Ann. Funct. Anal. 8 (2017), no. 1, 124-132
http://dx.doi.org/10.1215/20088752-3764566
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

A GRÜSS TYPE OPERATOR INEQUALITY

T. BOTTAZZI ${ }^{1}$ and C. CONDE $^{1,2^{*}}$
Communicated by T. Yamazaki

Abstract

In 2001, Renaud obtained a Grüss type operator inequality involving the usual trace functional. In this article, we give a refinement of that result, and we answer positively Renaud's open problem.

1. Introduction

In 1935, Grüss [6] obtained the following inequality: if f, g are integrable real functions on $[a, b]$ and there exist real constants $\alpha, \beta, \gamma, \delta$ such that $\alpha \leq f(x) \leq$ $\beta, \gamma \leq g(x) \leq \delta$ for all $x \in[a, b]$, then

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x\right| \leq \frac{1}{4}(\beta-\alpha)(\delta-\gamma)
$$

and the inequality is sharp in the sense that the constant $1 / 4$ cannot be replaced by a smaller constant. This inequality has been investigated, applied, and generalized by many mathematicians, including Banić, Bourin, Matharu, Moslehian, Ilišević, Renaud, and Varos̆anec, among others, in different areas of mathematics (see [8] and the references within).

In this work, \mathcal{H} denotes a (complex, separable) Hilbert space with inner product $\langle\cdot, \cdot\rangle$. Let $(\mathbb{B}(\mathcal{H}),\|\cdot\|)$ be the C^{*}-algebra of all bounded linear operators acting on $(\mathcal{H},\langle\cdot, \cdot\rangle)$ with the uniform norm. We denote by Id the identity operator, and for any $A \in \mathbb{B}(\mathcal{H})$, we consider A^{*} its adjoint and $|A|=\left(A^{*} A\right)^{1 / 2}$ the absolute

[^0]with the norm $\|\cdot\|$. . There is a one-to-one correspondence between symmetric gauge functions defined on sequences of real numbers and unitarily invariant norms defined on norm ideals of operators. More precisely, if $\|\cdot\|$ is a unitarily invariant norm, then there is a unique symmetric gauge function g such that $\|T\|=g\left(\left\{s_{n}(T)\right\}\right)$ for any $T \in \mathcal{J}_{\text {II. }}$. If $\operatorname{dim} R(T)=1$, then $\|T\|=s_{1}(T) g\left(e_{1}\right)=$ $g\left(e_{1}\right)\|T\|$. By convention, we assume that $g\left(e_{1}\right)=1$. If $x, y \in \mathcal{H}$, then we denote $x \otimes y$ the rank 1 operator defined on \mathcal{H} by $(x \otimes y)(z)=\langle z, y\rangle x$. Then $\|x \otimes y\|=$ $\|x\|\|y\|=\|x \otimes y\|$.

The best-known examples of unitary invariant norms are called Schatten p-norms. For $1 \leq p<\infty$, let

$$
\|T\|_{p}^{p}=\sum_{n} s_{n}(T)^{p}=\operatorname{tr}|T|^{p}
$$

and let

$$
B_{p}(\mathcal{H})=\left\{T \in \mathcal{H}:\|T\|_{p}<\infty\right\}
$$

called the p-Schatten class of $\mathbb{B}(\mathcal{H})$. This is the subset of compact operators with singular values in l_{p}. The positive operators with trace 1 are called density operators (or states), and we denote this set by $\mathcal{S}(\mathcal{H})$. The ideal $B_{2}(\mathcal{H})$ is called the Hilbert-Schmidt class, and it is a Hilbert space with the inner product $\langle S, T\rangle_{2}=\operatorname{tr}\left(S T^{*}\right)$. (For a reference on the theory of norm ideals and their associated unitarily invariant norms, see [5].)

An operator $A \in \mathbb{B}(\mathcal{H})$ is called normaloid if $r(A)=\|A\|=\omega(A)$. If $A-\mu \mathrm{Id}$ is normaloid for all $\mu \in \mathbb{C}$, then A is called transloid.

