Ann. Funct. Anal. 8 (2017), no. 2, 211-214
http://dx.doi.org/10.1215/20088752-3802751
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

NONSIMPLICITY OF CERTAIN UNIVERSAL C*-ALGEBRAS

MARCEL DE JEU, ${ }^{1}$ RACHID EL HARTI, ${ }^{2}$ and PAULO R. PINTO ${ }^{3 *}$
Communicated by V. Valov

Abstract

Given $n \geq 2, z_{i j} \in \mathbb{T}$ such that $z_{i j}=\bar{z}_{j i}$ for $1 \leq i, j \leq n$ and $z_{i i}=1$ for $1 \leq i \leq n$, and integers $p_{1}, \ldots, p_{n} \geq 1$, we show that the universal C^{*}-algebra generated by unitaries u_{1}, \ldots, u_{n} such that $u_{i}^{p_{i}} u_{j}^{p_{j}}=z_{i j} u_{j}^{p_{j}} u_{i}^{p_{i}}$ for $1 \leq i, j \leq n$ is not simple if at least one exponent p_{i} is at least two. We indicate how the method of proof by "working with various quotients" can be used to establish nonsimplicity of universal C*-algebras in other cases.

Let $n \geq 1$, let $\theta=\left(\theta_{i j}\right)$ be a skew symmetric real $n \times n$ matrix, and let z be the matrix defined by $z_{i j}=\mathrm{e}^{2 \pi \mathrm{i} \theta_{i j}}$ for $1 \leq i, j \leq n$. The n-dimensional noncommutative torus \mathcal{T}_{z} is the universal C^{*}-algebra that is generated by unitaries u_{1}, \ldots, u_{n} such that $u_{i} u_{j}=z_{i j} u_{j} u_{i}$ for $1 \leq i, j \leq n$. It is known that \mathcal{T}_{z} is simple if and only if the matrix θ is nondegenerate, that is, if and only if it has the property that, whenever $x \in \mathbb{Z}^{n}$ satisfies $\mathrm{e}^{2 \pi \mathrm{i}\langle x, \theta y\rangle}=1$ for all $y \in \mathbb{Z}^{n}$, then $x=0$ (see [1, Theorem 1.9] and [2, Theorem 3.7]).

The C^{*}-algebra \mathcal{T}_{z} is a deformation of the group C^{*}-algebra of \mathbb{Z}^{n}. It seems natural to consider other families of such deformed group C^{*}-algebras, and, in particular, universal C^{*}-algebras that are obtained by allowing higher powers in the relations for \mathcal{T}_{z}. Therefore, given $n \geq 2$ (the case $n=1$ is clear), $z_{i j} \in \mathbb{T}$ such that $z_{i j}=\bar{z}_{j i}$ for $1 \leq i, j \leq n$ and $z_{i i}=1$ for $1 \leq i \leq n$, and integers $p_{1}, \ldots, p_{n} \geq 1$, we let $\mathcal{A}_{z, p_{1}, \ldots, p_{n}}$ be the universal C*-algebra that is generated by

[^0](2) One can vary the definition of the algebra $\mathcal{A}_{z, p_{1}, \ldots, p_{n}}$ in the proposition by:
(a) requiring that some of the generators are isometries, or partial isometries, and/or
(b) removing some (or even all) of the relations $u_{i}^{p_{i}} u_{j}^{p_{j}}=z_{i j} u_{j}^{p_{j}} u_{i}^{p_{i}}$.

Since the resulting universal C^{*}-algebra has $\mathcal{A}_{z, p_{1}, \ldots, p_{n}}$ as a quotient that is not simple, it is not simple itself.
For example, for $z \in \mathbb{T}$, let \mathcal{B}_{z} be the universal C^{*}-algebra that is generated by a partial isometry v_{1}, an isometry v_{2}, and a unitary v_{3} such that $v_{3} v_{2}=$ $z v_{2} v_{3}$. Then \mathcal{B}_{z} is not simple. Indeed, the universal C^{*}-algebra that is generated by unitaries u_{1}, u_{2}, u_{3} such that

$$
\begin{aligned}
& u_{3} u_{1}^{2}=u_{1}^{2} u_{3}, \\
& u_{3} u_{2}=z u_{2} u_{3}, \\
& u_{2} u_{1}^{2}=u_{1}^{2} u_{2}
\end{aligned}
$$

is a nonsimple quotient of \mathcal{B}_{z}. The higher exponents, responsible for the nonsimplicity of \mathcal{B}_{z}, are not present in the initial relations, but they do occur in those for the quotient.

