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Abstract. We study the filtering of the perspective of a regular operator
map of several variables through a completely positive linear map. By this
method we are able to extend known operator inequalities of two variables to
several variables, with applications in the theory of operator means of several
variables. We also extend Lieb and Ruskai’s convexity theorem from two to
n+ 1 operator variables for any natural number n.

1. Introduction

We study the filtering of a regular operator map through a completely positive
linear map Φ. A main result is the inequality

F
(
Φ(A1), . . . ,Φ(Ak)

)
≤ Φ

(
F (A1, . . . , Ak)

)
,

where A1, . . . , Ak are positive definite operators on a Hilbert space of finite dimen-
sion, and F is a positively homogeneous convex regular operator map of k vari-
ables. If Gk denotes any of the various geometric means of k variables studied in
the literature, we obtain as a special case the inequality

Φ
(
Gk(A1, . . . , Ak)

)
≤ Gk

(
Φ(A1), . . . ,Φ(Ak)

)
.

This inequality extends a result in the literature for k = 2, for geometric means of
k variables that may be obtained inductively by the power mean of two variables,
and for means that are limits of such means, including the Karcher mean (see [3]).
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We extend Lieb and Ruskai’s convexity theorem from two to n + 1 operator
variables. For n = 2, we obtain in particular that the map

L(A,B,C) = C∗B−1/2(B1/2A−1B1/2)1/2B−1/2C

is convex in arbitrary C and positive definite A and B. In addition,

L
(
Φ(A),Φ(B),Φ(C)

)
≤ Φ

(
L(A,B,C)

)
for a completely positive linear map Φ between operators acting on finite-
dimensional Hilbert spaces. In particular, this includes quantum channels and
partial traces. For commuting A and B, the generalized Lieb–Ruskai map reduces
to

L(A,B,C) = C∗A−1/2B−1/2C.

In particular, L(A,A,C) = C∗A−1C.

2. Preliminaries

Let D ⊆ B(H) × · · · × B(H) be a convex domain, where B(H) is the algebra
of bounded linear operators on a Hilbert space H.

In [8, Definition 2.1] we defined the notion of a regular map F : D → B(H),
generalizing Davis’s idea of a spectral function for functions of one variable, the
notion of a regular matrix map of two variables (by the author [7]), and the
notion of a regular operator map of two variables (by the author and Effros in
[6, Definition 2.1]). Loosely speaking, a regular map is unitarily invariant and
reduces block matrices in a simple and natural way. It retains regularity when
compressed to a subspace.

Although we often restrict the study to finite-dimensional spaces, it is conve-
nient to consider only such regular maps that may be defined also on an infinite-
dimensional Hilbert space H. Since H in this case is isomorphic to H ⊕H, this
allows us to use block matrix techniques without imposing dimensionality con-
ditions. Furthermore, it implies that a regular map is well defined regardless of
the underlying Hilbert space. We may thus port a regular map unambiguously
from one Hilbert space to another. In this article, we only consider domains of
the form

Dk(H) =
{
(A1, . . . , Ak) | A1, . . . , Ak ≥ 0

}
of k-tuples of positive semidefinite operators, or domains

Dk
+(H) =

{
(A1, . . . , Ak) | A1, . . . , Ak > 0

}
of k-tuples of positive definite and invertible operators acting on a Hilbert
space H. The latter is the natural type of domain for perspectives.

2.1. Jensen’s inequality for regular operator maps. The following result
was proved for H = K in [8, Theorem 2.2(i)]. It is just an exercise to generalize
the statement and obtain the following.
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Lemma 2.1. Let F : Dk(H) → B(H)sa be a convex regular map, and take a
contraction C : H → K of H into a Hilbert space K. If F (0, . . . , 0) ≤ 0, then the
inequality

F (C∗A1C, . . . , C
∗AkC) ≤ C∗F (A1, . . . , Ak)C

holds for k-tuples (A1, . . . , Ak) in Dk(K).