Finally, for $A, T \in \mathbb{B}(\mathcal{H})$ and $P \in \mathcal{S}(\mathcal{H})$, we introduce the following notation:

$$
V_{P}(A, T)=\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)
$$

In the particular case $T=A^{*}$, we get the variance of A with respect to P. More precisely, Audenaert in [1] considered the following notion: given $A, P \in \mathcal{M}_{n}, P \geq$ $0, \operatorname{tr}(P)=1$, the variance of A with respect to the matrix P is

$$
V_{P}(A)=\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2}=V_{P}\left(A, A^{*}\right)
$$

Note that $V_{P}(A-\lambda \mathrm{Id})=V_{P}(A)$. Furthermore, he showed that, if $A \in \mathcal{M}_{n}$, then

$$
\begin{equation*}
\max \left\{\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2}: P \in \mathcal{M}_{n}^{+}, \operatorname{tr}(P)=1\right\}=\operatorname{dist}(A, \mathbb{C} \operatorname{Id})^{2} \tag{2.1}
\end{equation*}
$$

and the maximization over P on the left-hand side can be restricted to density matrices of rank 1 .

3. Distance formulas and Renaud's inequality

Let A and T be linear bounded operators acting on \mathcal{H}; the vector-function $A-\lambda T$ is known as the pencil generated by A and T. Evidently, there is at least one complex number λ_{0} such that

$$
\left\|A-\lambda_{0} T\right\|=\inf _{\lambda \in \mathbb{C}}\|A-\lambda T\| .
$$

The number λ_{0} is unique if $0 \notin \sigma_{\mathrm{ap}}(T)$ (or, equivalently, if $\inf \{\|T x\|:\|x\|=1\}>$ 0). Different authors, following [12], called this unique number the center of mass
of A with respect to T, and we denote it by $c(A, T)$. When $T=\mathrm{Id}$, we write $c(A)$. Following Paul, for $A, T \in \mathbb{B}(\mathcal{H})$ such that $0 \notin \sigma_{\text {ap }}(T)$, we consider

$$
\begin{equation*}
M_{T}(A)=\sup _{\|x\|=1}\left[\|A x\|^{2}-\frac{|\langle A x, T x\rangle|^{2}}{\langle T x, T x\rangle}\right]^{1 / 2}=\sup _{\|x\|=1}\left\|A x-\frac{\langle A x, T x\rangle}{\langle T x, T x\rangle} T x\right\| . \tag{3.1}
\end{equation*}
$$

In [9], Paul proved that $M_{T}(A)=\operatorname{dist}(A, \mathbb{C} T)$. The unique minimizer is characterized by the following conditions: there exists a sequence of unit vectors $\left\{x_{n}\right\}$ such that

$$
\left\|\left(A-\lambda_{0} T\right) x_{n}\right\| \rightarrow\left\|A-\lambda_{0} T\right\| \quad \text { and } \quad\left\langle\left(A-\lambda_{0} T\right) x_{n}, x_{n}\right\rangle \rightarrow 0 .
$$

In [4], Gevorgyan proved that

$$
\begin{equation*}
c(A, T)=\lim _{n \rightarrow \infty} \frac{\left\langle A y_{n}, T y_{n}\right\rangle}{\left\langle T y_{n}, T y_{n}\right\rangle} \tag{3.2}
\end{equation*}
$$

where $\left\{y_{n}\right\}$ is a sequence of unit vectors which approximate the supremum in (3.1). In the particular case that $T=\operatorname{Id}$ and A is a Hermitian operator, then it is easy to see that

$$
\begin{equation*}
\min _{\lambda \in \mathbb{C}}\|A-\lambda \operatorname{Id}\|=\frac{\lambda_{\max }(A)-\lambda_{\min }(A)}{2} \tag{3.3}
\end{equation*}
$$

where $\lambda_{\max }(A)$ (resp., $\left.\lambda_{\max }(A)\right)$ denotes the maximum (resp., minimum) eigenvalue of A. Observe that the minimum is

$$
c(A)=\frac{\lambda_{\max }(A)+\lambda_{\min }(A)}{2}
$$

We recall other formulas that express the distance from A to the one-dimensional subspace $\mathbb{C} T$. Then

$$
\begin{equation*}
\operatorname{dist}(A, \mathbb{C} T)=\sup \{|\langle A x, y\rangle|:\|x\|=\|y\|=1,\langle T x, y\rangle=0\} \tag{3.4}
\end{equation*}
$$

if $A, T \in \mathbb{B}(\mathcal{H})$ and $0 \notin \sigma_{\text {ap }}(T)$. In the particular case where $T=\mathrm{Id}$, we get

$$
\begin{align*}
\operatorname{dist}(A, \mathbb{C} \operatorname{Id}) & =\frac{1}{2} \sup \{\|A X-X A\|: X \in \mathbb{B}(\mathcal{H}),\|X\|=1\} \\
& =\sup \{\|(\operatorname{Id}-Q) A Q\|: Q \text { is a rank one projection }\} \\
& =\sup \{\|(\operatorname{Id}-Q) A Q\|: Q \text { is a projection }\} . \tag{3.5}
\end{align*}
$$

In the following statement we present a new proof of the relation between the variance of A with respect to P and the distance from A to the unidimensional subspace $\mathbb{C} I d$.

