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Abstract. In this article we study new Lp-boundedness properties for the
Mehler–Fock transform of general order on the spaces Lp((0,∞), eαx dx) and
Lp((0,∞), (1+x)γ dx), 1 ≤ p ≤ ∞, and α, γ ∈ R. We also obtain Parseval-type
relations over these spaces.

1. Introduction and preliminaries

In the following we consider the Mehler–Fock transform of general order of a
suitable complex-valued function f defined on the interval (0,∞) given by

(Ff)(y) =

∫ ∞

0

f(x)P−µ

− 1
2
+iy

(coshx) dx, y > 0, (1.1)

where <µ > −1/2 and P−µ

− 1
2
+iy

is the associated Legendre function of the first

kind and order −µ (for details, see [1, Chapter 3]) given in terms of the Gauss
hypergeometric function 2F1 by

P−µ
ν (z) =

1

Γ(1 + µ)

(z + 1

z − 1

)−µ
2

2F1

(
−ν, ν + 1; 1 + µ,

1− z

2

)
. (1.2)

This transform of general order (also called a generalized Mehler–Fock transform)
is considered in [5], [6], and [10, Section 3.3].
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Our paper has the following organization. First, we study Lp-boundedness
properties for the Mehler–Fock transform of general order (1.1) over the spaces
Lp((0,∞), eαx dx) and Lp((0,∞), (1+ x)γ dx), α, γ ∈ R, and 1 ≤ p ≤ ∞. We also
consider the integral operator

(Lg)(x) =

∫ ∞

0

g(y)P−µ

− 1
2
+iy

(coshx) dy, x > 0. (1.3)

By using results of Section 2 of [2], we prove that the operator L is bounded from
the spaces Lp((0,∞), eαx dx) into Lp′((0,∞), eαx dx) if 1 < p < ∞, p + p′ = pp′

whenever 0 < α < p′/2 and <µ > −1/p′. We also prove that the operator L
is bounded from the space Lp((0,∞), (1 + x)γ dx) into Lp′((0,∞), (1 + x)γ dx) if
1 < p < ∞, p+p′ = pp′ whenever γ > p−1 and <µ > −1/p′. This analysis is also
extended for the case p = 1. Using Section 3 of [2], we prove that the operator L is
bounded from L1((0,∞), eαx dx) into L∞((0,∞), eαx dx) provided that α ≥ 0 and
<µ ≥ 0. We also prove that the operator L is bounded from L1((0,∞), (1+x)γ dx)
into L∞((0,∞), (1 + x)γ dx) provided that γ ≥ 0 and <µ ≥ 0.

Moreover, under these conditions, if f, g ∈ Lp((0,∞), eαx dx), 1 ≤ p < ∞, then
we have the following Parseval-type relation:∫ ∞

0

(Ff)(x)g(x) dx =

∫ ∞

0

f(x)(Lg)(x) dx. (1.4)

Also, under these conditions, if f, g ∈ Lp((0,∞), (1 + x)γ dx), 1 ≤ p < ∞, then
we have the Parseval-type relation (1.4). Let L′ be the adjoint of the operator L;
that is,

〈L′f, g〉 = 〈f,Lg〉. (1.5)

The aforementioned Parseval-type relation (1.4) allows us to obtain an interesting
connection between the operator L′ and the operator F.

We conclude that the operator L′ is the natural extension of the integral oper-
ator F; that is,

L′Tf = TFf ,

where Tf is given by

〈Tf , g〉 =
∫ ∞

0

f(x)g(x) dx. (1.6)

We also point out relevant connections of our work with various earlier related
results (see also [4], [8], [9], [11], and [12]). From [1, p. 156, Entry 7], we have the
integral representation

P−µ

− 1
2
+iy

(coshx) =
π−1/2(sinhx)µ

2µΓ(1
2
+ µ)

∫ π

0

(coshx+ sinhx cosu)−
1
2
+iy−µ

× (sinu)2µ du, x > 0, y > 0, and <µ > −1

2
.