The next result reduces to [8, Theorem 2.2(ii)] for H = K and n = 2. Since the
generalization is quite straightforward, we leave the proof to the reader.

Theorem 2.2 (Jensen’s inequality for regular operator maps). Let F : Dk(H) →
B(H)sa be a convex regular map, and let C1, . . . , Cn : H → K be mappings of H
into (possibly another) Hilbert space K such that

C∗
1C1 + · · ·+ C∗

nCn = 1H.

Then the inequality

F
( n∑

i=1

C∗
i Ai1Ci, . . . ,

n∑
i=1

C∗
i AikCi

)
≤

n∑
i=1

C∗
i F (Ai1, . . . , Aik)Ci

holds for k-tuples (Ai1, . . . , Aik) in Dk(K) for i = 1, . . . , n.

Corollary 2.3. Let Φ: B(H) → B(K) be a completely positive unital linear map
between operators on Hilbert spaces of finite dimension, and let F be a convex
regular map. Then

F
(
Φ(A1), . . . ,Φ(Ak)

)
≤ Φ

(
F (A1, . . . , Ak)

)
for (A1, . . . , Ak) ∈ Dk(H).

Proof. By Choi’s decomposition theorem, there exist operators C1, . . . , Cn in
B(K,H) with C∗

1C1 + · · ·+ C∗
nCn = 1K such that

Φ(A) =
n∑

i=1

C∗
i ACi for A ∈ B(H).

The statement now follows by Theorem 2.2 by choosing

(Ai1, . . . , Aik) = (A1, . . . , Ak)

for i = 1, . . . , n. �

Davis [4, Main Corollary] proved that f(Φ(A)) ≤ Φ(f(A)) for an operator-
convex function f with f(0) = 0 and a completely positive linear map Φ with
Φ(1) ≤ 1. Jensen’s operator inequality is the slightly more general statement

f
( n∑

i=1

C∗
i AiCi

)
≤

n∑
i=1

C∗
i f(Ai)Ci

for tuples (A1, . . . , An) and operators C1, . . . , Cn with C∗
1C1+ · · ·+C∗

nCn = 1 (see
[9, Theorem 2.1(iii)] and [10]). Jensen’s inequality for regular operator maps may
similarly be considered a generalization of Corollary 2.3.
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3. Perspectives

We introduced the perspective (see [8, Definition 3.1]) of a regular operator map
of k variables as a generalization of the operator perspective of a function of one
variable defined by Effros [5]. A key result is that the perspective PF of a convex
regular operator map F : Dk

+(H) → B(H) of k variables is a convex positively
homogenous regular operator map of k + 1 variables (see [8, Theorem 3.2]).

Theorem 3.1. Let Φ: B(H) → B(K) be a completely positive linear map between
operators on Hilbert spaces of finite dimension, and let F : Dk

+(H) → B(H) be a
convex regular map. Then

PF

(
Φ(A1), . . . ,Φ(Ak+1)

)
≤ Φ

(
PF (A1, . . . , Ak+1)

)
for operators (A1, . . . , Ak+1) in Dk+1

+ (H), where PF is the perspective of F .

Proof. We first assume that Φ is faithful, that is, that Φ(1H) is an invertible
operator on K. This may be obtained by properly compressing K. We then extend
an idea of Ando [1, p. 211] for functions of one variable to regular operator maps.
To a fixed positive definite B ∈ B(H) we set

Ψ(X) = Φ(B)−1/2Φ(B1/2XB1/2)Φ(B)−1/2,

noting that Ψ: B(H) → B(K) is a unital linear map. By the definition of complete
positivity, we realize that Ψ is also completely positive. Since F is convex, we may
thus apply Corollary 2.3 and obtain

F
(
Ψ(B−1/2A1B

−1/2), . . . ,Ψ(B−1/2AkB
−1/2)

)
≤ Ψ

(
F (B−1/2A1B

−1/2, . . . , B−1/2AkB
−1/2)

)
.