Proposition 3.1. Let $A \in \mathbb{B}(\mathcal{H})$, and let $P \in \mathcal{S}(\mathcal{H})$. Then

$$
\begin{aligned}
\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2} & =\left\|A P^{1 / 2}\right\|_{2}^{2}-\left|\left\langle A P^{1 / 2}, P^{1 / 2}\right\rangle_{2}\right|^{2} \\
& =\left\|A P^{1 / 2}-\left\langle A P^{1 / 2}, P^{1 / 2}\right\rangle_{2} P^{1 / 2}\right\|_{2}^{2} \\
& =\min _{\lambda \in \mathbb{C}}\left\|A P^{1 / 2}-\lambda P^{1 / 2}\right\|_{2}^{2} \leq \min _{\lambda \in \mathbb{C}}\|A-\lambda \operatorname{Id}\| .
\end{aligned}
$$

Proof. These inequalities are simple consequences from the following general statement for any Hilbert space \mathcal{H} : let $x, y \in \mathcal{H}$ with $y \neq 0$; then

$$
\inf _{\lambda \in \mathbb{C}}\|x-\lambda y\|^{2}=\frac{\|x\|^{2}\|y\|^{2}-|\langle x, y\rangle|^{2}}{\|y\|^{2}}
$$

The following statement is an extension of Audenaert's formula to infinite dimension.

Remark 3.2. We show that the equality (2.1) holds in the infinite-dimensional context; that is, for $A \in \mathbb{B}(\mathcal{H})$, we have

$$
\begin{equation*}
\sup \left\{\left[\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2}\right]^{1 / 2}: P \in \mathcal{S}(\mathcal{H})\right\}=\operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \tag{3.6}
\end{equation*}
$$

First, we obtain this equality from Prasanna's result in [10]. Indeed, note that

$$
\begin{aligned}
\operatorname{dist}(A, \mathbb{C} \text { Id })^{2} & =\sup _{\|x\|=1}\|A x\|^{2}-|\langle A x, x\rangle|^{2} \\
& \leq \sup \left\{\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2}: P \in \mathcal{S}(\mathcal{H})\right\} \\
& \leq \operatorname{dist}(A, \mathbb{C} \text { Id })^{2} .
\end{aligned}
$$

On the other hand, another way to prove (3.6) is to reduce the problem to a finite dimension and use the classical Audenaert formula. Now we give the idea of this proof.

For the sake of clarity, we denote

$$
m:=\min _{\lambda \in \mathbb{C}}\|A-\lambda \operatorname{Id}\|
$$

and

$$
M:=\sup \left\{\left[\operatorname{tr}\left(|A|^{2} P\right)-|\operatorname{tr}(A P)|^{2}\right]^{1 / 2}: P \in \mathcal{S}(\mathcal{H})\right\} .
$$

By Proposition 3.1, we have that $M \leq m$. Suppose by contradiction that $M<m$. Then there exists $\epsilon>0$ such that

$$
\begin{equation*}
M<\|A-\lambda \operatorname{Id}\|-\epsilon \tag{3.7}
\end{equation*}
$$

for any $\lambda \in \mathbb{C}$. By the equality (3.2), we have that $c(A) \in \overline{W(A)}$, and then $|c(A)| \leq w(A)$. As any closed ball in the complex plane is a compact set, we can find $\lambda_{1}, \ldots, \lambda_{m} \in \mathcal{H}$ such that

$$
B(0, \omega(A)) \subseteq \bigcup_{j=1}^{m}\left\{\lambda \in \mathbb{C}:\left|\lambda-\lambda_{j}\right|<\frac{\epsilon}{2}\right\}
$$

