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Communicated by T. Yamazaki

ABSTRACT. In 2001, Renaud obtained a Griiss type operator inequality involv-
ing the usual trace functional. In this article, we give a refinement of that result,
and we answer positively Renaud’s open problem.

1. INTRODUCTION

In 1935, Griiss [6] obtained the following inequality: if f, g are integrable real
functions on [a, b] and there exist real constants «, 3,7, such that a < f(x) <
B,y < g(x) <4 for all x € [a,b], then

I 1 b ’ 1
= [ @ - g [ @ [ gt | < G0 - )6 ).
and the inequality is sharp in the sense that the constant 1/4 cannot be replaced
by a smaller constant. This inequality has been investigated, applied, and gener-
alized by many mathematicians, including Bani¢, Bourin, Matharu, Moslehian,
Ilisevi¢, Renaud, and Varosanec, among others, in different areas of mathematics
(see [8] and the references within).

In this work, H denotes a (complex, separable) Hilbert space with inner product
(-,-). Let (B(H), || - ||) be the C*-algebra of all bounded linear operators acting
on (#,(-,-)) with the uniform norm. We denote by Id the identity operator, and
for any A € B(H), we consider A* its adjoint and |A| = (A*A)'/? the absolute
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value of A. For A € B(H), we use R(A), N(A), respectively, to denote the range
and kernel of A.

By B(H)™, we denote the cone of positive operators of B(#); that is, B(H)* :=
{T € B(H) : (Th,h) > 0 Vh € H}. In the case when dimH = n, we identify
B(#) with the full matrix algebra M,, of all n x n matrices with entries in the
complex field C. For each 7" € B(H), we denote its spectrum by o(7'); that is,
o(T)={X € C:T — \Id is not invertible} and a complex number X\ € C is said
to be in the approximate point spectrum of the operator T, and we denote by
0ap(T) if there is a sequence {x,,} of unit vectors satisfying (7" — \)z,, — 0.

For each operator T', we consider

r(T) = sup{|A| : A € o(T")} spectral radius of T,
W(T) = {(Th,h) : ||h]| = 1} numerical range of T,

and
w(T) = sup{|A| : A € W(T')} numerical radius of 7.

Recall, for all 7' € B(H), that »(T) < w(T) < ||T|| < 2w(T), o(T) € W(T),
and by the Toeplitz—Hausdorff theorem, W (T') is convex.

Renaud [11] gave a bounded linear operator analogue of the Griiss inequality
by replacing integrable functions by operators and the integration by a trace
function as follows. Let A,T € B(H), and suppose that W(A) and W(T') are
contained in disks of radii R4 and Rr, respectively. Then, for any positive trace
class operator, P with tr(P) = 1 holds

|tr(PAT) — tr(PA) tr(PT)| < 4R4Ry, (1.1)

and if A and T are normal (i.e., T*T = TT*), the constant 4 can be replaced
by 1. We can easily see that, if A = ald or T' = f1d with «a, € C, then the
left-hand side is equal to zero. In the same article, Renaud proposed the following
open problem: to characterize k(A,T') such that

|tr(PAT) — tr(PA) tr(PT)| < k(A, T)RaRy (1.2)

with 1 < k(A,T) < 4, in particular, whether it depends on A and T separately,
(i.e., whether we can write k(A,T) = h(A)h(T)), where h(A), h(T) are suitably
defined constants.

In this paper we give a positive answer to the open problem proposed by
Renaud, and we obtain an explicit formula for k(A,T) = h(A)h(T). Also, we
generalize the inequality (1.1) for normal to transloid operators.

2. PRELIMINARIES

Let us begin with the notation and necessary definitions. The set of compact
operators in H is denoted by Bo(H). If T € By(H), then we denote by {s,(T)}
the sequence of singular values of T, that is, the eigenvalues of |T'| (decreasingly
ordered). The notion of unitary invariant norms can be defined also for operators
on Hilbert spaces, a norm || - || that satisfies the invariance property |[UXV| =
IX || for a pair of unitary operators U, V. Recall that each unitarily invariant norm
is defined on a natural subclass J| of Bo(H) called the norm ideal associated
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with the norm || - ||. There is a one-to-one correspondence between symmetric
gauge functions defined on sequences of real numbers and unitarily invariant
norms defined on norm ideals of operators. More precisely, if || - || is a unitarily
invariant norm, then there is a unique symmetric gauge function g such that
1T = g({s.(T)}) for any T € J},. If dim R(T") = 1, then ||T|| = s:(T)g(e1) =
g(e1)||T]|. By convention, we assume that g(e;) = 1. If 2,y € H, then we denote
x ® y the rank 1 operator defined on H by (z ® y)(z) = (z,y)x. Then ||z @ y| =
lzl[llyll = ll= @yl

