
Ann. Funct. Anal. 8 (2017), no. 1, 38–50

http://dx.doi.org/10.1215/20088752-3720614

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

(p, σ)-ABSOLUTELY LIPSCHITZ OPERATORS

D. ACHOUR,1 P. RUEDA,2* and R. YAHI1

Communicated by G. Androulakis

Abstract. Due to recent advances in the theory of ideals of Lipschitz map-
pings, we introduce (p, σ)-absolutely Lipschitz mappings as an interpolating
class between Lipschitz mappings and Lipschitz absolutely p-summing map-
pings. Among other results, we prove a factorization theorem that provides a
reformulation to the one given by Farmer and Johnson for Lipschitz absolutely
p-summing mappings.

1. Introduction and preliminaries

The fruitful development of the theory of absolute summability for linear oper-
ators (see, e.g., [8] for the general theory) produced several generalizations to
the nonlinear context. This is the case of Lipschitz p-summing mappings (intro-
duced by Farmer and Johnson in [9]), which quickly attracted the interest of
many researchers trying to derive a parallel theory to the linear one (see, e.g.,
[5]–[7], [11]).

Midway between continuous linear operators and absolutely summing opera-
tors, a scale of linear operators (namely, (p, σ)-absolutely continuous operators
1 ≤ p < ∞, 0 ≤ σ < 1) was defined by Matter in [13] and [14] by apply-
ing an interpolative ideal procedure. The interpolated operator ideal Πp,σ of all
(p, σ)-absolutely continuous operators was defined as an intermediate operator
ideal between the ideal Πp of the absolutely p-summing linear operators and the
ideal of all continuous operators, and it shares similar properties with absolutely
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p-summing operators. Although it was first thought of as a tool for the study of
super-reflexive Banach spaces, several works have focused on this class of opera-
tors: factorization properties and their representation as dual spaces of suitable
tensor products can be found in [12] and [17]. The nonlinear version (multilinear,
m-homogeneous polynomial) of this concept has been recently studied (see [1]
and the references therein), and applications to the theory of Pettis or Bochner
integrable functions can be found in [15].

Connecting both the linear and the Lipschitz theories, we study the class of
(p, σ)-absolutely Lipschitz mappings. These have to be considered as an attempt
to interpolate Lipschitz mappings with Lipschitz absolutely p-summing mappings.
We pay attention to the domination/factorization theorem whose proof uses the
abstract version of the Pietsch domination theorem given in [4] and [16]. When
applying our factorization theorem to the particular class of absolutely p-summing
Lipschitz mappings, we get an equivalent factorization to the one given by Farmer
and Johnson in [9, Theorem 1].

Our article has the following organization. In Section 2 we extend to Lipschitz
mappings the concept of the (p, σ)-absolutely continuous operator and we give
the first results. Section 3 is devoted mainly to analyzing factorization theorems
for (p, σ)-absolutely Lipschitz mappings and the duality for (p, σ)-absolutely Lip-
schitz operators is studied.

Let X denote a pointed metric space with a base point denoted by 0, and
let E denote a Banach space. The Lipschitz mappings T from X to E that
vanish at 0 form the Lipschitz space Lip0(X,E), which is a Banach space under
the Lipschitz norm Lip, where Lip(T ) is the infimum of all constants C ≥ 0
such that ‖T (x) − T (x′)‖ ≤ Cd(x, x′) for all x, x′ ∈ X. For E = R, we write
X# = Lip0(X) = Lip0(X,R); BX# is a compact Hausdorff space for the topology
of pointwise convergence on X. A molecule on X is a real-valued function m on
X with finite support that satisfies

∑
x∈X m(x) = 0. The real linear space of all

molecules on X is denoted by M(X). A special role is played by the molecules
of the form mxx′ := χ{x} − χ{x′}, where χA is the characteristic function of the
set A and x, x′ ∈ X as any m ∈ M(X) can be written as m =

∑n
j=1 λjmxjx′

j
for

some scalars λj and some xj, x
′
j ∈ X. We write

‖m‖M(X) = inf
{ n∑

j=1

|λj|d(xj, x
′
j),m =

n∑
j=1

λjmxjx′
j

}
,

where the infimum is taken over all representations of the molecule m. The space
of Arens and Eells [3], denoted by Æ(X), is the completion of the normed space
(M(X), ‖ · ‖M(X)). The space X is isometrically embedded in Æ(X) via the
mapping δX : X →Æ(X) given by δX(x) = mx0. In [5], vector-valued molecules
were naturally considered. An E-valued molecule on X is a finitely supported
functionm : X −→ E such that

∑
x∈X m(x) = 0. The vector space of all E-valued

molecules on X is denoted by M(X,E). (For a general approach to the theory
of Lipschitz mappings, we refer to [18].)

