Ann. Funct. Anal. 8 (2017), no. 2, 177-189
http://dx.doi.org/10.1215/20088752-3784315
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

GENERALIZED SHIFT-INVARIANT SYSTEMS AND APPROXIMATELY DUAL FRAMES

ANA BENAVENTE, ${ }^{1}$ OLE CHRISTENSEN, ${ }^{2 *}$ and MARÍA I. ZAKOWICZ ${ }^{3}$

Communicated by P. N. Dowling

Abstract

Dual pairs of frames yield a procedure for obtaining perfect reconstruction of elements in the underlying Hilbert space in terms of superpositions of the frame elements. However, practical constraints often force us to apply sequences that do not exactly form dual frames. In this article, we consider the important case of generalized shift-invariant systems and provide various ways of estimating the deviation from perfect reconstruction that occur when the systems do not form dual frames. The deviation from being dual frames will be measured either in terms of a perturbation condition or in terms of the deviation from equality in the duality conditions.

1. Introduction

Frame theory is a tool to obtain expansions of elements in a Hilbert space in terms of "convenient building blocks." In fact, if two sequences $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ in a separable Hilbert space \mathcal{H} form a pair of dual frames for \mathcal{H}, then each $f \in \mathcal{H}$ has a representation

$$
\begin{equation*}
f=\sum_{k=1}^{\infty}\left\langle f, g_{k}\right\rangle f_{k} . \tag{1.1}
\end{equation*}
$$

In signal processing terms, this is expressed by saying that dual pairs of frames lead to perfect reconstruction. However, practical constraints will often force us to deal with systems that do not lead to perfect reconstruction, for example,

[^0]and approximation on subspaces, but not with the exact concept of approximately dual frames as defined in [3]. The results in the current article will provide various ways of estimating ϵ for the important class of generalized shift-invariant systems, to be introduced next.

2. Preliminaries on GSI-systems

Generalized shift-invariant systems (GSI-systems) were introduced by Hernández, Labate, and Weiss [13] and Ron and Shen [20] as a general framework for considering Gabor systems, shift-invariant systems, and wavelet systems simultaneously. We return to a more detailed description of these systems in Section 3. Considering the translation operator

$$
T_{y}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}), \quad T_{y} f(x)=f(x-y), \quad x, y \in \mathbb{R}
$$

the formal definition of a GSI-system is as follows.
Definition 2.1. A generalized shift-invariant system in $L^{2}(\mathbb{R})$ is a collection of functions of the form $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, where $\left\{\phi_{j}\right\}_{j \in J} \subset L^{2}(\mathbb{R})$ and $\left\{c_{j}\right\}_{j \in J}$ is a countable collection of positive numbers.

For the purpose of this article, we need to be able to verify the Bessel condition for a GSI-system, and to characterize dual frames with the GSI-structure. In this section, we will provide the necessary background information on this.

The following result from [4, Theorem 3.1] provides a convenient sufficient condition for a GSI-system to be a Bessel sequence; it is a generalization of a result in [17]. It is formulated in terms of the Fourier transform, on $L^{1}(\mathbb{R})$ defined by $\widehat{f}(\gamma)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \gamma} d x$, and extended to $L^{2}(\mathbb{R})$ in the usual way.
Lemma 2.2. Given a GSI-system $\left\{T_{c_{j} k} \phi_{j}\right\}_{j \in J, k \in \mathbb{Z}}$ in $L^{2}(\mathbb{R})$, assume that

$$
\begin{equation*}
B:=\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\widehat{\phi}_{j}(\gamma) \widehat{\phi}_{j}\left(\gamma-c_{j}^{-1} k\right)\right|<\infty . \tag{2.1}
\end{equation*}
$$

Then $\left\{T_{c_{j} k} \phi_{j}\right\}_{j \in J, k \in \mathbb{Z}}$ is a Bessel sequence with bound B.
For generalized shift-invariant systems, perfect reconstruction has been characterized in terms of a number of equations. In order to state the duality conditions, we need certain technical conditions. Let

$$
\mathcal{D}:=\left\{f \in L^{2}(\mathbb{R}) \mid \operatorname{supp} \widehat{f} \text { is compact and } \widehat{f} \in L^{\infty}(\mathbb{R})\right\}
$$

It is clear that \mathcal{D} is a dense subspace of $L^{2}(\mathbb{R})$.
The duality conditions are valid under certain very mild technical conditions, stated next. The local integrability condition (LIC) was introduced by Hernández, Labate, and Weiss in [13]; the weaker α-local integrability condition (α-LIC) appeared in [14] by Jakobsen and Lemvig.

Definition 2.3. Consider two GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$.
(i) If

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \frac{1}{c_{j}} \int_{\operatorname{supp} \widehat{f}}\left|\widehat{f}\left(\gamma+c_{j}^{-1} m\right) \widehat{\phi}_{j}(\gamma)\right|^{2} d \gamma<\infty \tag{2.2}
\end{equation*}
$$

for all $f \in \mathcal{D}$, we say that $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ satisfies the LIC condition.
(ii) We say that $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ satisfy the dual α-LIC condition if

