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Abstract. Let B(H), K(H) and T (H) be the set of all bounded linear oper-
ators, compact operators, and trace-class operators on the Hilbert space H.
The cone of all completely positive maps from K(H) into T (K) and all normal
completely positive maps from B(K) into T (H) is denoted by CP(K(H), T (K))
and NCP(B(K), T (H)), respectively. In this note, the order structures of the
positive cones CP(K(H), T (K)) and NCP(B(K), T (H)) are investigated. First,

we show that CP(K(H), T (K)), NCP(B(K), T (H)), and T (K ⊗H)
+
are cone-

isomorphic. Then we give the operator sum representation for the map Φ ∈
CP(K(H), T (K)).

1. Introduction and preliminaries

The study of positive maps and completely positive maps are essential and
useful in both mathematics and quantum theory. Many interesting results of
(completely) positive maps in operator algebras were obtained in [1], [2], [4], [11],
[12], [14], [15]. Some equivalent conditions and properties such as the interpolation
problem and fixed points of completely positive maps were obtained in [5], [7],
[8], [10], [16]. Moreover, recent investigations in (completely) positive maps are
being used in quantum entanglement theory (see [13]).

Let H and K be separable Hilbert spaces, and let B(H) (B(H,K)) be the set
of all bounded linear operators on H (from H to K). For an operator A ∈ B(H),
the adjoint of A is denoted by A∗. We write A ≥ 0 if A is a positive operator,
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meaning 〈Ax, x〉 ≥ 0 for all x ∈ H. Let K(H,K) and T (H,K) be the set of
all compact operators and all trace-class operators, respectively, from H to K.
It is well known that K(H) is a nonunital C*-algebra and that T (H) is only a
nonunital Banach*-algebra. For x ∈ H and y ∈ K, x ⊗ y denotes the one rank
linear operator x⊗ y(z) := 〈z, y〉x (z ∈ K).

If W is a real vector space, then a cone in W is a nonempty subset C ⊆ W
with the following two properties:

(a) λν ∈ C whenever λ ∈ R+ := [0,∞) and ν ∈ C;
(b) µ+ ν ∈ C whenever µ, ν ∈ C, and in particular, C is called a proper cone

if C ∩ (−C) = {0}.
Let V be a complex vector space. An involution on V is a conjugate linear

map ∗ : V → V given by v 7→ v∗ such that v∗∗ = v and (v + λµ)∗ = v∗ + λµ∗

for all λ ∈ C and v, µ ∈ V . The complex vector space V together with the
involution map is called a ∗-vector space. If V is a ∗-vector space, then we let
Vh = {v ∈ V : v = v∗} be the real vector space of self-adjoint elements of V .
Note that Vh is a real vector space. An ordered ∗-vector space (V, V +) is a pair
consisting of a ∗-vector space V and a proper cone V + ⊆ Vh. In any ordered
∗-vector space, we may define a partial ordering ≥ on Vh by defining v ≥ w (or,
equivalently, w ≤ v) if and only if v − w ∈ V +. Note that v ∈ V + if and only if
v ≥ 0. In this case, V + is called the cone of positive elements of V . So, we also
denote by B(H)+, K(H)+, and T (H)+ the cone of positive elements of B(H),
K(H), and T (H), respectively.

Let (V, V +) and (W,W+) be two ordered ∗-vector spaces, respectively. A lin-
ear map φ : V → W is called positive if φ(V +) ⊆ W+. Moreover, φ is an order
isomorphism if φ is bijective, and both φ and φ−1 are positive. Also, Mn,m(V )
denote the set of all n×m matrices with entries in V . The natural addition and
scalar multiplication turn Mn,m(V ) into a complex vector space. We also write
Mn,m =Mn,m(C) and use the identifications Mn,m(V ) =Mn,m ⊗ V = V ⊗Mn,m.
As usual, let {Eij} denote the canonical matrix unit system; so we denote∑n

i,j=1Eij ⊗ aij := (aij)n×n ∈ Mn(V ), where aij ∈ V , for 1 ≤ i, j ≤ n. Fur-

thermore, we define a ∗-operation on Mn,m(V ) by letting (aij)
∗
n×m = (a∗ji)m×n

and XA be the element ofMl,n(V ) whose (i, j) entry (XA)i,j equals
∑m

k=1 xikakj,
for X = (xij)l×m ∈ Ml,m and A = (aij)m×n ∈ Mm,n(V ). The definition of multi-
plication by scalar matrices on the right is done in a similar way.