Now, observe that, for x > 0 and u ∈ [0, π], we have

coshx+ sinhx cosu > 0,
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and so ∣∣P−µ

− 1
2
+iy

(coshx)
∣∣

≤ π−1/2(sinhx)<µ

2<µ|Γ(1
2
+ µ)|

∫ π

0

(coshx+ sinhx cosu)−
1
2
−<µ(sinu)2<µ du

=
Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

P−<µ

− 1
2

(coshx). (1.7)

From [7, p. 171, Entry 12.08], we have

P−µ

− 1
2

(coshx) ∼ xµ

2µΓ(1 + µ)
for x → 0. (1.8)

Also, from [7, p. 172, Entry 12.20], we have

P−µ

− 1
2

(coshx) ∼ 2√
πΓ(1

2
+ µ)

xe−x/2 for x → ∞. (1.9)

Throughout this article, <µ > −1/2.

2. The operator F over the spaces Lp((0,∞), eαx dx) and
Lp((0,∞), (1 + x)γ dx), 1 < p < ∞

In this section, we study the behavior of the operator F on the spaces Lp((0,
∞), eαx dx) and Lp((0,∞), (1 + x)γ dx), 1 < p < ∞, α, γ ∈ R.

Theorem 2.1. Assume that 1 < p < ∞, p+ p′ = pp′. Then, for all 0 < q < ∞,
we have the following.

(i) If −p/2 < α < 0, <µ > −1/p′, then the operator F given by (1.1) is
bounded from Lp((0,∞), eαx dx) into Lq((0,∞), eαx dx). Also, if α > −p/2
and <µ > −1/p′, then the operator F is bounded from Lp((0,∞), eαx dx)
into L∞((0,∞), eαx dx).

(ii) If γ < −1, <µ > −1/p′, then the operator F given by (1.1) is bounded
from Lp((0,∞), (1+x)γ dx) into Lq((0,∞), (1+x)γ dx). Also, if γ ∈ R and
<µ > −1/p′, then the operator F is bounded from Lp((0,∞), (1 + x)γ dx)
into L∞((0,∞), (1 + x)γ dx).

Proof. (i) From (1.7), the condition (2.1) on Proposition 2.1 of [3] becomes∫ ∞

0

(∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣p′e−αp′x/p dx

)q/p′

eαy dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q

×
(∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

e−αp′x/p dx
)q/p′

×
∫ ∞

0

eαy dy



234 B. J. GONZÁLEZ and E. R. NEGRÍN

=
(−1

α

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q

×
(∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

e−αp′x/p dx
)q/p′

. (2.1)

From (1.8) and (1.9), we obtain that, for −p/2 < α < 0 and <µ > −1/p′,
the operator F is bounded from Lp((0,∞), eαx dx) into Lq((0,∞), eαx dx). On the
other hand, from (1.7) the condition (2.2) on Proposition 2.1 of [3] becomes

ess sup
y∈(0,∞)

{∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣p′e−αp′x/p dx

}
≤

(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)p′
∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

e−αp′x/p dx. (2.2)

Now from (1.8) and (1.9), for α > −p/2 and <µ > −1/p′, the above integral
converges, and therefore the operator F is bounded from Lp((0,∞), eαx dx) into
L∞((0,∞), eαx dx).

(ii) From (1.7), the condition (2.1) on Proposition 2.1 of [3] becomes∫ ∞

0

(∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣p′(1 + x)−γp′/p dx

)q/p′

(1 + y)γ dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

(1 + x)−γp′/p dx
)q/p′

×
∫ ∞

0

(1 + y)γ dy

=
( −1

1 + γ

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

(1 + x)−γp′/p dx
)q/p′

. (2.3)

From (1.8) and (1.9) we get that, for γ < −1 and <µ > −1/p′, the operator F
is bounded from Lp((0,∞), (1+x)γ dx) into Lq((0,∞), (1+x)γ dx). On the other
hand, from (1.7) the condition (2.2) on Proposition 2.1 of [3] becomes

ess sup
y∈(0,∞)

{∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣p′(1 + x)−γp′/p dx

}
≤

(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)p′
∫ ∞

0

(
P−<µ

− 1
2

(coshx)
)p′

(1 + x)−γp′/p dx. (2.4)

Now from (1.8) and (1.9), for γ ∈ R and <µ > −1/p′, the above integral con-
verges, and therefore the operator F is bounded from Lp((0,∞), (1+ x)γ dx) into
L∞((0,∞), (1 + x)γ dx). �

3. The operator F over the spaces L1((0,∞), eαx dx) and
L1((0,∞), (1 + x)γ dx)

We now prove corresponding results for the case when p = 1.