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \frac{1}{c_{j}} \int_{-\infty}^{\infty}\left|\widehat{f}(\gamma) \widehat{f}\left(\gamma+c_{j}^{-1} m\right) \widehat{\phi}_{j}(\gamma) \widehat{\widetilde{\phi}}_{j}\left(\gamma+c_{j}^{-1} m\right)\right| d \gamma<\infty \tag{2.3}
\end{equation*}
$$

for all $f \in \mathcal{D}$.
We say that $\left\{T_{c_{j} k} \phi_{j}\right\}_{j \in \mathbb{Z}}$ satisfies the α-LIC condition if (2.3) holds with $\phi_{j}=\widetilde{\phi}_{j}$.
Finally, in order to formulate the duality conditions, we need to consider a certain reindexing of the GSI-systems. Given a GSI-system $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, let

$$
\begin{equation*}
\Lambda:=\left\{c_{j}^{-1} n: j \in J, n \in \mathbb{Z}\right\}, \tag{2.4}
\end{equation*}
$$

and, for $\alpha \in \Lambda$, let

$$
\begin{equation*}
J_{\alpha}:=\left\{j \in J: \exists n \in \mathbb{Z} \text { such that } \alpha=c_{j}^{-1} n\right\} \tag{2.5}
\end{equation*}
$$

In [13], Hernández, Labate, and Weiss characterized duality for two GSIsystems satisfying the LIC condition. Jakobsen and Lemvig proved in [14] that the same result holds under the weaker dual α-LIC condition.

Proposition 2.4. Assume that the GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are Bessel sequences and that they satisfy the dual α-LIC condition. Then $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are dual frames if and only if

$$
\begin{equation*}
\sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\tilde{\phi}}_{j}(\gamma+\alpha)=\delta_{\alpha, 0}, \quad \text { almost every } \gamma \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

for all $\alpha \in \Lambda$.
Note that (2.6) is equivalent to the equations

$$
\left\{\begin{array}{l}
\sum_{j \in J} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma)-1=0, \tag{2.7}\\
\sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \widehat{\widehat{\phi}}_{j}(\gamma) \\
\widetilde{\phi_{j}}
\end{array} j(\gamma+\alpha)=0, \quad \alpha \in \Lambda \backslash\{0\} . ~ \$\right.
$$

The formulation (2.7) is more convenient for our purpose. In fact, for GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, we will show that we can estimate the deviation from perfect reconstruction by the deviation from equality in (2.7).

3. Approximately dual GSI-Frames

We will now derive various ways of estimating the deviation from perfect reconstruction for a pair of GSI-systems. The first result (to be stated in Theorem 3.3) will measure the deviation from the given systems being dual frames directly in terms of the deviation from equality in the duality conditions (2.7). We begin with a few technical lemmas.
Lemma 3.1. Assume that $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ satisfy the dual $\alpha-L I C$ condition. Then

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \frac{1}{c_{j}} \int_{-\infty}^{\infty}\left|\widehat{f}(\gamma) \widehat{g}\left(\gamma+c_{j}^{-1} m\right) \widehat{\phi}_{j}(\gamma) \widehat{\widetilde{\phi}}_{j}\left(\gamma+c_{j}^{-1} m\right)\right| d \gamma<\infty \tag{3.1}
\end{equation*}
$$

for all $f, g \in \mathcal{D}$.
Proof. Define the function κ via $\widehat{\kappa}(\gamma)=\max (|\widehat{f}(\gamma)|,|\widehat{g}(\gamma)|)$; then $\kappa \in \mathcal{D}$ and

$$
\left|\widehat{f}(\gamma) \widehat{g}\left(\gamma+c_{j}^{-1} m\right)\right| \leq\left|\widehat{\kappa}(\gamma) \widehat{\kappa}\left(\gamma+c_{j}^{-1} m\right)\right| .
$$

Thus, the expression (3.1) is finite by the dual α-LIC condition applied on the function κ.

The following lemma is a variant of a result in [13, Proposition 2.4], which is a key step in the proof of Proposition 2.4. The modifications consist in the use of the dual α-LIC condition instead of the stronger LIC-condition used in [13]; also, in [13] the functions f and g below were identical, while it is essential for our purpose that they are allowed to be different functions.
Lemma 3.2. Assume that the GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ satisfy the dual α-LIC-condition. Then for $f, g \in \mathcal{D}$, the function

$$
\begin{equation*}
\omega(y):=\sum_{j \in J} \sum_{k \in \mathbb{Z}}\left\langle T_{y} f, T_{c_{j} k} \phi_{j}\right\rangle\left\langle T_{c_{j} k} \widetilde{\phi}_{j}, T_{y} g\right\rangle \tag{3.2}
\end{equation*}
$$

is continuous, and

$$
\begin{equation*}
\omega(y)=\sum_{\alpha \in \Lambda}\left(\int_{-\infty}^{\infty} \widehat{f}(\gamma) \overline{\bar{g}(\gamma+\alpha)} \sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\tilde{\phi}_{j}}(\gamma+\alpha)\right) e^{2 \pi i \alpha \cdot y} \tag{3.3}
\end{equation*}
$$

pointwise for all $y \in \mathbb{R}$.
Proof. We will refer to [13] for the parts of the proof that are unaffected by the mentioned changes, and focus on the parts where the dual α-LIC condition is used. First, for any $f \in \mathcal{D}$, the arguments in [13] show that $\left\langle f, T_{c_{j} k} \phi_{j}\right\rangle$ is the $(-k)$ th Fourier coefficient of the 1-periodic function

$$
\begin{equation*}
F_{j}(\mu)=\frac{1}{c_{j}} \sum_{n \in \mathbb{Z}} \widehat{f}\left(c_{j}^{-1}(\mu+n)\right) \overline{\hat{\phi}_{j}\left(c_{j}^{-1}(\mu+n)\right)} \tag{3.4}
\end{equation*}
$$