Now, we choose unit vectors $h_{1}, \ldots, h_{m} \in \mathcal{H}$ with the following property: $\|(A-$ $\left.\lambda_{j} \operatorname{Id}\right) h_{j}\|>\| A-\lambda_{j} \operatorname{Id} \|-\frac{\epsilon}{2}$. Let $\mathcal{H}^{\prime}=\operatorname{span}\left\{h_{1}, \ldots, h_{m}, A h_{1}, \ldots, A h_{m}\right\}$ and $n=\operatorname{dim} \mathcal{H}^{\prime}$. Applying (2.1) to the compressions of A and Id, respectively, we get

$$
\begin{align*}
\operatorname{dist}\left(A^{\prime}, \mathbb{C} \operatorname{Id}_{n}\right) & =\max \left\{\left[\operatorname{tr}\left(\left|A^{\prime}\right|^{2} P^{\prime}\right)-\left|\operatorname{tr}\left(A^{\prime} P^{\prime}\right)\right|^{2}\right]^{1 / 2}: P^{\prime} \in \mathcal{M}_{n}^{+}, \operatorname{tr}\left(P^{\prime}\right)=1\right\} \\
& =M^{\prime} . \tag{3.8}
\end{align*}
$$

One easily verifies that, if $\lambda \in B(0, \omega(A))$, then there exists $j \in\{1, \ldots, m\}$ such that

$$
\begin{align*}
\left\|A^{\prime}-\lambda \operatorname{Id}_{n}\right\| & >\left\|A^{\prime}-\lambda_{j} \operatorname{Id}_{n}\right\|-\frac{\epsilon}{2} \geq\left\|\left(A^{\prime}-\lambda_{j} \operatorname{Id}_{n}\right) h_{j}\right\|-\frac{\epsilon}{2} \\
& =\left\|\left(A-\lambda_{j} \operatorname{Id}\right) h_{j}\right\|-\frac{\epsilon}{2}>\left\|A-\lambda_{j} \operatorname{Id}\right\|-\epsilon \tag{3.9}
\end{align*}
$$

Thus, combining (3.7) and (3.9), we get

$$
\begin{equation*}
\min _{\lambda \in \mathbb{C}}\left\|A^{\prime}-\lambda \operatorname{Id}_{n}\right\|>M \geq M^{\prime} \tag{3.10}
\end{equation*}
$$

and we have here a contradiction with (3.8), and therefore $m=M$.
The following two results give upper bounds for $V_{P}(A, T)$.
Lemma 3.3. Let $A, T \in \mathbb{B}(\mathcal{H})$, and let $P \in \mathcal{S}(\mathcal{H})$. Then, for any $\lambda, \mu \in \mathbb{C}$ holds

$$
\left|V_{P}(A, T)\right| \leq\|A-\lambda \operatorname{Id}\|\|T-\mu \operatorname{Id}\|-|\operatorname{tr}(P(A-\lambda \operatorname{Id})) \operatorname{tr}(P(T-\mu \mathrm{Id}))|
$$

Proof. Define the following semi-inner product for $X, Y \in \mathbb{B}(\mathcal{H})$ and $P \in \mathcal{S}(\mathcal{H})$:

$$
(X, Y)_{2, P}=\left\langle P^{1 / 2} X, P^{1 / 2} Y\right\rangle_{2}
$$

Following the proof given by Dragomir in [3, Theorem 2], we obtain for any $E \in \mathbb{B}(\mathcal{H})$ such that $(E, E)_{2, P}=1$:

$$
\begin{aligned}
\left|(X, Y)_{2, P}-(X, E)_{2, P}(E, Y)_{2, P}\right| & \leq(X, X)_{2, P}^{1 / 2}(Y, Y)_{2, P}^{1 / 2}-\left|(X, E)_{2, P}(E, Y)_{2, P}\right| . \\
& =(X, X)_{2, P}^{1 / 2}(Y, Y)_{2, P}^{1 / 2}-G_{E}(X, Y) .
\end{aligned}
$$