In general, let us assume that we have a collection $\left\{\mathcal{R}_{i}: i \in I\right\}$ of sets \mathcal{R}_{i} of relations for a common set of symbols \mathcal{G} for elements of a C^{*}-algebra, such that each set of relations \mathcal{R}_{i} implies one fixed set of relations \mathcal{R}. Let us also assume that the universal C*-algebra $\mathrm{C}^{*}\left(\mathcal{R}_{i}\right)$ for each set of relations \mathcal{R}_{i} exists, and is nonzero. Then the universal C^{*}-algebra $\mathrm{C}^{*}(\mathcal{R})$ also exists, has each $\mathrm{C}^{*}\left(\mathcal{R}_{i}\right)$ as a quotient, and is nonzero. If $\mathrm{C}^{*}(\mathcal{R})$ is simple, then these quotient maps are isomorphisms. Since they send generators to generators, the relations from all sets \mathcal{R}_{i} will then hold for the generators of $\mathrm{C}^{*}(\mathcal{R})$. If one can show that the simultaneous validity of these sets of relations (each of which results from a different quotient) leads to a contradiction, this will prove that $\mathrm{C}^{*}(\mathcal{R})$ is not simple.

The above proof of the proposition employs this technique of working with various quotients. As a further example, still using unitaries, consider the universal C^{*}-algebra \mathcal{A} that is generated by unitaries u and v satisfying $u^{4} v=-v^{3} u^{7} v^{2} u^{7}$. We will show that \mathcal{A} is not simple. To this end, consider the universal C^{*}-algebras $\mathcal{A}_{ \pm}$that are generated by unitaries u and v such that $u^{2} v= \pm \mathrm{i} v^{3} u^{7}$. Then $\mathcal{A}_{ \pm} \neq\{0\}$. Indeed, let W be any nonzero unitary operator on a Hilbert space, and put $U_{ \pm}=\mathrm{e}^{\mp \pi \mathrm{i} / 10} W^{2}$ and $V_{ \pm}=W^{-5}$. Then $U_{ \pm}$and $V_{ \pm}$are nonzero unitary operators satisfying the relations for $\mathcal{A}_{ \pm}$. Consequently, $\mathcal{A}_{ \pm} \neq\{0\}$. Now note that the relations for \mathcal{A}_{+}and \mathcal{A}_{-}both imply the relation for \mathcal{A}, so that \mathcal{A} has \mathcal{A}_{+}and \mathcal{A}_{-}as canonical quotients. In particular, $\mathcal{A} \neq\{0\}$. Assuming that \mathcal{A} is simple, one finds that $u^{2} v=\mathrm{i} v^{3} u^{7}$ as well as $u^{2} v=-\mathrm{i} v^{3} u^{7}$ for $u, v \in \mathcal{A}$. This leads to $2 \mathrm{i} 1_{\mathcal{A}}=0_{\mathcal{A}}$, so that $1_{\mathcal{A}}=0_{\mathcal{A}}$ and $\mathcal{A}=\{0\}$. The latter contradiction shows that \mathcal{A} cannot be simple.

Acknowledgment. We thank the anonymous referees for the precise reading of the manuscript and for providing the argument showing that the algebras $\mathcal{A}_{ \pm}$in the final paragraph are nonzero.

Pinto's work was partially funded by Fundação para a Ciência e a Tecnologia/Portugal through projects UID/MAT/04459/2013 and EXCL/MAT-GEO/ 0222/2012.

References

1. N. C. Phillips, Every simple higher dimensional noncommutative torus is an AT-algebra, preprint, arXiv:math/0609783v1 [math.OA]. 211, 212
2. J. Slawny, On factor representations and the C^{*}-algebra of canonical commutation relations, Commun. Math. Phys. 24 (1972), 151-170. Zbl 0225.46068. MR0293942. 211, 212
[^1]
[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Apr. 15, 2016; Accepted Aug. 21, 2016.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 46L99; Secondary 22D25.
 Keywords. universal C*-algebra, nonsimplicity.

[^1]: ${ }^{1}$ Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands.

 E-mail address: mdejeu@math.leidenuniv.nl
 ${ }^{2}$ Department of Mathematics and Computer Sciences, Faculty of Sciences and Techniques, University Hassan I, BP 577 Settat, Morocco.

 E-mail address: rachid.elharti@uhp.ac.ma
 ${ }^{3}$ Department of Mathematics, CAMGSD, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

 E-mail address: ppinto@math.tecnico.ulisboa.pt

