,M} defined by

τ(j) =

{
j + 1, j < M ;

1, j = M.

By (3.7), Lemma 3.4, and (3.1), we get that∣∣Pi,vM+j(z)
∣∣ ≤ 1 +

∞∑
m=1

(m+ 2)2n−2e
−m2δ2j,vp

vM+j

2

≤ 1 +
∞∑

m=1

(m+ 2)2n−2e−
m2

2A2 ≤ 2, z ∈ B (3.9)

for all i, j = 1, 2, . . . ,M and v ≥ 0.
Define

gi,j(z) =
∞∑
v=0

Pi,vM+j(z)

µ(1− 1
pvM+j )

, z ∈ B.

By Theorem 2.2, it is clear that, for each i, j ∈ {1, 2, . . . ,M}, gi,j ∈ H∞
µ .

We will show that, for every v ≥ 0, 1 ≤ j ≤ M , and z ∈ B with

1− 1

pvM+j
≤ |z| ≤ 1− 1

pvM+j+ 1
2

, (3.10)

there exists an i ∈ {1, 2, . . . ,M} such that |gi,j(z)| ≥ C
µ(|z|) , where C is some

constant independent of the choice of i, j, and z.
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Fix v, j, and z for which (3.10) holds. Let z = |z|η, where η ∈ S. Since d-balls
with radius Aδj,v and centers at points of Γj,v cover S by maximality, there exists
some ζ ∈ Γj,v such that η ∈ EAδj,v(ζ). Note that ζ ∈ Γj,vM+l for some 1 ≤ l ≤ M
by (3.8), and hence ζ ∈ Γj,vM+τ i(j) for some 1 ≤ i ≤ M .

We now estimate |gi,j(z)|. By (3.9),∣∣gi,j(z)∣∣ = ∣∣∣ ∞∑
k=0

Pi,kM+j(z)

µ(1− 1
pkM+j )

∣∣∣
≥

∣∣∣ Pi,vM+j(z)

µ(1− 1
pvM+j )

∣∣∣− ∣∣∣∑
k 6=v

Pi,kM+j(z)

µ(1− 1
pkM+j )

∣∣∣
=

|z|pvM+j |Pi,vM+j(η)|
µ(1− 1

pvM+j )
−
∣∣∣∑
k 6=v

|z|kM+jPi,kM+j(η)

µ(1− 1
pkM+j )

∣∣∣
≥ |z|pvM+j |Pi,vM+j(η)|

µ(1− 1
pvM+j )

− 2
v−1∑
k=0

|z|pkM+j

µ(1− 1
pkM+j )

− 2
∞∑

k=v+1

|z|pkM+j

µ(1− 1
pkM+j )

= I1 − I2 − I3,

where

I1 =
|z|pvM+j |Pi,vM+j(η)|

µ(1− 1
pvM+j )

, I2 = 2
v−1∑
k=0

|z|pkM+j

µ(1− 1
pkM+j )

,

and

I3 = 2
∞∑

k=v+1

|z|pkM+j

µ(1− 1
pkM+j )

.

Now we estimate I1, I2, and I3, respectively.
• Estimation of I1.
By (3.2) and (3.10), we obtain

|z|pvM+j ≥
(
1− 1

pvM+j

)pvM+j

≥ 1

3
,

and therefore

I1 ≥
|Pi,vM+j(η)|
3µ(1− 1

pvM+j )

≥
(|〈η, ζ〉|pvM+j −

∑
ξ∈Γj,vM+τi(j),ξ 6=ζ |〈η, ξ〉|p

vM+j
)

3µ(1− 1
pvM+J )

(by the proof of [3, Theorem 2.1])

≥ 2

27µ(1− 1
pvM+J )

.

• Estimation of I2.
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By the definition of normal function, we have for each s ∈ N

(1− (1− 1
psM+j ))

α

(1− (1− 1
p(s+1)M+j ))α

≤
µ(1− 1

psM+j )

µ(1− 1
p(s+1)M+j )

≤
(1− (1− 1

psM+j ))
β

(1− (1− 1
p(s+1)M+j ))β

;

that is,

1 < pMα ≤
µ(1− 1

psM+j )

µ(1− 1
p(s+1)M+j )

≤ pMβ. (3.11)

Combining this with (3.3), we have

I2 ≤ 2
v−1∑
k=0

1

µ(1− 1
pkM+j )

=
2

µ(1− 1
pvM+j )

v−1∑
k=0

[ µ(1− 1
pvM+j )

µ(1− 1
p(v−1)M+j )

µ(1− 1
p(v−1)M+j )

µ(1− 1
p(v−2)M+j )

. . .

×
µ(1− 1

p(k+1)M+j )

µ(1− 1
pkM+j )

]
≤ 2

µ(1− 1
pvM+j )

v−1∑
k=0

1

pαM(v−k)
≤ 2

µ(1− 1
pvM+j )

· 1

pαM − 1

≤ 1

100µ(1− 1
pvM+j )

.