Since $(\mathrm{Id}, \mathrm{Id})_{2, P}=1$, we have

$$
\begin{aligned}
& \left|V_{P}(A, T)\right| \\
& \quad=\left|V_{P}(A-\lambda \mathrm{Id}, T-\mu \mathrm{Id})\right| \\
& \quad=\left|\left(A-\lambda \mathrm{Id},(T-\mu \mathrm{Id})^{*}\right)_{2, P}-(A-\lambda \mathrm{Id}, \mathrm{Id})_{2, P}\left(\mathrm{Id},(T-\mu \mathrm{Id})^{*}\right)_{2, P}\right| \\
& \quad \leq(A-\lambda \mathrm{Id}, A-\lambda \mathrm{Id})_{2, P}^{1 / 2}\left(T^{*}-\bar{\mu} \mathrm{Id}, T^{*}-\bar{\mu} \mathrm{Id}\right)_{2, P}^{1 / 2}-G_{\mathrm{Id}}\left(A-\lambda \mathrm{Id}, T^{*}-\bar{\mu} \mathrm{Id}\right) \\
& \quad=\operatorname{tr}\left(P\left|(A-\lambda \mathrm{Id})^{*}\right|^{2}\right)^{1 / 2} \operatorname{tr}\left(P|T-\mu \mathrm{Id}|^{2}\right)^{1 / 2}-G_{\mathrm{Id}}\left(A-\lambda \mathrm{Id}, T^{*}-\bar{\mu} \mathrm{Id}\right) \\
& \quad \leq\left\|\left|(A-\lambda \mathrm{Id})^{*}\right|^{2}\right\|^{1 / 2}\left\||T-\mu \mathrm{Id}|^{2}\right\|^{1 / 2}-|\operatorname{tr}(P(A-\lambda \mathrm{Id})) \operatorname{tr}(P(T-\mu \mathrm{Id}))| \\
& \quad=\|A-\lambda \mathrm{Id}\|\|T-\mu \mathrm{Id}\|-|\operatorname{tr}(P(A-\lambda \mathrm{Id})) \operatorname{tr}(P(T-\mu \mathrm{Id}))|
\end{aligned}
$$

Proposition 3.4. Let $A, T \in \mathbb{B}(\mathcal{H})$, and let $P \in \mathcal{S}(\mathcal{H})$. Then

$$
\begin{align*}
\left|V_{P}(A, T)\right| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \text { Id }) \operatorname{dist}(T, \mathbb{C} \text { Id }) . \tag{3.11}
\end{align*}
$$

Proof. By Lemma 3.3, we have

$$
\left|V_{P}(A, T)\right| \leq\|A-\lambda \operatorname{Id}\|\|T-\mu \mathrm{Id}\|-|\operatorname{tr}(P(A-\lambda \mathrm{Id})) \operatorname{tr}(P(T-\mu \mathrm{Id}))|
$$

for $A, T \in \mathbb{B}(\mathcal{H}), P \in \mathcal{S}(\mathcal{H})$, and any $\lambda, \mu \in \mathbb{C}$. Therefore,

$$
\begin{aligned}
\left|V_{P}(A, T)\right| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}(T, \mathbb{C} \mathrm{Id}) .
\end{aligned}
$$

Remark 3.5. If we define $V_{P}: \mathbb{B}(\mathcal{H}) \times \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{C}, V_{P}(A, T):=\operatorname{tr}(P A T)-$ $\operatorname{tr}(P A) \operatorname{tr}(P T)$, then V_{P} is a bilinear function, and by (3.11) a continuous mapping with $\left\|V_{P}\right\| \leq 1$.

Now, we give a new proof and a refinement of (1.1).
Proposition 3.6. Let $A, T \in \mathbb{B}(\mathcal{H})$, and we suppose that $W(A), W(T)$ are contained in closed disk $D\left(\lambda_{0}, R_{A}\right), D\left(\mu_{0}, R_{T}\right)$, respectively. Then, for any $P \in \mathcal{S}(\mathcal{H})$,

$$
\begin{align*}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & \leq \sup _{\widetilde{P} \in \mathcal{S} \mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}(T, \mathbb{C} \operatorname{Id}) \\
& \leq\left\|A-\lambda_{0} \mathrm{Id}\right\|\left\|T-\mu_{0} \mathrm{Id}\right\| \\
& \leq 4 w\left(A-\lambda_{0} \mathrm{Id}\right) w\left(T-\mu_{0} \mathrm{Id}\right) \\
& \leq 4 R_{A} R_{T} . \tag{3.12}
\end{align*}
$$

In particular, if A and T are normal operators, then we have

$$
\begin{align*}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \text { Id }) \operatorname{dist}(T, \mathbb{C} \text { Id })=r_{A} r_{T}, \tag{3.13}
\end{align*}
$$

where r_{S} denotes the radius of the unique smallest disc containing $\sigma(S)$ for any $S \in \mathbb{B}(\mathcal{H})$.