Recall that T ∈ Lip0(X,E) is Lipschitz p-summing (in symbols T ∈ ΠL
p (X,E))

if there exists a constant C ≥ 0 so that, for all xi, yi ∈ X and all positive reals
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ai, i = 1, . . . , n,

n∑
i=1

ai
∥∥T (xi)− T (yi)

∥∥p ≤ Cp sup
f∈B

X#

n∑
i=1

ai
∣∣f(xi)− f(yi)

∣∣p.
The Lipschitz p-summing norm, πL

p (T ), of T is the smallest constant C ≥ 0 that
fulfills the above inequality.

Lipschitz p-dominated operators between Banach spaces are treated in [7]. Let
E and F be Banach spaces. A map T ∈ Lip0(E,F ) is Lipschitz p-dominated
if there exist a Banach space Z and a linear operator S ∈ Πp(E,Z) such that
‖T (x)− T (x′)‖ ≤ ‖S(x)− S(x′)‖ for all x, x′ ∈ E.

Let dLp (T ) denote the infimum of all πp(S) when S varies over all linear p-
summing operators defined on E that fulfill the above condition. This is a norm
for the space DL

p (E,F ) of all Lipschitz p-dominated mappings between E and F .

Any mapping in DL
p (E,F ) is Lipschitz and Lip ≤ dLp . Note that

DL
p (E,F ) ⊂ ΠL

p (E,F ). (1.1)

2. (p, σ)-Absolutely Lipschitz mappings

Let 1 ≤ p < ∞, and let 0 ≤ σ < 1. Recall that a linear operator T ∈ L(E,F )
between two Banach spaces E and F is called (p, σ)-absolutely continuous (see
[13]) if there exist a Banach space G and a linear operator S ∈ Πp(E,G) such
that ∥∥T (x)∥∥ ≤ ‖x‖σ

∥∥S(x)∥∥1−σ
, x ∈ E. (2.1)

Let πp,σ(T ) = inf πp(S)
1−σ, where the infimum is taken over all Banach spaces G

and S ∈ Πp(E,G) such that (2.1) holds. By Πp,σ(E,F ), we denote the Banach
space of all (p, σ)-absolutely continuous operators between E and F .

Let us introduce the Lipschitz version of (p, σ)-absolutely continuous operators.

Definition 2.1. Let 1 ≤ p < ∞, and let 0 ≤ σ < 1. Let X be a pointed metric
space, and let E be a Banach space. A base point preserving mapping T ∈
Lip0(X,E) is called (p, σ)-absolutely Lipschitz if there exist a Banach space F
and a Lipschitz operator S ∈ ΠL

p (X,F ) such that∥∥T (x)− T (x′)
∥∥ ≤

∥∥S(x)− S(x′)
∥∥1−σ

d(x, x′)σ

for all x, x′ ∈ X. Let πL
p,σ(T ) denote the infimum of all πL

p (S)
1−σ when S varies

over all Lipschitz p-summing operators defined on X that fulfill the above condi-
tion.

The space of all (p, σ)-absolutely Lipschitz mappings between X and E is
denoted by ΠL

p,σ(X,E). An easy calculation shows that

ΠL
p ⊂ ΠL

p,σ ⊂ Lip0 (2.2)

and Lip ≤ πL
p,σ ≤ πL

p for every 0 < σ < 1. Section 3 contains a factorization
theorem that provides a prototype of a (p, σ)-absolutely Lipschitz mapping in
the sense that any other (p, σ)-absolutely Lipschitz mapping is the composition
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of this kind of prototype with Lipschitz mappings. That gives the whole spectrum
of (p, σ)-absolutely Lipschitz mappings.