Using Parseval's equation and elementary manipulations on the sums (see [13] or [1]), it follows that for $j \in J$, the function

$$
\omega_{j}(y):=\sum_{k \in \mathbb{Z}}\left\langle T_{y} f, T_{c_{j} k} \phi_{j}\right\rangle\left\langle T_{c_{j} k} \widetilde{\phi}, T_{y} g\right\rangle
$$

is continuous and equals a trigonometric polynomial,

$$
\omega_{j}(y)=\sum_{m \in \mathbb{Z}} c_{m, j} e^{2 \pi i c_{j}^{-1} m y}
$$

where the Fourier coefficients are

$$
\begin{equation*}
c_{m, j}=\frac{1}{c_{j}} \int_{-\infty}^{\infty} \widehat{f}(\gamma) \overline{\widehat{g}\left(\gamma+c_{j}^{-1} m\right)} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}\left(\gamma+c_{j}^{-1} m\right) d \gamma \tag{3.5}
\end{equation*}
$$

Thus, in order to show that the function ω is continuous, it is enough to show that

$$
\begin{equation*}
\sum_{j \in J} \sum_{m \in \mathbb{Z}}\left|c_{m, j}\right|<\infty ; \tag{3.6}
\end{equation*}
$$

this is an easy application of Lemma 3.1.
The following result measures the deviation from exact reconstruction in terms of the deviation from equality in the duality conditions in (2.6). It generalizes a result from [3, Theorem 5.2]; we discuss this in more detail in Example 3.5.
Theorem 3.3. Assume that the GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are Bessel sequences and that they satisfy the dual α-LIC-condition for all $f \in \mathcal{D}$; denote the associated preframe operators by T (resp., U). Then

$$
\begin{align*}
\left\|I-U T^{*}\right\| \leq & \left\|\sum_{j \in J} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma)-1\right\|_{\infty} \\
& +\sum_{\alpha \in \Lambda \backslash\{0\}} \| \sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}}(\gamma) \tag{3.7}\\
\widetilde{क}_{j} & (\gamma+\alpha) \|_{\infty}
\end{align*}
$$

Proof. Note that in terms of the function ω in (3.2), we have $\omega(0)=\left\langle U T^{*} f, g\right\rangle$. Using (3.3) in Lemma 3.2 with $y=0$, we see that for $f, g \in \mathcal{D}$,

$$
\begin{aligned}
&\left\langle\left(U T^{*} f-f\right), g\right\rangle= \sum_{\alpha \in \Lambda}\left(\int_{-\infty}^{\infty} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma+\alpha)} \sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma+\alpha)\right)-\langle\widehat{f}, \widehat{g}\rangle \\
&= \int_{-\infty}^{\infty} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma)}\left(\sum_{j \in J} \frac{1}{c_{j}} \widehat{\phi}_{j}(\gamma)\right. \\
&\left.\widetilde{क}_{j}(\gamma)-1\right) d \gamma \\
&+\sum_{\alpha \in \Lambda \backslash\{0\}} \int_{-\infty}^{\infty} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma+\alpha)} \sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma+\alpha) d \gamma
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left|\left\langle\left(U T^{*} f-f\right), g\right\rangle\right| \\
& \quad \leq \int_{-\infty}^{\infty}|\widehat{f}(\gamma) \overline{\widehat{g}(\gamma)}|\left|\sum_{j \in J} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widehat{\phi}_{j}}(\gamma)-1\right| d \gamma \\
& \quad+\sum_{\alpha \in \Lambda \backslash\{0\}} \int_{-\infty}^{\infty}|\widehat{f}(\gamma) \overline{\widehat{g}(\gamma+\alpha)}|\left|\sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widehat{\phi}_{j}}(\gamma+\alpha)\right| d \gamma
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\|\sum_{j \in J} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma)-1\right\|_{\infty}\|f\|_{2}\|g\|_{2} \\
& +\sum_{\alpha \in \Lambda \backslash\{0\}}\left\|\sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma+\alpha)\right\|_{\infty}\|f\|_{2}\|g\|_{2}
\end{aligned}
$$

Since \mathcal{D} is dense in $L^{2}(\mathbb{R})$, it follows that

$$
\begin{aligned}
\left\|U T^{*} f-f\right\|_{2}= & \sup _{\|g\|=1}\left|\left\langle\left(U T^{*} f-f\right), g\right\rangle\right| \\
\leq & \left(\left\|\sum_{j \in J} \frac{1}{c_{j}} \widehat{\widehat{\phi}_{j}(\gamma)} \widehat{\hat{\phi}_{j}}(\gamma)-1\right\|_{\infty}\right. \\
& \left.+\sum_{\alpha \in \Lambda \backslash\{0\}}\left\|\sum_{j \in J_{\alpha}} \frac{1}{c_{j}} \widehat{\widehat{\phi}_{j}(\gamma)} \widehat{\phi_{j}}(\gamma+\alpha)\right\|_{\infty}\right)\|f\|_{2}
\end{aligned}
$$

as desired.
We will now derive some consequences of Theorem 3.3. First, let us consider a shift-invariant system, that is, a collection of functions $\left\{T_{c k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, where $c>0$ and $\left\{\phi_{j}\right\}_{j \in J}$ is a countable collection of functions in $L^{2}(\mathbb{R})$; this corresponds to a GSI-system where the parameters c_{j} are independent of $j \in J$. (The frame analysis of such systems was pioneered by Ron and Shen [19] and Janssen [15].) For a shift-invariant system, the index sets Λ and J_{α} take the form $\Lambda=c^{-1} \mathbb{Z}, J_{\alpha}=$ J. Furthermore, the LIC is automatically satisfied if $\left\{T_{c k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ is a Bessel sequence (see [14]). Thus, we obtain the following explicit version of Theorem 3.3.