Theorem 3.1. For all 0 < q < ∞, we get the following.
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(i) For −1/2 < α < 0, <µ ≥ 0, the operator F given by (1.1) is bounded
from L1((0,∞), eαx dx) into Lq((0,∞), eαx dx). Also, for α > −1/2 and
<µ ≥ 0, then the operator F is bounded from L1((0,∞), eαx dx) into
L∞((0,∞), eαx dx).

(ii) For γ < −1, <µ ≥ 0, the operator F given by (1.1) is bounded from
L1((0,∞), (1 + x)γ dx) into Lq((0,∞), (1 + x)γ dx). Also, for γ ∈ R and
<µ ≥ 0, then the operator F is bounded from L1((0,∞), (1 + x)γ dx) into
L∞((0,∞), (1 + x)γ dx).

Proof. (i) From (1.7) the condition (3.1) on Proposition 3.1 of [3] becomes

∫ ∞

0

(
ess sup
x∈(0,∞)

{ |P−µ

− 1
2
+iy

(coshx)|

eαx

})q

eαy dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q(
ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

eαx

})q

×
∫ ∞

0

eαy dy

=
(−1

α

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q(
ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

eαx

})q

. (3.1)

Now from (1.8) and (1.9), for −1/2 < α < 0 and <µ ≥ 0, the operator F is
bounded from L1((0,∞), eαx dx) into Lq((0,∞), eαx dx).

Likewise, from (1.7) the condition (3.2) on Proposition 3.1 of [3] becomes

ess sup
y∈(0,∞)

ess sup
x∈(0,∞)

{ |P−µ

− 1
2
+iy

(coshx)|

eαx

}
≤

Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

eαx

}
. (3.2)

From (1.8) and (1.9) one obtains that, for α > −1/2 and <µ ≥ 0, the operator F
is bounded from L1((0,∞), eαx dx) into L∞((0,∞), eαx dx).

(ii) From (1.7) the condition (3.1) on Proposition 3.1 of [3] becomes

∫ ∞

0

(
ess sup
x∈(0,∞)

{ |P−µ

− 1
2
+iy

(coshx)|

(1 + x)γ

})q

(1 + y)γ dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q(
ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

(1 + x)γ

})q

×
∫ ∞

0

(1 + y)γ dy

=
( −1

1 + γ

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q(
ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

(1 + x)γ

})q

. (3.3)

Now from (1.8) and (1.9), for γ < −1 and <µ ≥ 0, the operator F is bounded
from L1((0,∞), (1+ x)γ dx) into Lq((0,∞), (1+ x)γ dx). Likewise, from (1.7) the
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condition (3.2) on Proposition 3.1 of [3] becomes

ess sup
y∈(0,∞)

ess sup
x∈(0,∞)

{ |P−µ

− 1
2
+iy

(coshx)|

(1 + x)γ

}
≤

Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

ess sup
x∈(0,∞)

{P−<µ

− 1
2

(coshx)

(1 + x)γ

}
. (3.4)

From (1.8) and (1.9), we get that, for all γ ∈ R and <µ ≥ 0, the operator F is
bounded from L1((0,∞), (1 + x)γ dx) into L∞((0,∞), (1 + x)γ dx). �

4. The operator F over the spaces L∞((0,∞), eαx dx) and
L∞((0,∞), (1 + x)γ dx)

We now prove corresponding results for the case when p = ∞.

Theorem 4.1. For all 0 < q < ∞, we get the following.