Remark 2.2. When σ = 0, (p, 0)-absolutely Lipschitz mappings extend the notion
of Lipschitz p-dominated operators that was in [7]. A Lipschitz p-dominated oper-
ator T is defined between Banach spaces, and satisfies a similar condition to the
one given in Definition 2.1, but there the dominating mapping S is a linear abso-
lutely p-summing operator. We don’t know if the Lipschitz mapping S in our
definition can be replaced with a linear one even if T is linear. In particular, we
don’t know if being (p, σ)-absolutely Lipschitz implies (p, σ)-absolute continuity
whenever the mapping T is linear. The converse is of course clearly true. Our aim
is to work in the setting of Lipschitz mappings.

Let p > 1, 1/p+1/p′ = 1, and let 0 < σ < 1. López Molina and Sánchez-Pérez
in [12, Example 1.9] proved that the operator u : `p′ → ` p

1−σ
defined by u(ei) =

(1
i
)
1
p ei, where (ei)

∞
i=1 is the unit vector basis of `p′ , is (p, σ)-absolutely continuous

and u /∈ Πp(`p′ , ` p
1−σ

). Then u is trivially (p, σ)-absolutely Lipschitz, but, by

Theorem 2 in [9], u /∈ ΠL
p (`p′ , ` p

1−σ
), and then the inclusion ΠL

p ⊂ ΠL
p,σ is strict.

Proposition 2.3. Let X be a pointed metric space, and let E be a Banach space.
Then, for 1 ≤ p < ∞ and 0 ≤ σ < 1, the space ΠL

p,σ(X,E) is a Banach space.

Proof. We prove the triangle inequality. Consider T1, T2 ∈ ΠL
p,σ(X,E), F1, F2

Banach spaces, and consider Si ∈ ΠL
p (X,Fi), i = 1, 2, such that∥∥Ti(x)− Ti(x

′)
∥∥ ≤

∥∥Si(x)− Si(x
′)
∥∥1−σ

d(x, x′)σ for all x, x′ ∈ X.

Let F be the `1-sum of F1 and F2, and let Ii : Fi → F be the canonical injections.
The map

S := πL
p (S1)

−σI1 ◦ S1 + πL
p (S2)

−σI2 ◦ S2

belongs to ΠL
p (X,F ) and

πL
p (S) ≤ πL

p (S1)
1−σ + πL

p (S2)
1−σ.

Using Hölder’s inequality, we get∥∥(T1 + T2)(x)− (T1 + T2)(x
′)
∥∥

≤
∥∥T1(x)− T1(x

′)
∥∥+

∥∥T2(x)− T2(x
′)
∥∥

≤
2∑

i=1

∥∥πL
p (Si)

−σ
(
Si(x)− Si(x

′)
)∥∥1−σ

Fi

(
πL
p (Si)

1−σ
)σ
d(x, x′)σ

≤
( 2∑

i=1

∥∥πL
p (Si)

−σ
(
Si(x)− Si(x

′)
)∥∥

Fi

)1−σ( 2∑
i=1

πL
p (Si)

1−σ
)σ

d(x, x′)σ

=
(
πL
p (S1)

1−σ + πL
p (S2)

1−σ
)σ∥∥S(x)− S(x′)

∥∥1−σ

F
d(x, x′)σ
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for all x, x′ ∈ X. Thus T1 + T2 ∈ ΠL
p,σ(X,E) and

πL
p,σ(T1 + T2) ≤

(
πL
p (S1)

1−σ + πL
p (S2)

1−σ
)σ
πL
p (S)

1−σ

≤ πL
p (S1)

1−σ + πL
p (S2)

1−σ.

Taking the infimum, we finally get that πL
p,σ(T1 + T2) ≤ πL

p,σ(T1) + πL
p,σ(T2).