• Estimation of I3.
Note that, by (3.2) and (3.10), we have

|z|pvM+j ≤
(
1− 1

pvM+j+ 1
2

)pvM+j+1
2 ·p−

1
2

≤
(1
2

)p−
1
2

. (3.12)

Hence, by (3.4), (3.11), and (3.12), we have

I3 =
2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑

k=v+1

[µ(1− 1
pvM+j )

µ(1− 1
pkM+j )

|z|(pkM+j−p(v+1)M+j)
]

=
2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑

k=v+1

[ µ(1− 1
pvM+j )

µ(1− 1
p(v+1)M+j )

. . .
µ(1− 1

p(k−1)M+j )

µ(1− 1
pkM+j )

× |z|(pkM+j−p(v+1)M+j)
]

≤ 2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑

k=v+1

[p(βM)(k−v)|z|(pkM+j−p(v+1)M+j)]

=
2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑

k=v+1

[pβMp(βM)(k−v−1)|z|pj(pkM−p(v+1)M )]

(Let s = k − v − 1.)
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=
2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑
s=0

[pβMpβMs|z|pj+(v+1)M (psM−1)](
by psM−1 ≥ s(pM − 1), where s and M are two positive integers

)
≤ 2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑
s=0

[pβMpβMs|z|pj+(v+1)M (pM−1)s]

=
2|z|p(v+1)M+j

µ(1− 1
pvM+j )

·
∞∑
s=0

[
pβM(pβM |z|(p(v+2)M+j−p(v+1)M+j))s

]
=

2

µ(1− 1
pvM+j )

· pβM(|z|pvM+j
)p

M

1− pβM |z|pvM+j(p2M−pM )

≤ 2

µ(1− 1
pvM+j )

· pβM · 2−pM−0.5

1− pβM · 2−(p2M−0.5−pM−0.5)
≤ 1

100µ(1− 1
pvM+j )

.

Combining all the estimates for I1, I2, and I3, we get∣∣gi,j(z)∣∣ ≥ I1 − I2 − I3 ≥
1

µ(1− 1
pvM+j )

( 2

27
− 1

100
− 1

100

)
>

1

20µ(1− 1
pvM+j )

=
1

20µ(1− 1

pvM+j+1
2
)
·
µ(1− 1

pvM+j+1
2
)

µ(1− 1
pvM+j )

≥ 1

20p
β
2µ(1− 1

pvM+j+1
2
)
≥ 1

20p
β
2µ(|z|)

.

In summary, we have

M∑
i=1

M∑
j=1

∣∣gi,j(z)∣∣ ≥ 1

20p
β
2µ(|z|)

(3.13)

for all z such that 1− 1
pk

≤ |z| ≤ 1− 1

pk+
1
2
, k = 1, 2, . . . .

Next, pick a sequence of positive integers qk such that 0 ≤ qk − pk+
1
2 < 1,

and, for each 1 ≤ j ≤ M , pick a sequence of positive numbers εj,v such that
A2qvM+jε

2
j,v = 1.

Choose a sequence of subsets Ψj,v of S with the following property: for each

nonnegative interger v, the set
⋃M

l=1Ψj,vM+l is a maximal subset of S which is
d-separated by Aεj,v/2, and each Ψj,vM+l is d-separated by εj,v.

For each i, j = 1, 2, . . . ,M and v ≥ 0, set

Qi,vM+j(z) =
∑

ξ∈Ψj,vM+τi(j)

〈z, ξ〉qvM+j ,

and define

hi,j(z) =
∞∑
v=0

Qi,vM+j(z)

µ(1− 1
qvM+j

)
.
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Then hi,j is in the Hadamard gap since, for each v ≥ 0,

qvM+j

q(v−1)M+j

≥ pvM+ 1
2

p(v−1)M+ 1
2 + 1

≥ pM

2
> 1.

Moreover, the homogeneous polynomials Qi,vM+j are uniformally bounded by 2 as
before. Hence each hi,j belongs to H∞

µ by Theorem 2.2, and an easy modification
of the previous arguments yields that, for each v ≥ 0, 1 ≤ j ≤ M , and z ∈ B
satisfying

1− 1

pvM+j+ 1
2

≤ |z| ≤ 1− 1

pvM+j+1
,

there exists an index i ∈ {1, 2, . . . ,M} such that∣∣hi,j(z)
∣∣ ≥ Cp

µ(|z|)
,

where Cp > 0.
Hence

M∑
i=1

M∑
j=1

∣∣hi,j(z)
∣∣ ≥ Cp

µ(|z|)
(3.14)

for all z such that 1− 1

pk+
1
2
≤ |z| ≤ 1− 1

pk+1 , k = 1, 2, . . . .

Consequently, we finally have

M∑
i=1

M∑
j=1

(∣∣gi,j(z)∣∣+ ∣∣hi,j(z)
∣∣) ≥ C

µ(|z|)

for all z ∈ B sufficiently close to the boundary and for some constant C. Therefore,
the proof is complete. �

As a corollary, we get the following description of the growth rate on the space
H∞

α (α > 0) by taking µ(|z|) = (1− |z|2)α in Theorem 3.1.

Corollary 3.5. There exists some positive integer M and a sequence of functions
fi ∈ H∞

α , 1 ≤ i ≤ M such that

M∑
i=1

∣∣fi(z)∣∣ & 1

(1− |z|2)α
, z ∈ B.
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