Corollary 3.4. Assume that the shift-invariant systems $\left\{T_{c k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are Bessel sequences, and denote the associated preframe operators by T (resp., U). Then

$$
\begin{align*}
\left\|I-U T^{*}\right\| \leq & \frac{1}{c}\left(\left\|\sum_{j \in J} \overline{\widehat{\phi}_{j}(\gamma)} \widehat{\widetilde{\phi}}_{j}(\gamma)-c\right\|_{\infty}\right. \\
& \left.+\sum_{n \in \mathbb{Z} \backslash\{0\}}\left\|\sum_{j \in J}{\widehat{\widehat{\phi}_{j}}(\gamma)}^{\widehat{\phi}_{j}}(\gamma+n / c)\right\|_{\infty}\right) . \tag{3.8}
\end{align*}
$$

Let us consider a concrete case, namely, the Gabor systems. For $b \in \mathbb{R}$, define the modulation operator on $L^{2}(\mathbb{R})$ by $E_{b} f(x)=e^{2 \pi i b x} f(x)$.

Example 3.5. Given $a, b>0$, the Gabor system generated by a function $g \in L^{2}(\mathbb{R})$ is given by

$$
\left\{E_{m b} T_{n a} g\right\}_{m, n \in \mathbb{Z}}=\left\{e^{2 \pi i m b x} g(x-n a)\right\}_{m, n \in \mathbb{Z}}
$$

Note that $E_{m b} T_{n a} g(x)=e^{2 \pi i m n a b} T_{n a} E_{m b} g(x)$. It follows that two Gabor frames $\left\{E_{m b} T_{n a} g\right\}_{m, n \in \mathbb{Z}}$ and $\left\{E_{m b} T_{n a} \widetilde{g}\right\}_{m, n \in \mathbb{Z}}$ are dual frames if and only if the shiftinvariant systems $\left\{T_{n a} E_{m b} g\right\}_{m, n \in \mathbb{Z}}$ and $\left\{T_{n a} E_{m b} \widetilde{g}\right\}_{m, n \in \mathbb{Z}}$ are dual frames; furthermore, denoting the preframe operators for $\left\{E_{m b} T_{n a} g\right\}_{m, n \in \mathbb{Z}}$ and $\left\{E_{m b} T_{n a} \widetilde{g}\right\}_{m, n \in \mathbb{Z}}$
by V (resp., W) and the preframe operators for $\left\{T_{n a} E_{m b} g\right\}_{m, n \in \mathbb{Z}}$ and $\left\{T_{n a} E_{m b} \widetilde{g}\right\}_{m, n \in \mathbb{Z}}$ by T (resp., U), we have

$$
W V^{*} f=\sum_{m, n \in \mathbb{Z}}\left\langle f, E_{m b} T_{n a} g\right\rangle E_{m b} T_{n a} \widetilde{g}=\sum_{m, n \in \mathbb{Z}}\left\langle f, T_{n a} E_{m b} g\right\rangle T_{n a} E_{m b} \widetilde{g}=U T^{*} f
$$

With $\widehat{E_{m b} g}(\gamma)=T_{m b} \widehat{g}(\gamma)=\widehat{g}(\gamma-b)$, Corollary 3.4 now yields the estimate

$$
\begin{align*}
\left\|I-W V^{*}\right\| \leq & \frac{1}{a}\left(\left\|\sum_{m \in \mathbb{Z}} \overline{\hat{g}(\gamma-m b)} \widehat{\widetilde{g}}(\gamma-m b)-a\right\|_{\infty}\right. \\
& \left.+\sum_{n \in \mathbb{Z} \backslash\{0\}}\left\|\sum_{m \in \mathbb{Z}} \overline{\widehat{g}(\gamma-m b)} \widehat{\widetilde{g}}(\gamma-m b-n / a)\right\|_{\infty}\right) . \tag{3.9}
\end{align*}
$$

Note that for periodicity reasons, it is enough to take the L^{∞}-norm in (3.9) over $\gamma \in[0, b[$. Now it is easy to estimate (3.9), for example, by imposing certain decay conditions on the functions g, \widetilde{g}. In fact, estimates of terms like those in (3.9) are standard in frame theory (see, e.g., [1], [6], [7]).

In the particular case of Gabor frames, a similar result was obtained in the time domain in [3], but by applying the stronger conditions that the functions g, \widetilde{g} belong to the Wiener space.

The next example shows that Theorem 3.3 is not appropriate for application to wavelet systems. This will motivate the analysis to follow, which will lead to an alternative method of estimating the deviation from perfect reconstruction.