Let n ≥ 1 be an integer, and denote by Mn(B(H)) the von Neumann algebra
of n× n matrices whose entries are in B(H). Let Φ : B(H) −→ B(H) be a linear
map. Then Φ induces a map Φn :Mn(B(H)) −→Mn(B(H)) by the formula

Φn

(
(ai,j)

)
=

(
Φ(ai,j)

)
for (ai,j) ∈Mn

(
B(H)

)
.

If every Φn is a positive map, then Φ is called completely positive. It is well
known that K(H)∗ ' T (H) and T (H)∗ ' B(H), where V ∗ denotes the set of
all bounded linear functions on the vector space V . Also, Φ : B(K) → T (H)
is said to be normal if Φ is continuous with respect to the W ∗ topology, where
the W ∗ topology on T (H) is induced by the identity K(H)∗ ' T (H). Normal
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completely positive maps on B(H) were characterized by Kraus in [6, Theorem
3.3] as follows.

Lemma 1.1 (Kraus theorem). Let Φ : B(H) → B(K) be contractive (‖Φ‖ ≤ 1).
Then Φ is a normal completely positive map if and only if there exists a sequence
{Ai}∞i=1 of B(H,K) such that, for all X ∈ B(H),

Φ(X) =
∞∑
i=1

AiXA
∗
i with

∞∑
i=1

AiA
∗
i ≤ I.

The sequence {Ai}∞i=1 is not necessarily unique, and
∑∞

i=1AiA
∗
i ≤ I in the

strong operator topology. The family {Ai}∞i=1 is called a family of Kraus operators
for Φ. In finite-dimensional Hilbert spaces H and K, two equivalent conditions
for completely positive maps are also obtained in [1, Theorems 1, 2].

Lemma 1.2 (Choi theorem). Let H (dimH = n) and K be finite-dimensional
Hilbert spaces. If Φ : B(H) −→ B(K) is a linear map, then the following state-
ments are equivalent:

(a) Φ is completely positive;
(b)

∑n
i,j=1 eij ⊗ Φ(eij) ≥ 0, where {ei}ni=1 is an orthonormal basis of H and

eij := ei ⊗ ej;
(c) there exists a finite sets of operators Ai ∈ B(H,K) such that Φ(X) =∑s

i=1AiXA
∗
i (s <∞).

Definition 1.3. Let V + and W+ be two proper cones. A bijective map φ : V + →
W+ is called a cone isomorphism if the following two conditions are satisfied:

(1) φ(λν) = λφ(ν) for all λ ∈ R+ and ν ∈ V +,
(2) φ(µ+ ν) = φ(µ) + φ(ν) whenever µ, ν ∈ V +.

Clearly, if φ : V + → W+ is cone-isomorphic, then φ(µ) ≥ φ(ν) if and only if
µ ≥ ν. Also, we consider V + andW+ to be cone-isomorphic and denote V + ' W+

if there exists a cone isomorphism between two proper cones V + and W+. For
convenience, we also denote

CP
(
K(H), T (K)

)
:=

{
Φ : Φ is the completely positive linear map from K(H) into T (K)

}
,

NCP
(
B(K), T (H)

)
:=

{
Φ : Φ is the normal completely positive linear map

from B(K) into T (H)
}
.