To prove the completeness of the space, take a sequence (Tn)n in ΠL
p,σ(X,E)

such that
∑∞

n=1 π
L
p,σ(Tn) < ∞. Since Lip ≤ πL

p,σ and (Lip0(X,E),Lip) is a Banach
space, there exists T :=

∑∞
n=1 Tn ∈ Lip0(X,E). We prove that

∑∞
n=1 Tn = T for

πL
p,σ. Let ε > 0, and, for each n ∈ N, let Sn ∈ ΠL

p (X,Fn) be such that∥∥Tn(x)− Tn(x
′)
∥∥ ≤

∥∥Sn(x)− Sn(x
′)
∥∥1−σ

d(x, x′)σ

for all x, x′ ∈ X and πL
p (Sn)

1−σ ≤ πL
p,σ(Tn) + ε/2n. Then( ∞∑

n=1

πL
p (Sn)

)1−σ

≤
∞∑
n=1

πL
p (Sn)

1−σ ≤
∞∑
n=1

πL
p,σ(Tn) + ε < ∞.

Let S =
∑∞

n=1 π
L
p (Sn)

−σ(In ◦ Sn) ∈ ΠL
p (X,F ), where F is the `1-sum of all Fn

and In : Fn → F is the natural inclusion. Hence∥∥T (x)− T (x′)
∥∥ ≤

∞∑
n=1

∥∥Tn(x)− Tn(x
′)
∥∥

≤
∞∑
n=1

∥∥Sn(x)− Sn(x
′)
∥∥1−σ

Fn
d(x, x′)σ

≤
∥∥S(x)− S(x′)

∥∥1−σ

F

( ∞∑
n=1

πL
p (Sn)

1−σ
)σ

d(x, x′)σ.

This implies T ∈ ΠL
p,σ(X,E) and

πL
p,σ(T ) ≤

∞∑
n=1

πL
p (Sn)

1−σ ≤
∞∑
n=1

πL
p,σ(Tn) + ε.

We have

πL
p,σ

(
T −

n∑
k=1

Tk

)
= πL

p,σ

( ∞∑
k=n+1

Tk

)
≤

∞∑
k=n+1

πL
p (Sk)

1−σ.

Thus
∑∞

n=1 Tn = T for πL
p,σ. �

Note that ΠL
p,0 = ΠL

p and πL
p,0 = πL

p . Therefore, the class Π
L
p,σ for 0 ≤ σ < 1 can

be considered as an interpolating class between ΠL
p and Lip0.

The next result is an extension of [7, Theorem 3.2] for (p, σ)-absolutely Lips-
chitz mappings. To prove the domination part, we will use an alternative tech-
nique: the unified abstract version of the Pietsch domination theorem given in [4,
Theorem 2.2] (see also [16]).

Theorem 2.4. Let 1 ≤ p < ∞, let 0 ≤ σ < 1, and let T ∈ Lip0(X,E). The
following statements are equivalent:
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(1) T ∈ ΠL
p,σ(X,E).

(2) There is a constant C ≥ 0 and a regular Borel probability measure µ on
BX# such that∥∥T (x)− T (x′)

∥∥ ≤ C
(∫

B
X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

for all x, x′ ∈ X.
(3) There is a constant C ≥ 0 such that, for all (xi)

n
i=1, (x

′
i)
n
i=1 in X and all

(ai)
n
i=1 ⊂ R+, we have( n∑

i=1

ai
∥∥T (xi)− T (x′

i)
∥∥ p

1−σ

) 1−σ
p

≤ C sup
f∈B

X#

( n∑
i=1

ai
(∣∣f(xi)− f(x′

i)
∣∣1−σ

d(xi, x
′
i)
σ
) p

1−σ

) 1−σ
p
.

Furthermore, the infimum of the constants C ≥ 0 in (2) and (3) is πL
p,σ(T ).

Proof. (1)⇒(2) If T ∈ ΠL
p,σ(X,E), then there exist a Banach space F andS ∈

ΠL
p (X,F ) such that∥∥T (x)− T (x′)

∥∥ ≤
∥∥S(x)− S(x′)

∥∥1−σ
d(x, x′)σ

for all x, x′ ∈ X. By [9, Theorem 1], since S is Lipschitz p-summing, then there
exists a regular Borel probability measure µ on BX# such that∥∥T (x)− T (x′)

∥∥ ≤
∥∥S(x)− S(x′)

∥∥1−σ
d(x, x′)σ

≤ πL
p (S)

1−σ
(∫

B
X#

∣∣f(x)− f(x′)
∣∣p dµ(f)) 1−σ

p
d(x, x′)σ

= πL
p (S)