Inserting Ψ, we obtain the inequality

F
(
Φ(B)−1/2Φ(A1)Φ(B)−1/2, . . . ,Φ(B)−1/2Φ(Ak)Φ(B)−1/2

)
≤ Φ(B)−1/2Φ

(
B1/2F (B−1/2A1B

−1/2, . . . , B−1/2AkB
−1/2)B1/2

)
Φ(B)−1/2.

By multiplying from the left and from the right with Φ(B)1/2, we obtain

PF

(
Φ(A1), . . . ,Φ(Ak),Φ(B)

)
= Φ(B)1/2F

(
Φ(B)−1/2Φ(A1)Φ(B)−1/2, . . . ,Φ(B)−1/2Φ(Ak)Φ(B)−1/2

)
Φ(B)1/2

≤ Φ
(
B1/2F (B−1/2A1B

−1/2, . . . , B−1/2AkB
−1/2)B1/2

)
= Φ

(
PF (A1, . . . , Ak, B)

)
,

which is the assertion. If Φ is not faithful, then we obtain equality on the null
space of Φ(1H) by the calculation convention PF (0, . . . , 0) = 0. �

Note that we do not require Φ to be unital or trace-preserving in the above
theorem.

Theorem 3.2. Let Φ: B(H) → B(K) be a completely positive linear map between
operators on Hilbert spaces of finite dimension, and let F : Dk+1

+ (H) → B(H) be
a convex and positively homogeneous regular map. Then

F
(
Φ(A1), . . . ,Φ(Ak+1)

)
≤ Φ

(
F (A1, . . . , Ak+1)

)
for positive definite A1, . . . , Ak+1 ∈ B(H).
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Proof. We proved elsewhere (see [8, Proposition 3.3]) that a convex and positively
homogeneous regular map F of k+1 variables is the perspective of its restriction

G(A1, . . . , Ak) = F (A1, . . . , Ak, 1)

to k variables. Since G : Dk
+(H) → B(H) is convex and regular, the assertion

follows from Theorem 3.1. �

Note that there is equality on the null space of Φ(1H) due to homogeneity.

Remark 3.3. A geometric mean G of several variables is an example of a concave
positively homogeneous regular map. The inequality in Theorem 3.2 thus yields

G
(
Φ(A1), . . . ,Φ(Ak)

)
≥ Φ

(
G(A1, . . . , Ak)

)
.

This result was proved [3, Theorem 4.1] for all geometric means that may be
obtained inductively by an application of the power mean of two variables. By a
limiting argument, this was then extended to the Karcher mean. However, there
exist geometric means that cannot be obtained in this way, for example, the
means introduced in [8, Section 4.2].

4. Lieb and Ruskai’s convexity theorem

Lieb and Ruskai [12, Theorem 1] proved convexity of the map

L(A,K) = K∗A−1K

in pairs (A,K) of bounded linear operators on a Hilbert space, where A is positive
definite and invertible. Subsequently, Ando gave a very elegant proof of this result
in [1, Theorem 1]. If K is positive definite, then we may write

KA−1K = K1/2(K−1/2AK−1/2)−1K1/2

as the perspective of the function t → t−1. Since this function is operator-convex,
we obtain convexity of the perspective L(A,K) if K is restricted to positive
definite operators. This, however, is enough to obtain the general result. Indeed,
the set of (K,A) where ‖K‖ < 1 and A ≥ 1 is convex, and the embedding

K →
(
A K∗

K A

)
> 0 (4.1)

is affine into positive definite operators. It thus follows that

(K,A)→
(
A K∗

K A

)(
A 0
0 A

)−1(
A K∗

K A

)
=

(
A+K∗A−1K 2K∗

2K A+KA−1K∗

)
is convex in the specified set. In particular, (K,A) → K∗A−1K is convex.
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M. B. Ruskai kindly informed the author that she and Lieb obtained their
much cited convexity result unaware that it was proved much earlier in another
context by Kiefer [11].