The purpose of the present article is to consider the order structures of the
above-mentioned cones. We mainly investigate the relationship between two cones
CP(K(H), T (K)) and NCP(B(K), T (H)). The relations CP(K(H), T (K)) '
NCP(B(K), T (H)) ' T (K ⊗H)+ are shown. Also, we get that Φ ∈ CP(K(H),
T (K)) if and only if there exists Vi ∈ B(H,K) such that Φ(X) =

∑s
i=1 ViXV

∗
i

and
∑s

i=1 ViV
∗
i ∈ T (K), where s ≤ ∞.
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Remark 1.4. It is clear that B(H)+, K(H)+, and T (H)+ are proper cones. How-
ever, they are not cone-isomorphic, when H is an infinite-dimensional separable
Hilbert space. Assume that B(H)+ ' K(H)+. Then there exists a bijective map
φ : B(H)+ → K(H)+, which implies that φ(I) ∈ K(H)+. For any finite-rank
orthogonal projection P , we have φ−1(P ) ∈ B(H)+. As φ−1(P ) ≤ ‖φ−1(P )‖I,
then P ≤ ‖φ−1(P )‖φ(I), so by the range inclusion theorem (see [3, Theorem 1]),
we get R(φ(I)1/2) ⊇ R(P ) for any finite-rank orthogonal projection P , where
R(T ) denotes the range of an operator T . Thus R(φ(I)1/2) = H, which is a con-
tradiction to the fact that φ(I)1/2 ∈ K(H)+. Similarly, we also can show that
B(H)+ and T (H)+ are not cone-isomorphic.

If K(H)+ ' T (H)+, then we get a bijective map ψ : K(H)+ → T (H)+ such
that (a) and (b) of Definition 1.3 hold. Clearly, ψ can be extended to a positive
linear map from K(H) into T (H), so by the following Lemma 2.1, we conclude
that there exists M > 0 such that∥∥ψ(A)∥∥

1
≤M‖A‖ for all A ∈ K(H)+.

Let {ei}∞i=1 be an orthonormal basis of H, and let Pn be the n-rank orthogonal
projection spanned by the vectors {ei}ni=1, for n = 1, 2, . . . . Thus for any positive
integer N , we have

tr
[ N∑
n=1

ψ(en ⊗ en)
]
= tr

[
ψ
( N∑
n=1

en ⊗ en

)]
=

∥∥∥ψ( N∑
n=1

en ⊗ en

)∥∥∥
1
≤M,

which implies that tr[
∑∞

n=1 ψ(en⊗ en)] ≤M , so
∑∞

n=1 ψ(en⊗ en) ∈ T (H)+. Then
for any positive integer N ,

K(H)+ 3 ψ−1
( ∞∑
n=1

ψ(en ⊗ en)
)
≥ ψ−1

( N∑
n=1

ψ(en ⊗ en)
)
=

N∑
n=1

(en ⊗ en) = PN ,

which induces that for m = 1, 2, . . . ,〈
ψ−1

( ∞∑
n=1

ψ(en ⊗ en)
)
em, em

〉
≥ 〈PNem, em〉 ≥ 1 for N ≥ m.

This is a contradiction to the fact that

lim
m→∞

〈
ψ−1

( ∞∑
n=1

ψ(en ⊗ en)
)
em, em

〉
≤ lim

m→∞

∥∥∥ψ−1
( ∞∑
n=1

ψ(en ⊗ en)
)
em

∥∥∥ = 0,

since ψ−1(
∑∞

n=1 ψ(en ⊗ en)) ∈ K(H)+.

The proof also shows that the ordered ∗-vector spaces (B(H), B(H)+), (K(H),
K(H)+), and (T (H), T (H)+) are not order-isomorphic to each other. Indeed, if
φ : B(H)(K(H), T (H)) → K(H)(T (H),B(H)) is a order isomorphism, then

φ|B(H)+(φ|K(H)+ , φ|T (H)+) : B(H)+
(
K(H)+, T (H)+

)
→ K(H)+

(
T (H)+,B(H)+

)
is a cone isomorphism.
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Lemma 1.5. Let A ∈ B(H)+ and {ei}∞i=1 be an orthonormal basis of H. Then∑∞
i,j=1 tr(Aeij)eij ∈ B(H)+.

It is clear that A =
∑∞

i,j=1 tr(Aeji)eij ≥ 0 and
∑n

i,j=1 tr(Aeji)eij ≥ 0, so by the
positive property of the transpose matrix for a positive matrix, we get

n∑
i,j=1

tr(Aeij)eij ≥ 0 and
∥∥∥ n∑
i,j=1

tr(Aeij)eij

∥∥∥ =
∥∥∥ n∑
i,j=1

tr(Aeji)eij

∥∥∥ ≤ ‖A‖

for all n. So, the Lemmas 2.2 and 2.3 imply that
∑∞

i,j=1 tr(Aeij)eij ∈ B(H)+.