The best-known examples of unitary invariant norms are called Schatten
p-norms. For 1 < p < oo, let

ITIE = salT)P = tx|TP,

and let
By(H) ={T e H : T, < oo},

called the p-Schatten class of B(H). This is the subset of compact operators
with singular values in [,. The positive operators with trace 1 are called den-
sity operators (or states), and we denote this set by S(#). The ideal By(H) is
called the Hilbert—Schmidt class, and it is a Hilbert space with the inner prod-
uct (S, T)s = tr(ST™*). (For a reference on the theory of norm ideals and their
associated unitarily invariant norms, see [5].)

An operator A € B(H) is called normaloid if r(A) = ||A|| = w(A). If A — p1d
is normaloid for all 4 € C, then A is called transloid.

Finally, for A,T € B(H) and P € S(H), we introduce the following notation:

Vp(A,T) = tr(PAT) — tr(PA) tr(PT).

In the particular case T' = A*, we get the variance of A with respect to P. More
precisely, Audenaert in [1] considered the following notion: given A, P € M,,, P >
0,tr(P) = 1, the variance of A with respect to the matrix P is

Vp(A) = tr(JAPP) — |tr(AP)|” = Vp(A, A%).
Note that Vp(A — A1d) = Vp(A). Furthermore, he showed that, if A € M,,, then
max{tr(|A|*P) — |[tr(AP)|": P € M}, tr(P) = 1} = dist(A,CId)%,  (2.1)

and the maximization over P on the left-hand side can be restricted to density
matrices of rank 1.

| 2

3. DISTANCE FORMULAS AND RENAUD’S INEQUALITY

Let A and T be linear bounded operators acting on H; the vector-function
A — AT is known as the pencil generated by A and T'. Evidently, there is at least
one complex number \y such that

|A = AT|| = inf A — AT.
AeC

The number A is unique if 0 ¢ 0,,(T") (or, equivalently, if inf{||7z|| : ||z| = 1} >
0). Different authors, following [12], called this unique number the center of mass



A GRUSS TYPE OPERATOR INEQUALITY 127

of A with respect to T', and we denote it by ¢(A,T). When T = Id, we write c(A).
Following Paul, for A, T € B(H) such that 0 ¢ 0,,(T), we consider

\<Ax,Tx>|T/2 <A%T~T§MH. (3.1)

Ap — X022/
(Tx, Tx) g (Tx, Tz

Mr(A) = sup || Az -

flzfl=1

In [9], Paul proved that Mr(A) = dist(A, CT'). The unique minimizer is charac-
terized by the following conditions: there exists a sequence of unit vectors {z,}
such that

(A = XoT)zn|| = [|A = XoT| and ((A=NT)p, z,) — 0.

= sup
[l=l|=1

In [4], Gevorgyan proved that

(AT = lim S29n: T0n)

, 3.2
T s Ty) (3:2)

where {y,} is a sequence of unit vectors which approximate the supremum in
(3.1). In the particular case that T'= Id and A is a Hermitian operator, then it
is easy to see that
)\max(A) - )\min(A)
2 7
where Apax(A) (resp., Amax(A)) denotes the maximum (resp., minimum) eigen-
value of A. Observe that the minimum is
)\max(A) + )\min(A)
5 .

We recall other formulas that express the distance from A to the one-dimensional
subspace CT'. Then

dist(A, CT) = sup{ [(Az,y)| : l|z]| = |ly| = 1,(Tz,y) = 0} (3.4)
if A,T € B(H) and 0 ¢ 0,,(7). In the particular case where T' = Id, we get

(3.3)

min [[A — AId || =
AeC

co(A) =

dist(A, C1d) = %sup{HAX _ XAl X € B(H), X = 1)
= sup{ H(Id —Q)AQH : () is a rank one projection}
= Sup{H(Id —Q)AQH CQ s a projection}. (3.5)

In the following statement we present a new proof of the relation between the
variance of A with respect to P and the distance from A to the unidimensional
subspace CId.

Proposition 3.1. Let A € B(H), and let P € S(H). Then
2 2
tr(|A[*P) — [tr(AP)|" = |APY?|)3 — [(AP'/?, P'/%),]
_ ||AP1/2 . (API/Q,P1/2>2P1/2H2
= min ||[APY? — APY?||2 < min ||A — \1d .
AeC AeC
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Proof. These inequalities are simple consequences from the following general
statement for any Hilbert space H: let x,y € H with y # 0; then

= 1*lyll” = €, )"
ly[I? -

inf |z — Ay||* =
inf [l — Ay|
The following statement is an extension of Audenaert’s formula to infinite
dimension.