1−σ
(∫

B
X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

for all x, x′ ∈ X.
(2)⇒(1) Let A be the natural isometric embedding from X into C(BX#) com-

posed with the formal identity from C(BX#) into L∞(µ) given by A(x)(f) = f(x),
x ∈ X, f ∈ BX# . Let I∞,p : L∞(µ) −→ Lp(µ) be the canonical mapping
I∞,p(g) = g. Note that πL

p (I∞,p) = 1. Therefore, by (2),∥∥T (x)− T (x′)
∥∥

≤ C
(∫

B
X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

=
(∫

B
X#

∣∣C 1
1−σ I∞,pA(x)(f)− C

1
1−σ I∞,pA(x

′)(f)
∣∣p dµ(f)) 1−σ

p
d(x, x′)σ.
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Consequently, there is a Banach space F = Lp(µ) and a Lipschitz p-summing

operator S = C
1

1−σ I∞,pA such that∥∥T (x)− T (x′)
∥∥ ≤

∥∥S(x)− S(x′)
∥∥1−σ

d(x, x′)σ

as required.
(2)⇒(3) If∥∥T (x)− T (x′)

∥∥ ≤ C
(∫

B
X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

for all x, x′ ∈ X, then, for n ∈ N, a1, . . . , an ∈ R+ and x1, . . . , xn, x
′
1, . . . , x

′
n ∈ X,

we have
n∑

i=1

ai
∥∥T (xi)− T (x′

i)
∥∥ p

1−σ

≤ C
p

1−σ

n∑
i=1

∫
B

X#

ai
(∣∣f(xi)− f(x′

i)
∣∣1−σ

d(xi, x
′
i)
σ
) p

1−σ dµ(f)

= C
p

1−σ

∫
B

X#

n∑
i=1

ai
(∣∣f(xi)− f(x′

i)
∣∣1−σ

d(xi, x
′
i)
σ
) p

1−σ dµ(f)

≤ C
p

1−σ sup
f∈B

X#

n∑
i=1

ai
(∣∣f(xi)− f(x′

i)
∣∣1−σ

d(xi, x
′
i)
σ
) p

1−σ .

(3)⇒(2) We will use the unified abstract version of the Pietsch domination
theorem given in [4, Theorem 2.2].

Let R : BX# × (X ×X × R)× R → [0,∞[ be given by

R
(
f, (x, x′, a), λ

)
= |a|

1−σ
p

∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ|λ|,

and let S : Lip0(X,E)× (X ×X × R)× R → [0,∞[ be given by

S
(
T, (x, x′, a), λ

)
= |a|

1−σ
p

∥∥T (x)− T (x′)
∥∥|λ|.

Then T is R-S-abstract p/(1− σ)-summing (see [4, Definition 2.1]):( n∑
i=1

S
(
T, (xi, x

′
i, ai), λi

) p
1−σ

) 1−σ
p

=
( n∑

i=1

|ai||λi|
p

1−σ

∥∥T (xi)− T (x′
i)
∥∥ p

1−σ

) 1−σ
p

≤ C sup
f∈B

X#

( n∑
i=1

|ai||λi|
p

1−σ

(∣∣f(xi)− f(x′
i)
∣∣1−σ

d(xi, x
′
i)
σ
) p

1−σ

) 1−σ
p

= C sup
f∈B

X#

( n∑
i=1

R
(
f, (xi, x

′
i, ai), λi

) p
1−σ

) 1−σ
p
.



(p, σ)-ABSOLUTELY LIPSCHITZ OPERATORS 45

Then, by [4, Theorem 2.2], there is a constant C ≥ 0 and a regular Borel
probability measure µ on BX# such that

S
(
T, (x, x′, a), λ

)
≤ C

(∫
B

X#

R
(
f, (x, x′, a), λ

) p
1−σ dµ(f)

) 1−σ
p

for all (x, x′, a) ∈ X ×X × R and λ ∈ R. In particular, we have∥∥T (x)− T (x′)
∥∥ ≤ C

(∫
B

X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

for all x, x′ ∈ X. �

Remark 2.5. The notion of a (p, σ)-absolutely Lipschitz mapping can be defined
for Lipschitz mappings between pointed metric spaces. Given pointed metric
spaces X and Y , a map T ∈ Lip0(X,Y ) is called (p, σ)-absolutely Lipschitz if
there exist a constant k ≥ 0, a pointed metric space G, and a Lipschitz operator
S ∈ ΠL

p (X,G) such that

d
(
T (x), T (x′)

)
≤ kd

(
S(x), S(x′)

)1−σ
d(x, x′)σ

for all x, x′ ∈ X. In this case πL
p,σ(T ) denotes the infimum of all kπL

p (S)
1−σ.