2. Main results

To get the main results, we need the following lemmas.

Lemma 2.1. LetΦ : K(H) → T (K) be a positive linear map. Then sup{‖Φ(A)‖1 :
A ∈ K(H) with ‖A‖ ≤ 1} <∞.

Proof. The proof is similar to the proof of [9, Lemma 2.3]. �

Lemma 2.2 ([9, Lemma 3.3]). Let Pn, A ∈ B(H), n = 1, 2, . . . . If Pn are orthog-
onal projections such that Pn converges to the unit operator I in the weak operator
topology, then A ≥ 0 if and only if PnAPn ≥ 0 for all n = 1, 2, . . . .

Lemma 2.3 ([9, Lemma 2.6]). Let

Ã :=


A11 A12 · · · A1m · · ·
A21 A22 · · · A2m · · ·
...

...
. . .

... · · ·
Am1 Am2 · · · Amm · · ·
...

... · · · ...
. . .


and M > 0, where all Aij ∈ B(H). If ‖

∑n
i,j=1Eij ⊗ Aij‖ ≤ M for all n and

Aij = A∗
ji for all i, j, then Ã ∈ B(

⊕∞
n=1Hn) with ‖Ã‖ ≤M , where all Hn = H.

The following is our main result. The matrix-ordered spaces (Mn,M
+
n ) and

(Md
n, (M

d
n)

+) are completely order-isomorphic (see [13, Theorem 6.2]), where Md
n

is the dual space of Mn. The motivation of Theorem 2.4 is to consider the similar
result for the infinite-dimensional case.

Theorem 2.4. We have

CP
(
K(H), T (K)

)
' T (K ⊗H)+.

Proof. Let Φ ∈ CP(K(H), T (K)) and {fi}∞i=1 be the orthonormal basis of K.
Denote

Φij(X) =
〈
Φ(X)fj, fi

〉
for X ∈ K(H), i, j = 1, 2, . . . . (2.1)

Then by Lemma 2.1, Φij is a bounded linear functional on K(H), so there exist
operators Tij ∈ T (H) such that

Φij(X) = tr(TijX) for i, j = 1, 2, . . . .
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Define

T =
∞∑

i,j=1

fij ⊗ Tji =


T11 T21 · · · Tm1 · · ·
T12 T22 · · · Tm2 · · ·
...

...
. . .

... · · ·
T1m T2m · · · Tmm · · ·
...

... · · · ...
. . .

 , (2.2)

where fij := fi ⊗ fj. We will show that T ∈ T (K ⊗H)+.
If Φ is positive, then Φii are positive, so Tii are positive trace-class operators

for i = 1, 2, . . . . Let Pn be the n-rank orthogonal projection spanned by the
orthonormal vectors {fi}ni=1, for n = 1, 2, . . . . Then PnΦPn ∈ CP(K(H), B(PnK))
and for X ∈ K(H),

PnΦ(X)Pn =
n∑

i,j=1

fij ⊗ Φij(X) =


Φ11(X) Φ12(X) · · · Φ1n(X)
Φ21(X) Φ22(X) · · · Φ2n(X)

...
...

. . .
...

Φn1(X) Φn2(X) · · · Φnn(X)

 ,

which implies that

n∑
i,j=1

fij ⊗ Tji =


T11 T21 · · · Tn1
T12 T22 · · · Tn2
...

...
. . .