(i) If α < 0, then the operator F given by (1.1) is bounded from L∞((0,
∞), eαx dx) into Lq((0,∞), eαx dx). Also, for all α ∈ R, then the operator
F is bounded from L∞((0,∞), eαx dx) into L∞((0,∞), eαx dx).

(ii) If γ < −1, then the operator F given by (1.1) is bounded from L∞((0,∞),
(1 + x)γ dx) into Lq((0,∞), (1 + x)γ dx). Also, for all γ ∈ R, the operator
F is bounded from L∞((0,∞), (1 + x)γ dx) into L∞((0,∞), (1 + x)γ dx).

Proof. (i) From (1.7) the condition (4.1) on Proposition 4.1 of [3] becomes∫ ∞

0

(∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣ dx)q

eαy dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

P−<µ

− 1
2

(coshx) dx
)q

×
∫ ∞

0

eαy dy

=
(−1

α

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

P−<µ

− 1
2

(coshx) dx
)q

. (4.1)

From (1.8) and (1.9) one obtains that, for α < 0, the above integral converges.
Therefore, the operator F is bounded from L∞((0,∞), eαx dx) into Lq((0,
∞), eαx dx). Also, from (1.7) the condition (4.2) on Proposition 4.1 of [3] becomes

ess sup
y∈(0,∞)

{∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣ dx}

≤
Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

∫ ∞

0

P−<µ

− 1
2

(coshx) dx. (4.2)

From (1.8) and (1.9) one obtains that, for all α ∈ R, the above integral con-
verges. Therefore, the operator F is bounded from L∞((0,∞), eαx dx) into L∞((0,
∞), eαx dx).
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(ii) From (1.7) the condition (4.1) on Proposition 4.1 of [3] becomes∫ ∞

0

(∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣ dx)q

(1 + y)γ dy

≤
(Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

P−<µ

− 1
2

(coshx) dx
)q

×
∫ ∞

0

(1 + y)γ dy

=
( −1

1 + γ

)(Γ(1
2
+ <µ)

|Γ(1
2
+ µ)|

)q(∫ ∞

0

P−<µ

− 1
2

(coshx) dx
)q

. (4.3)

From (1.8) and (1.9) one obtains that, for γ < −1, the above integral con-
verges. Therefore, the operator F is bounded from L∞((0,∞), (1 + x)γ dx) into
Lq((0,∞), (1+ x)γ dx). Also, from (1.7) the condition (4.2) on Proposition 4.1 of
[3] becomes

ess sup
y∈(0,∞)

{∫ ∞

0

∣∣P−µ

− 1
2
+iy

(coshx)
∣∣ dx}

≤
Γ(1

2
+ <µ)

|Γ(1
2
+ µ)|

∫ ∞

0

P−<µ

− 1
2

(coshx) dx. (4.4)

From (1.8) and (1.9) one obtains that, for all γ ∈ R, the above integral con-
verges. Therefore, the operator F is bounded from L∞((0,∞), (1 + x)γ dx) into
L∞((0,∞), (1 + x)γ dx). �

5. The operator L over the spaces Lp((0,∞), eαx dx) and
Lp((0,∞), (1 + x)γ dx), 1 < p < ∞

In this section, we study the behavior of the operator L on the spaces Lp((0,∞),
eαx dx) and Lp((0,∞), (1 + x)γ dx), α, γ ∈ R, and 1 < p < ∞.

Theorem 5.1. Assume that 1 < p < ∞, p+p′ = pp′. Then we have the following.

(i) For all 0 < α < p′/2 and <µ > −1/p′, the operator L given by (1.3) is
bounded from Lp((0,∞), eαx dx) into Lp′((0,∞), eαx dx).

(ii) For all γ > p−1 and <µ > −1/p′, the operator L given by (1.3) is bounded
from Lp((0,∞), (1 + x)γ dx) into Lp′((0,∞), (1 + x)γ dx).