Theorem 2.4 can be easily adapted whenever T ∈ Lip0(X,Y ) and X and Y are
pointed metric spaces.

Proposition 2.6 (Ideal property). Let X,Y,X0, Y0 be pointed metric spaces. If
v : X0 −→ X, w : Y −→ Y0 are Lipschitz mappings and T : X −→ Y is
(p, σ)-absolutely Lipschitz, then wTv is (p, σ)-absolutely Lipschitz and

πL
p,σ(wTv) ≤ Lip(w) Lip(v)πL

p,σ(T ).

Proof. Since T is (p, σ)-absolutely Lipschitz, then there exist a constant k ≥ 0, a
pointed metric space G, and a Lipschitz operator S ∈ ΠL

p (X,G) such that

d
(
T (x), T (x′)

)
≤ kd

(
S(x), S(x′)

)1−σ
d(x, x′)σ for all x, x′ ∈ X.

Let x0, x
′
0 ∈ X0. Then

d
(
wTv(x0), wTv(x

′
0)
)
≤ Lip(w)d

(
Tv(x0), T v(x

′
0)
)

≤ k Lip(w)d
(
S ◦ v(x0), S ◦ v(x′

0)
)1−σ

d
(
v(x0), v(x

′
0)
)σ

≤ k Lip(w) Lip(v)σd
(
S ◦ v(x0), S ◦ v(x′

0)
)1−σ

d(x0, x
′
0)

σ.

Since S ◦ v ∈ ΠL
p (X0, G), it follows that w ◦ T ◦ v ∈ ΠL

p,σ(X0, Y0) and

πL
p,σ(wTv) ≤ k Lip(w) Lip(v)σπL

p (S ◦ v)1−σ

≤ k Lip(w) Lip(v)πL
p (S)

1−σ.

Taking the infimum, we get

πL
p,σ(wTv) ≤ Lip(w) Lip(v)πL

p,σ(T ). �
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Remark 2.7. Using (2.2), Proposition 2.3, and Proposition 2.6, it can be shown
that all (p, σ)-absolutely Lipschitz mappings form a Lipschitz operator ideal (see
[2]).

3. Factorization theorem

Let µ be a Borel probability measure on BX# . Consider the canonical inclusion
i:Æ(X) −→ C(BX#) given by i(

∑n
j=1 λjmxjx′

j
) :=

∑n
j=1 λj〈mxjx′

j
, ·〉. On i(Æ(X)),

we define the semi-norm∥∥i(m)
∥∥
p,σ

:= inf
{ n∑

j=1

|λj|d(xj, x
′
j)

σ
(∫

B
X#

∣∣f(xj)− f(x′
j)
∣∣p dµ(f)) 1−σ

p
}
,

where the infimum is taken over all representations of m of the form m =∑n
j=1 λjmxjx′

j
. Consider on i ◦ δX(X) the pseudometric induced by ‖ · ‖p,σ:

dp,σ
(
i ◦ δX(x), i ◦ δX(x′)

)
:=

∥∥i ◦ δX(x)− i ◦ δX(x′)
∥∥
p,σ

and the relation of equivalence R given by

i ◦ δX(x)Ri ◦ δX(x′) ⇔ dp,σ
(
i ◦ δX(x), i ◦ δX(x′)

)
= 0.

We set Xµ
p,σ := i◦δX(X)

R , and let q : i ◦ δX(X) −→ Xµ
p,σ be the projection.

Note that, if we consider the canonical map jp : C(BX#) −→ Lp(µ), then
i ◦ δX(x)Ri ◦ δX(x′) if and only if jp(i ◦ δX(x)) = jp(i ◦ δX(x′)). Hence Xµ

p,σ can
be seen as a subset of Lp(µ) via the formal identity I.