...
T1n T2n · · · Tnn

 ∈ B(PnK ⊗H)+ (2.3)

for n = 1, 2, . . . . Indeed, the positivity (2.3) follows from the fact that

n∑
i,j=1

tr(TijSij) = tr
[( n∑

i,j=1

Eij ⊗ Tji

)( n∑
i,j=1

Eij ⊗ Sij

)]
≥ 0,

for all
∑n

i,j=1Eij ⊗ Sij ∈Mn(K(H))+. Since PnΦPn ∈ CP(K(H), B(PnK)), then∑n
i,j=1Eij ⊗ PnΦPn(Sij) ∈Mn(B(PnK))+, that is

M =



tr(T11S11) · · · tr(T1nS11) · · · tr(T11S1n) · · · tr(T1nS1n)
... · · · ... · · · ... · · · ...

tr(Tn1S11) · · · tr(TnnS11) · · · tr(Tn1S1n) · · · tr(TnnS1n)
... · · · ... · · · ... · · · ...

tr(T11Sn1) · · · tr(T1nSn1) · · · tr(T11Snn) · · · tr(T1nSnn)
... · · · ... · · · ... · · · ...

tr(Tn1Sn1) · · · tr(TnnSn1) · · · tr(Tn1Snn) · · · tr(TnnSnn)


≥ 0.

Also, for αi ∈ Cn, we suppose that αi = (α1i, α2i, . . . , αni) where i = 1, 2, . . . , n.
Thus
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n∑
l,m=1

tr
[
Tlm

( n∑
i,j=1

αliSijαmj

)]
=

n∑
i,j=1

n∑
l,m=1

αli tr(TlmSij)αmj

= (α1, α2, . . . , αn)M


α1

t

α2
t

...
αn

t

 ≥ 0. (2.4)

Particularly, for i = 1, 2, . . . , n, set

αli = δli (Kronecker delta),

and then
∑n

i,j=1 αliSijαmj = Slm, so
∑n

i,j=1 tr(TijSij) ≥ 0 follows from inequality

(2.4). Also, the positivity of (2.3) implies Tij = T ∗
ji, for i, j = 1, 2, . . . , n.

Let S ∈ K(H)+; it is clear that Φ(S) ≥ 0, which yields

∞∑
i=1

tr(TiiS) = tr
(
Φ(S)

)
=

∥∥Φ(S)∥∥
1
≤M‖S‖,

from Lemma 2.1, so
∑∞

i=1 tr(Tii) ≤M . Thus the positivity of (2.3) implies that∥∥∥ n∑
i,j=1

fij ⊗ Tji

∥∥∥ ≤
∥∥∥ n∑
i,j=1

fij ⊗ Tji

∥∥∥
1
=

n∑
i=1

tr(Tii) ≤M,

for n = 1, 2, . . . , so Lemma 2.3 induces that T ∈ B(K ⊗H) is well defined. It
is easy to verify that Pn ⊗ I converge to I ⊗ I in the weak operator topology
and (Pn ⊗ I)T (Pn ⊗ I) =

∑n
i,j=1 fij ⊗ Tji. Then by Lemma 2.2 and the positivity

of (2.3), we conclude that T is positive, which implies that T ∈ T (K ⊗H)+, as∑∞
i=1 tr(Tii) ≤ M . Defining Γ : CP(K(H), T (K)) → T (K ⊗H)+ as Γ(Φ) = T ,

where T has form (2.2), we obtain that Γ is well defined and injective.

In the following, we show that Γ is surjective. If T̃ ∈ T (K ⊗H)+, then suppose

that T̃ =
∑∞

i,j=1 fij ⊗ T̃ij, so (Pfi ⊗ I)T̃ (Pfj ⊗ I) are trace class operators, which

implies that T̃ij ∈ T (H) for i, j = 1, 2, . . . , where Pfi denotes the orthogonal
projection on the subspace spanned by fi. Also, define the linear functional on
K(H) by

Ψij(X) = tr(T̃jiX) for all X ∈ K(H).

Denoting Ψ(X) =
∑∞

i,j=1Ψij(X)fij, we need to show that Ψ(X) ∈ T (K) for all

X ∈ K(H). Let S ∈ K(H)+ be arbitrary. Then by [9, Remark 2.8],

T (K ⊗H)+ 3 (I ⊗ S1/2)T̃ (I ⊗ S1/2) =
∞∑

i,j=1

fij ⊗ (S1/2T̃ijS
1/2)

implies that
∑∞

i,j=1 tr(T̃ijS)fij ∈ T (K)+. Lemma 1.5 yields
∑∞

i,j=1 tr(T̃jiS)fij ∈
T (K)+; that is, Ψ(S) =

∑∞
i,j=1Ψij(S)fij ∈ T (K)+. For a general operator X ∈

K(H), we write X = X1 −X2 +
√
−1(X3 −X4), where Xi ∈ K(H)+, and thus

Ψ(X) = Ψ(X1)−Ψ(X2) +
√
−1

[
Ψ(X3)−Ψ(X4)