Proposition 4.1. Let Φ: B(H) → B(K) be a completely positive linear map
between operators on Hilbert spaces of finite dimension. The inequality

Φ(K)∗Φ(A)−1Φ(K) ≤ Φ(K∗A−1K)

is valid for positive definite A and arbitrary K.

Proof. If we restrictK to positive definite operators, then the inequality is already
contained in Theorem 3.1. The same block matrix construction as in (4.1) applied
to the completely positive linear map Φ⊗ 12 then leads to the inequality

Φ(A) + Φ(K∗)Φ(A)−1Φ(K) ≤ Φ(A+K∗A−1K)

for A ≥ 1 and ‖K‖ < 1, and the statement follows. �

Note that the above inequality was obtained in [1, Corollary 3.1] ifK is positive
definite (see also [12, Theorems 2 and 3]).

There is another way to consider Lieb and Ruskai’s convexity theorem which
points to generalizations of the result to more than two operators. The geometric
mean G1 of one positive definite operator is trivially given by G1(A) = A. It is a
concave regular map and its inverse

A → G1(A)
−1 = A−1

is thus a convex regular map. The perspective

PG−1
1
(A,B) = B1/2G1(B

−1/2AB−1/2)−1B1/2 = BA−1B = L(A,B)

is therefore a convex regular map by [8, Theorem 3.2], and it is increasing when
filtered through a completely positive linear map by Theorem 3.1. A similar con-
struction may be carried out for any number of operator variables.

Theorem 4.2. Let Gn be a positively homogeneous concave regular operator map
which is self-dual, congruence-invariant, and extends the function

(t1, . . . , tn) → t
1/n
1 · · · t1/nn t1, . . . , tn > 0

to operators (see the discussions in [2] and [8]). The operator map

L(A1, . . . , An, C) = CGn(A1, . . . , An)
−1C

is then convex in positive definite and invertible operators.

Proof. The (geometric) mean Gn is a positive concave and regular map. The
inverse

Gn(A1, . . . , An)
−1 = Gn(A

−1
1 , . . . , A−1

n )
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is therefore convex and regular. The perspective

PG−1
n
(A1, . . . , An, C)

= C1/2Gn(C
−1/2A1C

−1/2, . . . , C−1/2AnC
−1/2)−1C1/2

= C1/2Gn(C
1/2A−1

1 C1/2, . . . , C1/2A−1
n C1/2)C1/2

= CGn(A
−1
1 , . . . , A−1

n )C = CGn(A1, . . . , An)
−1C

= L(A1, . . . , An, C),

where we used self-duality and congruence-invariance of the geometric mean. It
now follows, by [8, Theorem 3.2], that L is a convex regular map. �

Remark 4.3. It is interesting to note that Theorem 4.2 alternatively may be
obtained by adapting the arguments of Ando in [1, Theorem 1], and that this
way of reasoning even imparts convexity of the map

L(A,B,C) = C∗G2(A,B)−1C,

where C now is arbitrary and A,B are positive definite and invertible. The argu-
ment uses the well-known fact that a block matrix of the form(

A C
C∗ B

)
,

where A is positive definite and invertible, is positive semidefinite if and only if
B ≥ C∗A−1C. Indeed, by taking λ ∈ [0, 1] and setting

C = λC1 + (1− λ)C2,

T = λC∗
1G2(A1, B1)

−1C1 + (1− λ)C∗
2G2(A2, B2)

−1C2,

we obtain the equality

X =

(
λG2(A1, B1) + (1− λ)G2(A2, B2) C

C∗ T

)
= λ

(
G2(A1, B1) C1

C∗
1 C∗

1G2(A1, B1)
−1C1

)
+ (1− λ)

(
G2(A2, B2) C2

C∗
2 C∗

2G2(A2, B2)
−1C2

)
.