Example 3.6. Let the scaling operator on $L^{2}(\mathbb{R})$ be given by $D f(x):=2^{1 / 2} f(2 x)$. The wavelet system generated by a function $\psi \in L^{2}(\mathbb{R})$ is the collection of functions

$$
\left\{D^{j} T_{k} \psi\right\}_{j, k \in \mathbb{Z}}=\left\{2^{j / 2} \psi\left(2^{j} x-k\right)\right\}_{j, k \in \mathbb{Z}}
$$

A wavelet system $\left\{D^{j} T_{k} \psi\right\}_{j, k \in \mathbb{Z}}$ in $L^{2}(\mathbb{R})$ is a GSI-system. In fact,

$$
\left\{D^{j} T_{k} \psi\right\}_{j, k \in \mathbb{Z}}=\left\{T_{2^{-j} k} D^{j} \psi\right\}_{j, k \in \mathbb{Z}}=\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}
$$

where $c_{j}=2^{-j}, \phi_{j}=D^{j} \psi, J=\mathbb{Z}$. Note that the set Λ in (2.4) can be written as

$$
\Lambda=\left\{2^{j} n \mid j, n \in \mathbb{Z}\right\}=\left\{2^{k} m \mid k \in \mathbb{Z}, m \text { odd }\right\}
$$

and, given $\alpha \in \Lambda$ on the form $\alpha=2^{k} m$ where $k \in \mathbb{Z}$ and m is odd,

$$
\begin{equation*}
J_{\alpha}=\left\{j \in \mathbb{Z} \mid \exists n \in \mathbb{Z} \text { such that } 2^{k} m=2^{j} n\right\}=\{\ldots, k-1, k\} . \tag{3.10}
\end{equation*}
$$

The duality equations (2.7) take the form

$$
\left\{\begin{array}{l}
\sum_{j \in \mathbb{Z}} \overline{\widehat{\psi}\left(2^{-j} \gamma\right)} \widehat{\widetilde{\psi}}\left(2^{-j} \gamma\right)-1=0, \tag{3.11}\\
\sum_{j=-\infty}^{k} \overline{\widehat{\psi}\left(2^{-j} \gamma\right)} \widehat{\psi}\left(2^{-j}\left(\gamma+2^{k} m\right)\right)=0, \quad k \in \mathbb{Z}, m \text { odd } .
\end{array}\right.
$$

For $m, k \in \mathbb{Z}$, consider the function

$$
\theta_{m, k}(\gamma):=\sum_{j=-\infty}^{k} \overline{\widehat{\psi}\left(2^{-j} \gamma\right)} \widehat{\widetilde{\psi}}\left(2^{-j}\left(\gamma+2^{k} m\right)\right)
$$

then

$$
\begin{aligned}
\theta_{m, k+1}(\gamma) & =\sum_{j=-\infty}^{k+1} \overline{\widehat{\psi}\left(2^{-j} \gamma\right)} \widehat{\widetilde{\psi}}\left(2^{-j}\left(\gamma+2^{k+1} m\right)\right) \\
& =\sum_{j=-\infty}^{k+1} \overline{\widehat{\psi}\left(2^{-(j-1)} \gamma / 2\right)} \widehat{\widetilde{\psi}}\left(2^{-(j-1)}\left(\gamma / 2+2^{k} m\right)\right) \\
& =\sum_{j=-\infty}^{k} \overline{\widehat{\psi}\left(2^{-j} \gamma / 2\right)} \widehat{\widetilde{\psi}}\left(2^{-j}\left(\gamma / 2+2^{k} m\right)\right)=\theta_{m, k}(\gamma / 2)
\end{aligned}
$$

In particular, this shows that $\left\|\theta_{m, k}\right\|_{\infty}$ is independent of $k \in \mathbb{Z}$; in other words, the second set of equations in (3.11) holds if and only if the equation holds for $k=0$; that is, if and only if

$$
\sum_{j=-\infty}^{0} \overline{\widehat{\psi}\left(2^{-j} \gamma\right)} \widehat{\widetilde{\psi}}\left(2^{-j}(\gamma+m)\right)=0, \quad \forall m \text { odd }
$$

If just one of the α-equations in (2.7) does not hold, then $\left\|\theta_{m, k}\right\|_{\infty} \neq 0$ for some m, k; since this term appears infinitely often in the infinite sum on the right-hand side of (3.7), the estimate is not useful. The conclusion is that for wavelet systems, the deviation from equality in the duality equations seldom gives a useful estimate for the deviation from perfect reconstruction.

Motivated by the negative outcome in 3.6, we will now derive an alternative method for estimating the deviation from perfect reconstruction. Here we consider again two GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, but now we will measure the deviation from perfect reconstruction in terms of how much the two systems deviate from a pair of dual frames $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, measured via the Bessel condition in Lemma 2.2.

Theorem 3.7. Assume that the GSI-systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are Bessel sequences, with preframe operators T and U. Furthermore, let $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ be a pair of dual frames for $L^{2}(\mathbb{R})$, with Bessel bounds B_{g} (resp., $B_{\tilde{g}}$). Finally, let

$$
B_{g-\phi}:=\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\left(\widehat{g_{j}}-\widehat{\phi_{j}}\right)(\gamma)\left(\widehat{g_{j}}-\widehat{\phi}_{j}\right)\left(\gamma-c_{j}^{-1} k\right)\right|
$$

and

$$
B_{\tilde{g}-\widetilde{\phi}}:=\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\left(\widehat{\widetilde{g}}_{j}-\widehat{\widetilde{\phi}}_{j}\right)(\gamma)\left(\widehat{\widetilde{g}_{j}}-\widehat{\widetilde{\phi}}_{j}\right)\left(\gamma-c_{j}^{-1} k\right)\right| .
$$