Theorem 3.1. Let 1 ≤ p < ∞, and let 0 ≤ σ < 1. Let X and Y be pointed
metric spaces, and let T ∈ Lip0(X,Y ). The following statements are equivalent:

(1) T ∈ ΠL
p,σ(X,Y ),

(2) there exist a regular Borel probability measure µ on BX# and a Lipschitz
operator v : Xµ

p,σ → Y such that the following diagram commutes:

X
T //

δX
��

Y

δX(X)
q◦i // Xµ

p,σ

v

OO

Proof. (1)⇒(2) Assume first that T ∈ ΠL
p,σ(X,Y ). By Theorem 2.4 and Remark

2.5, there is a regular Borel probability measure µ on BX# such that

d
(
T (x), T (x′)

)
≤ πL

p,σ(T )
(∫

B
X#

(∣∣f(x)− f(x′)
∣∣1−σ

d(x, x′)σ
) p

1−σ dµ(f)
) 1−σ

p

for all x, x′ ∈ X. Define v(q ◦ i ◦ δX(x)) := T (x), x ∈ X. If x, x′ ∈ X are so that
q(i ◦ δX(x)) = q(i ◦ δX(x

′)), then 0 = dp,σ(i ◦ δX(x), i ◦ δX(x
′)) = ‖〈mxx′ , ·〉‖p,σ.

Therefore, given ε > 0, there exists a representation ofmxx′ ,mxx′ =
∑n

j=1 λjmxjx′
j

such that
n∑

j=1

|λj|d(xj, x
′
j)

σ
(∫

B
X#

∣∣f(xj)− f(x′
j)
∣∣p dµ) 1−σ

p
< ε.
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Let g ∈ BY # . Then∣∣g(T (x))− g
(
T (x′)

)∣∣
=

∣∣〈mxx′ , g ◦ T 〉
∣∣

≤
n∑

j=1

|λj|
∣∣〈mxjx′

j
, g ◦ T 〉

∣∣ ≤ n∑
j=1

|λj|d
(
T (xj), T (x

′
j)
)

≤ πL
p,σ(T )

n∑
j=1

|λj|d(xj, x
′
j)

σ
(∫

B
X#

∣∣f(xj)− f(x′
j)
∣∣p dµ) 1−σ

p
< επL

p,σ(T ).

Letting ε −→ 0, it follows that g(T (x)) − g(T (x′)) = 0 for all g ∈ BY # . Hence
T (x) = T (x′). This proves that v is well defined.

We now show that v is Lipschitz. Take g ∈ BY # , and let mxx′ =
∑n

j=1 λjmxjx′
j
.

Then, by Proposition 2.6,∣∣g ◦ v(q ◦ i ◦ δX(x))− g ◦ v
(
q ◦ i ◦ δX(x′)

)∣∣
=

∣∣g ◦ T (x)− g ◦ T (x′)
∣∣ = ∣∣〈mxx′ , g ◦ T 〉

∣∣
≤ πL

p,σ(T )
n∑

j=1

|λj|d(xj, x
′
j)

σ
(∫

B
X#

∣∣f(xj)− f(x′
j)
∣∣p dµ) 1−σ

p
.

Taking the infimum over all representations of mxx′ , we get∣∣g ◦ v(q ◦ i ◦ δX(x))− g ◦ v
(
q ◦ i ◦ δX(x′)

)∣∣ ≤ πL
p,σ(T )dp,σ

(
i ◦ δX(x), i ◦ δX(x′)

)
for all g ∈ BY # . We conclude now that

d
(
v
(
q ◦ i ◦ δX(x)

)
, v
(
q ◦ i ◦ δX(x′)

))
≤ πL

p,σ(T )dp,σ
(
i ◦ δX(x), i ◦ δX(x′)

)
.

(2)⇒(1) Assume that T factors as in (2). By Proposition 2.6, it suffices to prove
that q ◦ i : δX(X) −→ Xµ

p,σ is (p, σ)-absolutely Lipschitz, but this is clear as

dp,σ
(
i ◦ δX(x), i ◦ δX(x′)

)
=

∥∥i(mxx′)
∥∥
p,σ

≤ ‖mxx′‖σ
(∫

B
X#

∣∣f(x)− f(x′)
∣∣p dµ) 1−σ

p
.