Since the two last block matrices by construction are positive semidefinite, we
obtain that the block matrix X is positive semidefinite. Therefore,

T ≥ C∗(λG2(A1, B1) + (1− λ)G2(A2, B2)
)−1

C.

We thus obtain

λL(A1, B1, C1) + (1− λ)L(A2, B2, C2)

= λC∗
1G2(A1, B1)

−1C1 + (1− λ)C∗
2G2(A2, B2)

−1C2 = T

≥ C∗(λG2(A1, B1) + (1− λ)G2(A2, B2)
)−1

C

≥ C∗G2

(
λA1 + (1− λ)A2, λB1 + (1− λ)B2

)−1
C

= L(λA1 + (1− λ)A2, λB1 + (1− λB2), λC1 + (1− λC2),
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where in the last inequality we used concavity of the geometric mean and operator
convexity of the inverse function.

It seems mysterious that in the last proof we only used concavity of G2, while in
Theorem 4.2 we used self-duality and congruence-invariance in addition. However,
if we want L(A,B,C) to be positively homogeneous, then G2 must have the same
property; and if we also want G2 to be an extension of the geometric mean of
positive numbers, then the geometric mean of two operators is the only solution
satisfying all these requirements (see [8, Proposition 3.3]). This way of reasoning
extends to any number of variables, and we obtain the following.

Corollary 4.4. Let Gn be any geometric mean of n positive semidefinite and
invertible operators. The operator function

L(A1, . . . , An, C) = C∗Gn(A1, . . . , An)
−1C (4.2)

is convex in arbitrary C and positive definite and invertible A1, . . . , An acting on
a Hilbert space.

Since L is positively homogeneous, we furthermore obtain the following.

Corollary 4.5. Let Φ: B(H) → B(K) be a completely positive linear map between
operators on Hilbert spaces of finite dimension. The inequality

L
(
Φ(C),Φ(A1), . . . ,Φ(An)

)
≤ Φ

(
L(C,A1, . . . , An)

)
is valid for positive definite A1, . . . , An and C.

It is known that the geometric mean of two variables is the unique extension of
the function (t, s) → t1/2s1/2 to a positively homogeneous, regular, and concave
operator map (see [6]). Therefore,

L(A,B,C) = CB−1/2(B1/2A−1B1/2)1/2B−1/2C

is the only sensible extension of Lieb and Ruskai’s map to three positive defi-
nite and invertible operators with symmetry condition L(A,B,C) = L(B,A,C).
Without the symmetry condition, there are other solutions. The weighted geo-
metric mean,

G2(α;A,B) = B1/2(B−1/2AB−1/2)αB1/2 0 ≤ α ≤ 1,

is the perspective of the operator concave function t → tα and is therefore con-
cave and congruent-invariant (see [6], [7]). It is also manifestly self-dual. We can
therefore apply a proof similar to the one used in Theorem 4.2 and obtain that
the map

L(α;A,B,C) = CB−1/2(B1/2A−1B1/2)αB−1/2C

is convex in positive semidefinite and invertible operators. Furthermore, it is pos-
itively homogeneous and therefore increasing when filtered through a completely
positive linear map between operators on finite-dimensional Hilbert spaces. It
reduces to

L(α;A,B,C) = CA−αB−(1−α)C

for commuting A and B.
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It is known that for n ≥ 3 there exist many different extensions of the real

function (t1, . . . , tn) → t
1/n
1 · · · t1/nn to an operator mapping Gn satisfying the

conditions in Theorem 4.2 (see [8]). Note that if A1, . . . , An commute, then

L(A1, . . . , An, C) = C∗A
−1/n
1 · · ·A−1/n

n C

and, in particular, L(A, . . . , A, C) = C∗A−1C.
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