Then

$$
\begin{equation*}
\left\|I-U T^{*}\right\| \leq B_{\tilde{g}}^{1 / 2} B_{g-\phi}^{1 / 2}+B_{\tilde{g}-\tilde{\phi}}^{1 / 2}\left(B_{g-\phi}^{1 / 2}+B_{g}^{1 / 2}\right) \tag{3.12}
\end{equation*}
$$

Proof. Denote the preframe operators for $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ by V and W, respectively. Then for $f \in L^{2}(\mathbb{R})$,

$$
\begin{align*}
\left\|f-U T^{*} f\right\| & =\left\|W V^{*} f-U T^{*} f\right\| \\
& =\left\|W\left(V^{*}-T^{*}\right) f+(W-U) T^{*} f\right\| \\
& \leq(\|W\|\|V-T\|+\|W-U\|\|T\|)\|f\| . \tag{3.13}
\end{align*}
$$

We now estimate the terms in (3.13). Clearly $\|W\| \leq B_{\widetilde{g}}^{1 / 2}$. Furthermore, $V-T$ is the preframe operator for the GTI-system $\left\{T_{c_{j} k}\left(g_{j}-\phi_{j}\right)\right\}_{k \in \mathbb{Z}, j \in J}$; thus Lemma 2.2 implies that $\|V-T\| \leq B_{g-\phi}^{1 / 2}$. Similarly, $\|W-U\| \leq B_{\tilde{g}-\widetilde{\phi}}^{1 / 2}$. Using the fact that $\|T\| \leq\|T-V\|+\|V\| \leq B_{g-\phi}^{1 / 2}+B_{g}^{1 / 2}$, we finally arrive at the estimate (3.12).

Theorem 3.7 has recently been used to construct approximately dual frames of Gabor frames generated by the Gaussian (see [2] for details). A further consequence of the analysis in [2] is that certain scalings of the B -splines B_{N} converge towards the Gaussian whenever $N \rightarrow \infty$, in the sense that the Bessel bound for any Gabor system generated by the difference between the scaled B-splines and the Gaussian tends to zero. In particular, the result implies that, for any choice of translation parameter $a>0$ and modulation parameter $b>0$ such that $a b<1$, the Gabor system generated by the scaled B-splines generates frames whenever the order of the B-spline is sufficiently high. This result is rather surprising in view of the many known obstructions to the frame property for B-splines (see [8], [11], [12], [16], [18]). We also note that the arguments used in the proof are of a general nature, which allows for a similar formulation for general frames in Hilbert spaces (see [5]).

The next result is a consequence of Theorem 3.7 and its proof. Actually, the result highlights the key idea behind all the results in the article. Indeed, we will consider two dual GSI frames $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and estimate the deviation from perfect reconstruction that occurs when the windows-typically due to practical constraints-are "truncated." Due to the nature of the GSIconditions, the truncation will take place in the Fourier domain.

Corollary 3.8. Assume that $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ are dual frames and that

$$
B_{g}:=\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\widehat{g}_{j}(\gamma) \widehat{g_{j}}\left(\gamma-c_{j}^{-1} k\right)\right|<\infty
$$

and

$$
B_{\widetilde{g}}:=\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\widehat{\widetilde{g}}_{j}(\gamma) \widehat{\widetilde{g}}_{j}\left(\gamma-c_{j}^{-1} k\right)\right|<\infty
$$

Given two collections of compact sets $\left\{S_{j}\right\}_{j \in J},\left\{\widetilde{S}_{j}\right\}_{j \in J} \subset \mathbb{R}$, define the functions ϕ_{j} and $\widetilde{\phi}_{j}$ by

$$
\begin{equation*}
\widehat{\phi_{j}}:=\widehat{g}_{j} \chi_{S_{j}}, \quad \widehat{\phi}_{j}:=\widehat{\widetilde{g}}_{j} \chi_{\widetilde{S}_{j}}, \quad j \in J \tag{3.14}
\end{equation*}
$$

Finally, denote the preframe operators for the GSI systems $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ by T (resp., U). Then

$$
\begin{aligned}
\left\|I-U T^{*}\right\| \leq & B_{\widetilde{g}}^{1 / 2}\left(\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\left(\widehat{g_{j}} \chi_{\mathbb{R} \backslash S_{j}}\right)(\gamma)\left(\widehat{g_{j}} \chi_{\mathbb{R} \backslash S_{j}}\right)\left(\gamma-c_{j}^{-1} k\right)\right|\right)^{1 / 2} \\
& +B_{g}^{1 / 2}\left(\sup _{\gamma \in \mathbb{R}} \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\left(\widehat{\widetilde{g_{j}}} \chi_{\mathbb{R} \backslash \widetilde{S_{j}}}\right)(\gamma)\left(\widehat{\widetilde{g_{j}}} \chi_{\mathbb{R} \backslash \widetilde{S_{j}}}\right)\left(\gamma-c_{j}^{-1} k\right)\right|\right)^{1 / 2} .
\end{aligned}
$$

Proof. The definition of the functions ϕ_{j} immediately shows that

$$
\begin{equation*}
\sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\widehat{\phi}_{j}(\gamma) \widehat{\phi}_{j}\left(\gamma-c_{j}^{-1} k\right)\right| \leq \sum_{j \in J} \sum_{k \in \mathbb{Z}} \frac{1}{c_{j}}\left|\widehat{g}_{j}(\gamma) \widehat{g}_{j}\left(\gamma-c_{j}^{-1} k\right)\right| \leq B_{g} \tag{3.15}
\end{equation*}
$$

for almost every $\gamma \in \mathbb{R}$; thus $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ is a Bessel sequence. By the symmetry in the conditions, $\left\{T_{c_{j} k} \widetilde{\phi}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ is also a Bessel sequence.