Proof. (i) Note that, for 0 < α < p′/2 and <µ > −1/p′, and using (1.8) and (1.9),
we have ∫ ∞

0

e−αp′y/p dy =
p

αp′

and P−<µ

− 1
2

(coshx) ∈ Lp′((0,∞), eαx dx). Then from Proposition 2.1 in [2] the

result holds.
(ii) Note that, for γ > p − 1 and <µ > −1/p′, and using (1.8) and (1.9), we

have ∫ ∞

0

(1 + y)−γp′/p dy =
p

γp′

and P−<µ

− 1
2

(coshx) ∈ Lp′((0,∞), (1+ y)γ dy). Then from Proposition 2.1 in [2] the

result holds. �
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As a consequence of Proposition 2.2 in [2], we have the following.

Theorem 5.2. Assume that 1 < p < ∞, p + p′ = pp′. Then the following
Parseval-type relation holds:∫ ∞

0

(Ff)(x)g(x) dx =

∫ ∞

0

f(x)(Lg)(x) dx (5.1)

(i) for f, g ∈ Lp((0,∞), eαx dx) with 0 < α < p′/2 and <µ > −1/p′

or, alternatively,
(ii) for f, g ∈ Lp((0,∞), (1 + x)γ dx) with α > p− 1 and <µ > −1/p′.

Also, as a consequence of Corollary 2.1 in [2], we have the following.

Corollary 5.3. Assume that 1 < p < ∞, p+p′ = pp′. Then we have the following.

(i) For f ∈ Lp((0,∞), eαx dx), 0 < α < p′/2, and <µ > −1/p′, we have

L′Tf = TFf (5.2)

on (Lp((0,∞), eαx dx))′.
(ii) For f ∈ Lp((0,∞), (1 + x)γ dx), γ > p− 1, and <µ > −1/p′, we have

L′Tf = TFf (5.3)

on (Lp((0,∞), (1 + x)γ dx))′.

6. The operator L over the spaces L1((0,∞), eαx dx) and
L1((0,∞), (1 + x)γ dx)

In this section, we study the behavior of the operator L on the spaces L1((0,∞),
eαx dx) and L1((0,∞), (1 + x)γ dx), α, γ ∈ R.

Theorem 6.1. We have the following.

(i) For all α ≥ 0 and <µ ≥ 0, the operator L given by (1.3) is bounded from
L1((0,∞), eαx dx) into L∞((0,∞), eαx dx).

(ii) For all γ ≥ 0 and <µ ≥ 0, the operator L given by (1.3) is bounded from
L1((0,∞), (1 + x)γ dx) into L∞((0,∞), (1 + x)γ dx).

Proof. (i) Note that, for α ≥ 0 and <µ ≥ 0, and using (1.8) and (1.9), we get

that P−<µ

− 1
2

(coshx) is essentially bounded on (0,∞). Then from Proposition 3.1

in [2] the result holds.
(ii) Note that, for γ ≥ 0 and <µ ≥ 0, and using (1.8) and (1.9), we get that

P−<µ

− 1
2

(coshx) is essentially bounded on (0,∞). Then from Proposition 3.1 in [2]

the result holds. �

As a consequence of Proposition 3.1 in [2], we get the following.

Theorem 6.2. The following Parseval-type relation holds:∫ ∞

0

(Ff)(x)g(x) dx =

∫ ∞

0

f(x)(Lg)(x) dx (6.1)

(i) for f, g ∈ L1((0,∞), eαx dx) with α ≥ 0 and <µ ≥ 0
or, alternatively,
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(ii) for f, g ∈ L1((0,∞), (1 + x)γ dx) with γ ≥ 0 and <µ ≥ 0.

Also, as a consequence of Corollary 3.2 in [2], we have the following.

Corollary 6.3. (i) For f ∈ L1((0,∞), eαx dx), α ≥ 0, and <µ ≥ 0, it holds that

L′Tf = TFf (6.2)

on (L1((0,∞), eαx dx))′.
(ii) For f ∈ L1((0,∞), (1 + x)γ dx), γ ≥ 0, and <µ ≥ 0, it holds that

L′Tf = TFf (6.3)

on (L1((0,∞), (1 + x)γ dx))′.
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