Proof. The inequalities are consequences of (3.11). In the last inequality, we use the fact that $W\left(A-\lambda_{0} \mathrm{Id}\right) \subset D\left(0, R_{A}\right)$ and $W\left(T-\mu_{0} \mathrm{Id}\right) \subset D\left(0, R_{T}\right)$, respectively. On the other hand, Björck and Thomée [2] have shown that, for a normal operator A,

$$
\begin{equation*}
\operatorname{dist}(A, \mathbb{C} \text { Id })=\sup _{\|x\|=1}\left(\|A x\|^{2}-|\langle A x, x\rangle|^{2}\right)^{1 / 2}=r_{A} \tag{3.14}
\end{equation*}
$$

and this completes the proof.
Remark 3.7. From (3.13), if we let A be a positive invertible operator, $T=A^{-1}$ and $P=x \otimes x$ with $x \in \mathcal{H}$ with $\|x\|=1$, then

$$
\begin{aligned}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & =\left|1-\langle A x, x\rangle\left\langle A^{-1} x, x\right\rangle\right| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}\left(A^{-1}, \mathbb{C} \operatorname{Id}\right)=r_{A} r_{A^{-1}} ;
\end{aligned}
$$

that is, we obtain the Kantorovich inequality for an operator A acting on an infinite-dimensional Hilbert space \mathcal{H} with $0<m \leq A \leq M$.

In 1972, Istratescu [7] generalized the equality (3.14) to the transloid class operators. Then we have the following statement.

Proposition 3.8. Let $A, T \in \mathbb{B}(\mathcal{H})$ with A and T transloid operators. Then

$$
\begin{align*}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}(T, \mathbb{C} \operatorname{Id})=r_{A} r_{T} \tag{3.15}
\end{align*}
$$

Proof. It follows from the same arguments in the proof of inequality (3.13).
The previous proposition generalizes Renaud's result for normal operators since the classes of transloid and normal operators are related by the inclusion as follows:

$$
\text { normal } \subseteq \text { quasinormal } \subseteq \text { subnormal } \subseteq \text { hyponormal } \subseteq \text { transloid, }
$$

where at least the first inclusion is proper.
In the following statement, we obtain a parametric refinement of (1.1).
Theorem 3.9. Let $A, T \in \mathbb{B}(\mathcal{H})$ with $A, T \notin \mathbb{C} \operatorname{Id}$, and suppose that $W(A), W(T)$ are contained in the closed disk $D\left(\lambda_{0}, R_{A}\right)$ and $D\left(\mu_{0}, R_{T}\right)$, respectively. Thus, for any $P \in \mathcal{S}(\mathcal{H})$, we get

$$
\begin{align*}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}(T, \mathbb{C} \operatorname{Id}) \\
& \leq h_{\lambda}(A) h_{\mu}(T) \omega\left(A-\lambda_{0} \mathrm{Id}\right) \omega\left(T-\mu_{0} \mathrm{Id}\right) \\
& \leq h_{\lambda}(A) h_{\mu}(T) R_{A} R_{T}, \tag{3.16}
\end{align*}
$$

where

$$
h_{\lambda}(A)=2(1-\lambda)+\lambda \frac{\|A-c(A) \operatorname{Id}\|}{w\left(A-\lambda_{0} \mathrm{Id}\right)}, \quad h_{\mu}(T)=2(1-\mu)+\mu \frac{\|T-c(T) \mathrm{Id}\|}{w\left(T-\mu_{0} \mathrm{Id}\right)},
$$

and $1 \leq h_{\lambda}(A) h_{\mu}(T) \leq 4$ for any $\lambda, \mu \in[0,1]$.
Proof. Let $\lambda \in[0,1]$. Then

$$
\begin{aligned}
\|A-c(A) \operatorname{Id}\| & \leq \lambda\|A-c(A) \operatorname{Id}\|+(1-\lambda)\left\|A-\lambda_{0} \operatorname{Id}\right\| \\
& \leq \lambda\|A-c(A) \operatorname{Id}\|+2(1-\lambda) w\left(A-\lambda_{0} \operatorname{Id}\right) \\
& =w\left(A-\lambda_{0} \operatorname{Id}\right)\left(2(1-\lambda)+\lambda \frac{\|A-c(A) \operatorname{Id}\|}{w\left(A-\lambda_{0} \operatorname{Id}\right)}\right) \\
& =w\left(A-\lambda_{0} \operatorname{Id}\right) h_{\lambda}(A)
\end{aligned}
$$

where $1 \leq h_{\lambda}(A) \leq 2$ since $\|A-c(A) \operatorname{Id}\| \leq\left\|A-\lambda_{0} \operatorname{Id}\right\| \leq 2 w\left(A-\lambda_{0}\right.$ Id $)$. This inequality completes the proof.