In order to obtain the desired estimate on $\left\|I-U T^{*}\right\|$, we now refer to (3.13). As before, $\|W\| \leq B_{\tilde{g}}^{1 / 2}$. Furthermore, by (3.15), B_{g} is a Bessel bound for $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$, so $\|T\| \leq B_{g}$. The rest follows from the estimates on $\|V-T\|$ and $\|W-U\|$ in the proof of Theorem 3.7.

It is clear from the proof of Corollary 3.8 that the same idea can be used "the opposite way around." That is, if we know that certain GSI-systems generated by compactly supported truncated versions $g_{j}, \widetilde{g_{j}}$ of some functions $\varphi_{j}, \widetilde{\varphi_{j}}$ generate dual frames or approximately dual frames, then Bessel estimates will yield information about how far the GSI-systems generated by $\varphi_{j}, \widetilde{\varphi_{j}}$ are from yielding perfect reconstruction. We leave the derivations of concrete statements to the interested reader.

In the concrete case of wavelet systems, we will now derive a completely explicit version of Corollary 3.8. All terms will be formulated via Bessel conditions that can be estimated by standard techniques in frame theory (see [1], [6], [7]). We will see that it is important that the "cut-of" determined by the sets S_{j} in Corollary 3.8 is allowed to depend on j.

Example 3.9. Consider a dual pair of frames $\left\{D^{j} T_{k} g\right\}_{j, k \in \mathbb{Z}},\left\{D^{j} T_{k} \widetilde{g}\right\}_{j, k \in \mathbb{Z}}$. As we have seen in Example 3.6, they correspond to GSI-systems $\left\{T_{c_{j} k} g_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ and $\left\{T_{c_{j} k} \widetilde{g}_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ with $c_{j}=2^{-j}, g_{j}=D^{j} g, \widetilde{g}_{j}=D^{j} \widetilde{g}$, and $J=\mathbb{Z}$. Now,

$$
\widehat{g_{j}}(\gamma)=D^{-j} \widehat{g}(\gamma) .
$$

Thus, it is natural to consider the functions ϕ_{j} defined by

$$
\left.\widehat{\phi}_{j}(\gamma)=D^{-j}\left(\widehat{g} \chi_{[-N, N]}\right)(\gamma)=\widehat{g}_{j}(\gamma) \chi_{\left[-2^{j} N, 2^{j} N\right]}\right)(\gamma)
$$

for some $N \in \mathbb{N}$; this corresponds exactly to (3.14) with $S_{j}=\left[-2^{j} N, 2^{j} N\right]$. Alternatively, denoting the Fourier transform by \mathcal{F} and using the convolution, to be denoted by $*$, we have

$$
\phi_{j}=\mathcal{F}^{-1} D^{-j}\left(\widehat{g} \chi_{[-N, N]}\right)=D^{j} \mathcal{F}^{-1}\left(\widehat{g} \chi_{[-N, N]}\right)=D^{j}\left(g * \mathcal{F}^{-1} \chi_{[-N, N]}\right) ;
$$

thus, the GSI-system $\left\{T_{c_{j} k} \phi_{j}\right\}_{k \in \mathbb{Z}, j \in J}$ in fact equals the wavelet system $\left\{D^{j} T_{k} \phi\right\}_{j, k \in \mathbb{Z}}$ with $\phi=g * \mathcal{F}^{-1} \chi_{[-N, N]}$.

Clearly, we also define the function $\widetilde{\phi}$ by $\widetilde{\phi}=\widetilde{g} * \mathcal{F}^{-1} \chi_{[-N, N]}$. Now, letting T and U denote the preframe operators for the wavelet systems $\left\{D^{j} T_{k} \phi\right\}_{j, k \in \mathbb{Z}}$ and $\left\{D^{j} T_{k} \widetilde{\phi}\right\}_{j, k \in \mathbb{Z}}$, the estimate in Example 3.6 takes the form

$$
\begin{aligned}
\| I- & U T^{*} \| \\
\leq & B_{\widetilde{g}}^{1 / 2}\left(\sup _{\gamma \in[1,2]} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\left|\left(\widehat{g} \chi_{\mathbb{R} \backslash[-N, N]}\right)\left(2^{-j} \gamma\right)\left(\widehat{g} \chi_{\mathbb{R} \backslash[-N, N]}\right)\left(2^{-j} \gamma-k\right)\right|\right)^{1 / 2} \\
& \left.+B_{g}^{1 / 2}\left(\sup _{\gamma \in[1,2]} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mid \widehat{\widetilde{g}} \chi_{\mathbb{R} \backslash[-N, N]}\right)\left(2^{-j} \gamma\right)\left(\widehat{\widetilde{g}} \chi_{\mathbb{R} \backslash[-N, N]}\right)\left(2^{-j} \gamma-k\right) \mid\right)^{1 / 2} .
\end{aligned}
$$

The terms appearing in parentheses can be estimated exactly as in the standard calculations for the Bessel bound of a wavelet system (see [1], [6], [7]).