�

Farmer and Johnson [9, Theorem 1] proved that πL
p (T ) ≤ C if and only if for

some (or any) isometric embedding J of Y into a 1-injective space Z there is a
factorization

L∞(µ)
I∞,p // Lp(µ)

B
��

X

A

OO

T // Y
J // Z

with µ a probability and Lip(A) · Lip(B) ≤ C.
Letting σ = 0 in Theorem 3.1, we obtain a factorization theorem for Lipschitz

absolutely p-summing operators which is equivalent to the above. In that case,
Xµ

p,0 = jp ◦ i ◦ δX(X), where jp : C(BX#) → Lp(µ) is the canonical mapping, and
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the induced metric dp,0 generates the Lp-norm on Xµ
p,0. Then Theorem 3.1 is a

generalization of the Farmer and Johnson factorization.

Theorem 3.2. Let 1 ≤ p < ∞. Let X and Y be pointed metric spaces. The
following statements are equivalent for a mapping T ∈ Lip0(X,Y ) and a positive
constant C:

(1) T ∈ ΠL
p (X,Y ) and πL

p (T ) ≤ C.
(2) There exists a regular Borel probability measure µ on BX# such that

d
(
T (x), T (x′)

)
≤ C

(∫
B

X#

∣∣〈δX(x)− δX(x
′), f

〉∣∣p dµ(f))1/p

for all x, x′ ∈ X.
(3) There exist a regular Borel probability measure µ on BX# and a Lipschitz

operator v : Xµ
p,0 → Y such that the following diagram commutes:

X
T //

i◦δX
��

Y

i ◦ δX(X)
jp // Xµ

p,0

v

OO

Furthermore, the infimum of the constants C ≥ 0 in (1) and (2) is πL
p (T ).

Let us end showing the duality for (p, σ)-absolutely Lipschitz operators.

Let 1 ≤ p, r < ∞, and 0 ≤ σ < 1 such that r′ = p′

1−σ
, where p′ is the conjugate

of p; that is, 1
p
+ 1

p′
= 1. For x1, . . . , xn, x

′
1, . . . , x

′
n in X and scalars λ1, . . . , λn, we

define

δLipp,σ

(
(λj, xj, x

′
j)

n
j=1

)
:= sup

f∈B
X#

( n∑
j=1

(
|λj|

∣∣f(xj)− f(x′
j)
∣∣1−σ

d(xj, x
′
j)

σ
) p

1−σ

) 1−σ
p
.

If we denote

wLip
p

1−σ

(
(λj, xj, x

′
j)

n
j=1

)
:= sup

f∈B
X#

( n∑
j=1

(
|λj|

∣∣f(xj)− f(x′
j)
∣∣) p

1−σ

) 1−σ
p
,

then we have

wLip
p

1−σ

(
(λj, xj, x

′
j)

n
j=1

)
≤ δLipp,σ

(
(λj, xj, x

′
j)

n
j=1

)
.

As a remark, the above inequality shows that ΠL
p/(1−σ)(X,Y ) ⊂ ΠL

p,σ(X,Y ).

For a molecule m ∈ M(X,E), we define its (p, σ)-Chevet–Saphar norm by

csp,σ(m) = inf
{∥∥(λj‖vj‖

)n
j=1

∥∥
r
δLipp′,σ

(
(λ−1

j , xj, x
′
j)

n
j=1

)
: m =

n∑
j=1

vjmxjx′
j
, λj > 0

}
.

We denote by CSp,σ(X,E) the space M(X,E) endowed with the norm csp,σ.
The following theorem can be proved as in [5, Theorem 4.3].

Theorem 3.3. The spaces CSp,σ(X,E)∗ and ΠL
p′,σ(X,E∗) are isometrically iso-

morphic via the canonical pairing 〈m,T 〉 =
∑n

j=1〈vj, T (xj)− T (x′
j)〉.
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Espaces, 28000 M’sila, Algeria.

E-mail address: dachourdz@yahoo.fr; rachid2011yahi@gmail.com
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