Note that the previous result gives a positive answer to Renaud's open question (1.2).

Corollary 3.10. Under the same notation as in Theorem 3.9, if $A-\lambda_{0}$ Id and $T-\mu_{0}$ Id are normaloid operators, then, for any $\lambda, \mu \in[0,1]$,

$$
\begin{aligned}
|\operatorname{tr}(P A T)-\operatorname{tr}(P A) \operatorname{tr}(P T)| & \leq \sup _{\widetilde{P} \in \mathcal{S}(\mathcal{H})}|\operatorname{tr}(\widetilde{P} A T)-\operatorname{tr}(\widetilde{P} A) \operatorname{tr}(\widetilde{P} T)| \\
& \leq \operatorname{dist}(A, \mathbb{C} \operatorname{Id}) \operatorname{dist}(T, \mathbb{C} \operatorname{Id}) \\
& \leq(2-\lambda)(2-\mu) \omega\left(A-\lambda_{0} \mathrm{Id}\right) \omega\left(T-\mu_{0} \mathrm{Id}\right) \\
& \leq(2-\lambda)(2-\mu) R_{A} R_{T} .
\end{aligned}
$$

References

1. K. Audenaert, Variance bounds, with an application to norm bounds for commutators, Linear Algebra Appl. 432 (2010), no. 5, 1126-1143. Zbl 1194.60020. MR2577614. DOI 10.1016/ j.laa.2009.10.022. 126
2. G. Björck and V. Thomée, A property of bounded normal operators in Hilbert space, Ark. Mat. 4 (1963), 551-555. Zbl 0194.15103. MR0149308. 130
3. S. Dragomir, Some refinements of Schwarz inequality, Suppozionul de Matematică şi Aplica ţii, Polytechnical Institute Timişoara, Romania, 1-2, (1985), 13-16. Zbl 0594.46018. 129
4. L. Gevorgyan, On minimal norm of a linear operator pencil, Dokl. Nats. Akad. Nauk Armen. 110 (2010), no. 2, 97-104. MR2724943. 127
5. I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence, R.I., 1969. Zbl 0181.13504. MR0246142. 126
6. G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-$ $\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x$, Math. Z., 39 (1935), 215-226. Zbl 0010.01602. MR1545499. DOI 10.1007/BF01201355. 124
7. V. Istratescu, On a class of normaloid operators, Math. Z. 124 (1972), 199-202. Zbl 0216.16703. MR0291854. 130
8. J. S. Matharu and M. S. Moslehian, Grüss inequality for some types of positive linear maps, J. Operator Theory 73 (2015), no. 1, 265-278. Zbl 06465642. MR3322766. DOI 10.7900/ jot.2013nov20.2040. 124
9. K. Paul, Translatable radii of an operator in the direction of another operator, Sci. Math. 2 (1999), no. 1, 119-122. Zbl 0952.47032. MR1688391. 127
10. S. Prasanna, The norm of a derivation and the Björck-Thomeé-Istrătescu theorem, Math. Japon. 26 (1981), no. 5, 585-588. Zbl 0475.47007. MR0636597. 128
11. P. Renaud, A matrix formulation of Grüss inequality, Linear Algebra Appl. 335 (2001), 95-100. Zbl 0982.15025. MR1850816. DOI 10.1016/S0024-3795(01)00278-6. 125
12. J. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747. Zbl 0197.10501. MR0265952. 126
[^1]
[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received May 5, 2016; Accepted Jul. 25, 2016.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 39B05; Secondary 39B42, 47B10, 47A12, 47A30.

 Keywords. Grüss inequality, variance, trace inequality, distance formula.

[^1]: ${ }^{1}$ Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 15, 3° piso, (C1083ACA) Buenos Aires, Argentina.

 E-mail address: tpbottaz@ungs.edu.ar; cconde@ungs.edu.ar
 ${ }^{2}$ Instituto de Ciencias, Universidad Nacional de General Sarmiento, J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Argentina.

 E-mail address: cconde@ungs.edu.ar