Acknowledgments. The authors' work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL) grants PIP 11220110100033CO and PROICO 317902, respectively. Christensen would like to thank CONICET and the Department of Mathematics, Universidad Nacional de San Luis, for their support and hospitality during visits in 2015 and 2016. We would also like to thank the reviewer for useful suggestions for improvements, especially for prompting us to add more comments about applications.

References

1. O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Basel, 2016. Zbl 06507959. MR3495345. DOI 10.1007/978-3-319-25613-9. 178, 181, 184, 187, 188
2. O. Christensen, H. O. Kim, and R. Y. Kim, B-spline approximations of the Gaussian and their frame properties, in preparation. 186
3. O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process. 9 (2010), no. 1-3, 77-89. Zbl 1228.42031. MR2814342. 178, 179, 182, 184
4. O. Christensen and A. Rahimi, Frame properties of wave packet systems in $L^{2}\left(R^{d}\right)$, Adv. Comput. Math. 29 (2008), no. 2, 101-111. Zbl 1152.42013. MR2420867. DOI 10.1007/ s10444-007-9038-3. 179
5. O. Christensen and M. Zakowicz, Paley-Wiener type perturbations of frames and the deviation from perfect reconstruction, preprint, to appear in Azerb. J. Math. 186
6. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961-1005. Zbl 0738.94004. MR1066587. DOI 10.1109/18.57199. 178, 184, 187, 188
7. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992. Zbl 0776.42018. MR1162107. DOI 10.1137/1.9781611970104. 178, 184, 187, 188
8. V. Del Prete, Estimates, decay properties, and computation of the dual function for Gabor frames, J. Fourier Anal. Appl. 5 (1999), no. 6, 545-562. Zbl 0948.42024. MR1752589. DOI 10.1007/BF01257190. 186
9. H. G. Feichtinger, A. Grybos, and D. M. Onchis, Approximate dual Gabor atoms via the adjoint lattice method, Adv. Comput. Math. 40 (2014), no. 3, 651-665. Zbl 1309.42043. MR3265737. 178
10. H. G. Feichtinger, D. M. Onchis, and C. Wiesmeyr, Construction of approximate dual wavelet frames, Adv. Comput. Math. 40 (2014), no. 1, 273-282. Zbl 1322.65122. MR3158023. DOI 10.1007/s10444-013-9307-2. 178
11. K. Gröchenig, The mystery of Gabor frames, J. Fourier Anal. Appl. 20 (2014), no. 4, 865-895. Zbl 1309.42045. MR3232589. DOI 10.1007/s00041-014-9336-3. 186
12. K. Gröchenig, A. J. E. M. Janssen, N. Kaiblinger, and G. E. Pfander, Note on B-splines, wavelet scaling functions, and Gabor frames, IEEE Trans. Inform. Theory 49 (2003), no. 12, 3318-3320. Zbl 1286.94033. MR2045812. DOI 10.1109/TIT.2003.820022. 186
13. E. Hernández, D. Labate, and G. Weiss, A unified characterization of reproducing systems generated by a finite family, II, J. Geom. Anal. 12 (2002), no. 4, 615-662. Zbl 1039.42032. MR1916862. DOI 10.1007/BF02930656. 179, 180, 181
14. M. S. Jakobsen and J. Lemvig, Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8447-8480. Zbl 06632591. MR3551577. DOI 10.1090/tran/6594. 179, 180, 183
15. A. J. E. M. Jannsen, "The duality condition for Weyl-Heisenberg frames" in Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 1998, 33-84. Zbl 0890.42004. MR1601119. 183
16. T. Kloos and J. Stöckler, Zak transforms and Gabor frames of totally positive functions and exponential B-splines, J. Approx. Theory 184 (2014), 209-237. Zbl 1291.42024. MR3218799. DOI 10.1016/j.jat.2014.05.010. 186
17. D. Labate, G. Weiss, and E. Wilson, "An approach to the study of wave packet systems" in Wavelets, Frames and Operator Theory, Contemp. Math. 345, Amer. Math. Soc., Providence, 2004, 215-235. Zbl 1063.42019. MR2066831. DOI 10.1090/conm/345/06250. 179
18. J. Lemvig and K. H. Nielsen, Counterexamples to the B-spline conjecture for Gabor frames, preprint, arXiv:1507.03982v3 [math.FA]. 186
19. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L^{2}\left(\mathbb{R}^{d}\right)$, Canad. J. Math. 47 (1995), no. 5, 1051-1094. Zbl 0838.42016. MR1350650. DOI 10.4153/ CJM-1995-056-1. 183
20. A. Ron and Z. Shen, Generalized shift-invariant systems, Constr. Approx. 22 (2005), no. 1, 1-45. Zbl 1080.42025. MR2132766. DOI 10.1007/s00365-004-0563-8. 179
${ }^{1}$ Instituto de Matemática Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, D5700HHW San Luis, Argentina.

E-mail address: abenaven@unsl.edu.ar
${ }^{2}$ Technical University of Denmark, DTU Compute, 2800 Lyngby, Denmark. E-mail address: ochr@dtu.dk
${ }^{3}$ Departamento de Matemática, Universidad Nacional de San Luis, D5700HHW San Luis, Argentina.

E-mail address: mzakowi@unsl.edu.ar

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received May 25, 2016; Accepted Aug. 12, 2016.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 42C15; Secondary 46E40.
 Keywords. approximately dual frames, frames, generalized shift-invariant systems.