Remark 3.2. We show that the equality (2.1) holds in the infinite-dimensional
context; that is, for A € B(H), we have

sup{ [tr(|A|*P) — |tr(AP)m Y. pe S(H)} = dist(A, CId). (3.6)
First, we obtain this equality from Prasanna’s result in [10]. Indeed, note that

dist(A,CId)* = sup ||Az|?* — }(Aa:,x}

l[=]|=1
< sup{tr(|A]*P) — |tr(AP)
< dist(A, C1d)?.

| 2

| 2

:PeS(H)}

On the other hand, another way to prove (3.6) is to reduce the problem to a finite
dimension and use the classical Audenaert formula. Now we give the idea of this
proof.

For the sake of clarity, we denote

m :=min ||A— \Id ||
AeC

and

M = sup{[tr(|[A]P) — ‘tr(AP)‘Q} 2 pe S(H)}.
By Proposition 3.1, we have that M < m. Suppose by contradiction that M < m.
Then there exists € > 0 such that

M <||[A—\d| —e (3.7)

for any A € C. By the equality (3.2), we have that ¢(A) € W(A), and then
lc(A)| < w(A). As any closed ball in the complex plane is a compact set, we can

find A\1,..., A\, € H such that

-

BO.wA) c J{reC:n-rl <5}

7j=1

Now, we choose unit vectors hy, ..., h, € H with the following property: |[(A —
Ajld)hl| > ||[A = N\ Id|| — 5. Let H' = span{hy,..., hy, Ahy, ..., Ahy} and
n = dim#H'. Applying (2.1) to the compressions of A and Id, respectively, we
get

dist(4’,C1d,) = max{[tr(|A'2P") — [tr(A'P)[]/?: P € M, te(P') = 1}
=M. (3.8)
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One easily verifies that, if A € B(0,w(A)), then there exists j € {1,...,m} such
that

A = Xy || > |4 = 2 Td, || = 5 = [|(A" = A Tdo)hy | = 5
= (A= X1k =5 > A= N1 - e (3.9)

Thus, combining (3.7) and (3.9), we get
min [|[A" — A\1d,, || > M > M’, (3.10)
AEC

and we have here a contradiction with (3.8), and therefore m = M.
The following two results give upper bounds for Vp(A,T').

Lemma 3.3. Let A,T € B(H), and let P € S(H). Then, for any A\, u € C holds
Vp(A,T)| < |[A= XA |||T — plId || — |tr(P(A — A1d)) tr(P(T — p1d))].
Proof. Define the following semi-inner product for X,Y € B(H) and P € S(H):
(X, Y )o,p = (PV2X, P12Y),.

Following the proof given by Dragomir in [3, Theorem 2], we obtain for any
E € B(H) such that (£, E)yp = 1:

(X Y)op — (X, E)ap(B,Y)ap| < (X, X))oV, Y )y p = [(X, E)ap(E,Y)apl.
= (X, X)p(VY >1/2 Gu(X.Y).
Since (Id,Id)s p = 1, we have
V(A T)]
= |Vp(A = A1d, T — p1d)|
= [(A=\d, (T = p1d)"), , — (A = A1d, 1d)s p(Id, (T = p1d)")
< (A= AId, A= M) p(T" — 1d, T* — ald)y/p — Gra(A — A1d,T* — i 1d)
— tr(P|(A = A1A)* )2 e (P|T — p1d 2)? = Gra(A — A1d, T* — i1d)
< |[[(A = A1) || 2T = p1d 2|V = |te(P(A = ATd)) tr (P(T — p1d))]
= |A=XId|[[||T — pId | — |tr(P(A = AId)) tr(P(T — p1d))]|. O
Proposition 3.4. Let A,T € B(H), and let P € S(H). Then

27l

[Vp(A,T)| < sup |tx( PAT) — tr(PA) tr(PT)‘
PeS(H)

< dist(A4, CId) dist(7", C1d). (3.11)
Proof. By Lemma 3.3, we have
\Vp(A,T)| < |A=A1A||||T — pld || = |tr(P(A = MId)) tr(P(T — p1d))]
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for AT € B(H), P € S(H), and any A, u € C. Therefore,

[Ve(A,T)| < sup |te(PAT) — tr(PA) tr(PT)]
PeS(H)

< dist(A, C1d) dist(T, C1d). O

Remark 3.5. If we define Vp : B(H) x B(H) — C, Vp(A,T) = tr(PAT) —
tr(PA) tr(PT), then Vp is a bilinear function, and by (3.11) a continuous mapping
with ||Vp]| < 1.