]
∈ T (K).
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Again suppose that
∑m

i,j=1Eij ⊗ Sij ∈Mm(K(H))+. Here, we need to show that∑m
i,j=1Eij ⊗Ψ(Sij) ∈Mm(T (K))+. Clearly,

∑m
i,j=1Eij ⊗Ψ(Sij) ∈Mm(T (K)). We

claim that
m∑

i,j=1

Eij ⊗ PnΨ(Sij)Pn ∈Mm

(
B(PnK)

)+
for n = 1, 2, . . . . (2.5)

Indeed, the proof of this claim is similar to equation (2.4). Let αi ∈ PnK, and
αi = (α1i, α2i, . . . , αni) in the orthonormal basis {fi}ni=1, for i = 1, 2, . . . ,m. Then

n∑
l,s=1

tr
[
T̃sl

( m∑
i,j=1

αliSijαsj

)]
=

m∑
i,j=1

n∑
l,s=1

αli tr(T̃slSij)αsj

= (α1, α2, . . . , αm)
( m∑
i,j=1

Eij ⊗ PnΨ(Sij)Pn

)
α1

t

α2
t

...
αm

t

 .

It is easy to verify that
∑n

l,s=1Els ⊗ (
∑m

i,j=1 αliSijαsj) ∈ Mn(K(H))+ and that∑n
l,s=1Els ⊗ T̃ls ∈Mn(T (H))+, as T (K ⊗H)+ 3 T̃ =

∑∞
i,j=1 fij ⊗ T̃ij. Thus

n∑
l,s=1

tr
[
T̃sl

( m∑
i,j=1

αliSijαsj

)]
≥ 0,

so equation (2.5) holds, which says that
PnΨ(S11)Pn PnΨ(S12)Pn · · · PnΨ(S1m)Pn

PnΨ(S21)Pn PnΨ(S22)Pn · · · PnΨ(S2m)Pn
...

... · · · ...
PnΨ(Sm1)Pn PnΨ(Sm2)Pn · · · PnΨ(Smm)Pn

 ≥ 0 for n = 1, 2, . . . .

Using Lemma 2.2 again, we have (Ψ(Sij))m×m ≥ 0. So Ψ is completely positive,
which induces that Γ is surjective. Then by equations (2.1) and (2.2), clearly Γ
is a cone isomorphism. �

Remark 2.5. The cone isomorphisms between CP(K(H), T (K)) and T (K ⊗H)+

are not canonical. That is, the cone isomorphisms are dependent of the choice of
the orthonormal basis.

The following is another main result of this note.

Proposition 2.6. We have NCP(B(K), T (H)) ' T (K ⊗H)+.

Proof. Let Φ ∈ CP(K(H), T (K)), and define the map Φ† from B(K) into T (H)
as

tr
[
Φ†(X)A

]
= tr

[
XΦ(A)

]
for all A ∈ K(H), X ∈ B(K). (2.6)
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Then it is easy to see that Φ† is well defined and positive. We claim that Φ†

is completely positive. Actually, suppose that (Aij)m×m ∈ Mm(B(K))+ and also
that (Kij)m×m ∈Mm(K(H))+. It is easy to see that

tr
[(
Φ†(Aij)

)
m×m

(Kij)m×m

]
= tr

( m∑
i,j=1

Φ†(Aij)Kji

)
= tr

( m∑
i,j=1

AijΦ(Kji)
)
≥ 0,

as Φ ∈ CP(K(H), T (K)) implies (Φ(Kij))m×m ∈ Mm(T (K))+. Thus
(Φ†(Aij))m×m ∈ Mm(T (H))+. Let Aτ −→W ∗ A be a convergent net of B(K).
Then

tr
[
Φ†(Aτ )S

]
= tr

[
AτΦ(S)

]
−→ tr

[
AΦ(S)

]
= tr

[
Φ†(A)S

]
,

for any S ∈ K(H), so Φ†(Aτ ) −→W ∗ Φ†(A), which says the map Γ(Φ) = Φ† from
CP(K(H), T (K)) into NCP(B(K), T (H)) is well defined and injective.