Now, we give a new proof and a refinement of (1.1).

Proposition 3.6. Let A,T € B(H), and we suppose that W(A), W(T) are con-
tained in closed disk D(X\o, Ra), D(10, Rr), respectively. Then, for any P € S(H),

|tr(PAT) — tr(PA) tx(PT)| < sup |tx(PAT) — tr(PA) tr(PT)]
PeS(H)

< dist(A, CId) dist(7, C1d)

<NA= XL T = po1d ||

< Adw(A — N Id)w(T — po1d)

<4RAR7. (3.12)
In particular, if A and T are normal operators, then we have

|tr(PAT) — tr(PA) tr(PT)| < sup [te(PAT) — tr(PA) tr(PT)|
PeS(H)

< dist(A,CId) dist(7,CId) = rary, (3.13)
where rg denotes the radius of the unique smallest disc containing o(S) for any

S eB(H).

Proof. The inequalities are consequences of (3.11). In the last inequality, we use
the fact that W(A — A\gId) € D(0,R4) and W(T — polId) € D(0, Rr), respec-
tively. On the other hand, Bjorck and Thomée [2] have shown that, for a normal
operator A,

dist(A,C1d) = sup (|| Az||> — [(Az,2)[))/* = 74, (3.14)

llzll=1
and this completes the proof. O

Remark 3.7. From (3.13), if we let A be a positive invertible operator, T = A~!
and P =z ® x with x € H with ||z|| = 1, then

|tr(PAT) — tr(PA) tr(PT)| = |1 — (Az, z) (A" "z, z)|
< dist(A, CId) dist(A™, CId) = 74741

that is, we obtain the Kantorovich inequality for an operator A acting on an
infinite-dimensional Hilbert space H with 0 <m < A < M.

In 1972, Istratescu [7] generalized the equality (3.14) to the transloid class
operators. Then we have the following statement.
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Proposition 3.8. Let A,T € B(H) with A and T transloid operators. Then

|tr(PAT) — tr(PA) tr(PT)| < sup [tr(PAT) — tr(PA) tr(PT)|
PeS(H)
< dist(A, CId) dist(7,CId) = rary. (3.15)

Proof. 1t follows from the same arguments in the proof of inequality (3.13). O

The previous proposition generalizes Renaud’s result for normal operators since
the classes of transloid and normal operators are related by the inclusion as
follows:

normal C quasinormal C subnormal C hyponormal C transloid,

where at least the first inclusion is proper.
In the following statement, we obtain a parametric refinement of (1.1).

Theorem 3.9. Let A, T € B(H) with A, T ¢ CId, and suppose that W(A), W(T)
are contained in the closed disk D(X\o, Ra) and D(po, Rr), respectively. Thus, for
any P € S(H), we get

|tr(PAT) — tr(PA) tr(PT)| < sup |tr(PAT) — tr(PA) tr(PT)|
PeS(H)
< dist(A, CId) dist(T, C1d)

< hx(A)hy(Tw(A — Mo Id)w(T — o 1d)

< ha(A)h(T)RaRr, (3.16)
where
i) =200 = 3 4 ALZZEEL ) =1 - 4O

and 1 < hy(A)h,(T) <4 for any A\, p € [0,1].
Proof. Let A € [0,1]. Then
|A = c(A)Id]| < M|A = c(A)Id]| + (1 = N)[|A = X Id ||
< A||A = c(A) || + 2(1 = N)w(A — Ao Id)

1A = e(A) Id||>

— w(A — Mo 1d) (2(1 —A) A
— w(A — X 1d)hy(A),

where 1 < hy(A) < 2 since ||[A —c(A)Id|| < ||A =X Id| < 2w(A — A\gId). This
inequality completes the proof. O

Note that the previous result gives a positive answer to Renaud’s open question

(1.2).
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Corollary 3.10. Under the same notation as in Theorem 5.9, if A — X\g1d and

T

10.

11.

12.

— po Id are normaloid operators, then, for any X\, p € [0, 1],

|tr(PAT) — tr(PA) tr(PT)| < sup |tx(PAT) — tr(PA) tr(PT)]
PeS(H)
< dist(A, C1d) dist(T, C1d)
< (2=-MN2 - pw(d =X Id)w(T = po1d)
< (2= A\)(2 = )RRy
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