To show that Γ is surjective, suppose that Ψ ∈ NCP(B(K), T (H)). For all
Y ∈ K(H), define the linear functional ΘY on B(K) by

ΘY (X) = tr
[
Ψ(X)Y

]
for all X ∈ B(K).

If Xτ −→W ∗ X is a convergent net of B(K), then Ψ(Xτ ) −→W ∗ Ψ(X), so

ΘY (Xτ ) = tr
[
Ψ(Xτ )Y

]
−→ tr

[
Ψ(Xτ )Y

]
= ΘY (X).

Thus ΘY is the normal linear functional on B(K), which yields that there exists

the unique element Ψ̃(Y ) ∈ T (K) such that

ΘY (X) = tr
[
XΨ̃(Y )

]
for all X ∈ B(K), (2.7)

so the map Ψ̃ is well defined from K(H) into T (K). Also, it is easy to verify

that Ψ̃ is completely positive as Ψ ∈ CP(B(K), T (H)). By equations (2.6) and

(2.7), we have Ψ̃† = Ψ, which implies that Γ(Φ) = Φ† is a cone isomorphism form
CP(K(H), T (K)) onto NCP(B(K), T (H)). Then the desired result follows from
Theorem 2.4. �

In the following, we also get another characterization of normal completely
positive maps from B(H) into T (K), which is relevant to the Kraus theorem.

Proposition 2.7. We have that Φ ∈ NCP(B(H), T (K)) if and only if there
exists Vi ∈ B(H,K) such that Φ(X) =

∑s
i=1 ViXV

∗
i and

∑s
i=1 ViV

∗
i ∈ T (K),

where s ≤ ∞.

Proof. Necessity case: This is obvious by the Kraus theorem and the fact that
Φ is a bounded map and the weak* topology on the T (K) is stronger than the
weak* topology on the (T (K) ⊆)B(K), as T (K) ⊆ K(K).

Sufficiency case: For any S ∈ B(H)+, we have

Φ(S) =
s∑

i=1

ViSV
∗
i ≤

s∑
i=1

Vi‖S‖V ∗
i = ‖S‖

s∑
i=1

ViV
∗
i ,

which yields tr(Φ(S)) <∞, so by the operator decomposition property

Φ(Y ) ∈ T (K) for all Y ∈ B(H).
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If Φ has this form, it is easy to see that Φ is completely positive. Let Aτ −→W∗ A
be a convergent net. Then Φ(Aτ ) =

∑s
i=1 ViAτV

∗
i implies that

tr
[
Φ(Aτ )X

]
= tr

[ s∑
i=1

ViAτV
∗
i X

]
= tr

[( s∑
i=1

V ∗
i XVi

)
Aτ

]
for X ∈ K(K),

so Φ(Aτ ) −→W∗ Φ(A), as
∑s

i=1 V
∗
i XVi ∈ T (H). �

In the following, we give the concrete expressions of the maps in CP(K(H),
T (K)).

Proposition 2.8. We have that Φ ∈ CP(K(H), T (K)) if and only if there exist
Vi ∈ B(H,K) such that Φ(X) =

∑s
i=1 ViXV

∗
i and

∑s
i=1 ViV

∗
i ∈ T (K), where

s ≤ ∞.

Proof. According to Proposition 2.6, we conclude that Φ ∈ CP(K(H), T (K)) if
and only if Φ† ∈ NCP(B(K), T (H)). Thus Proposition 2.7 implies that there
exist Si ∈ T (K,H) such that Φ†(X) =

∑s
i=1 SiXS

∗
i and

∑s
i=1 SiS

∗
i ∈ T (H),

where s ≤ ∞, so by equation (2.6),

Φ(Y ) =
s∑

i=1

S∗
i Y Si for Y ∈ K(H).

Letting Vi = S∗
i and noting that

∑s
i=1 S

∗
i Si ∈ T (K) if and only if

∑s
i=1 SiS

∗
i ∈

T (H), we get the desired result. �
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