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GATEAUX DERIVATIVE OF THE NORM IN K(X;Y )
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Abstract. In this article, we consider the ϕ-Gateaux derivative of the norm
in spaces of compact operators in such a way as to extend the Kečkić theorem.
Our main result determines the ϕ-Gateaux derivative of the K(X;Y ) norm.

1. Introduction and preliminaries

Let (X, ‖ · ‖) be a normed space, and let x, y ∈ X. The directional derivative
of the norm at x in the y-direction is defined by

D(x, y) := lim
t→0+

‖x+ ty‖ − ‖x‖
t

, x, y ∈ X.

Convexity of the norm yields that the above definition is meaningful. The norm
derivative is important in approximation theory and in the geometry of Banach
spaces. In [6], the concept of ϕ-Gateaux derivatives was developed in order to sub-
stitute the usual concept of Gateaux derivatives at points which are not smooth.
Let ϕ ∈ [0, 2π), or let ϕ ∈ {0,−π}, if the space X is over R. The ϕ-Gateaux
derivative of the norm at x in the ϕ, y-direction is defined by

Dϕ(x, y) := lim
t→0+

‖x+ teiϕy‖ − ‖x‖
t

, x, y ∈ X.

It is a straightforward verification to show that

Dϕ(x, y) = D(x, eiϕy), x, y ∈ X. (1.1)
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Given a normed space X and a Banach space Y , both over the same field K
(K = R or K = C), we write K(X;Y ) for the space of all compact operators from
X into Y . For A ∈ K(X;Y ), put M(A) := {y ∈ SX : ‖Ay‖ = ‖A‖}. It is known
that in this case M(A∗) 6= ∅. But if X is reflexive, then M(A) 6= ∅. Kečkić [6]
proved the following theorem.

Theorem 1.1 ([6, Theorem 2.6]). Let H be a complex Hilbert space, A,B ∈
K(H). Then

Dϕ(A,B) = max
{
Dϕ(Ay,By) : y ∈ M(A)

}
.

Similar investigations have been carried out by Kečkić in B(H) (see [7]). In the
present article, we will generalize Theorem 1.1 (see Theorems 2.2 and 2.3). The
method of proof presented here is different from that of [6] and [7]. Furthermore,
our proofs include both real and complex cases. The unit sphere of X is denoted
by SX . Fix x ∈ X \ {0}. We consider the set J(x) defined as follows:

J(x) :=
{
x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖

}
. (1.2)

It is easy to check that the set J(x) is convex and closed and that J(x) ⊂ SX∗ .
By the Hahn–Banach theorem, we get J(x) 6= ∅ for all x ∈ X \ {0}.

The next result is from the geometry of the normed spaces. While it may be
known to some, we present it here for the reader’s convenience.

Theorem 1.2. Let X be a normed space. Then one has the representation

D(x, y) = sup
{
Rex∗(y) : x∗ ∈ J(x)

}
for all x, y ∈ X. (1.3)

So, in particular,

∀x∗∈J(x) Rex∗(y) ≤ D(x, y). (1.4)

Let X be a normed space over K. If the norm is generated by an inner product
〈· | ·〉, we consider the standard orthogonality relation: x ⊥ y :⇔ 〈x | y〉 = 0. In
the general case, there are several notions of orthogonality, with one of the most
outstanding ones being the definition introduced by Birkhoff [3, p. 170] (see also
James [5, p. 265]):

x ⊥B y :⇔ ∀λ∈K ‖x‖ ≤ ‖x+ λy‖.

A well-known theorem of Singer [10] will be useful in the next section.

Theorem 1.3 ([10, p. 170]). Let X be a normed linear space, let F be an
n-dimensional subspace of X, and let x ∈ X \ F . The following statements are
equivalent.

(a) First, x ⊥B F .
(b) Second, there exist h extremal points ϕ1, . . . , ϕh of SX∗, where 1 ≤ h ≤

n+ 1 if the scalars are real and 1 ≤ h ≤ 2n+ 1 if the scalars are complex
and h numbers λ1, . . . , λh > 0 with

∑h
j=1 λj = 1, such that

∀y∈F

h∑
j=1

λjϕj(y) = 0 and ∀j=1,...,h ϕj(x) = ‖x‖.



680 P. WÓJCIK

A useful tool in our approach in the next section is a theorem of Collins and
Ruess [4] (see also [9]) which characterizes the extremal points of the unit sphere
in K(X;Y )∗ in terms of extremal points of the unit spheres in X∗∗ and Y ∗.
By Ext(W ) we denote the set of all extremal points of a given set W . By the
Krein–Milman theorem, the closed unit ball BX∗ has many extreme points. In
particular, Ext(SX∗) 6= ∅, Ext(SX∗∗) 6= ∅.

Theorem 1.4 ([4, Theorem 2.2], [9, Theorem 1]). If X and Y are Banach spaces,
then

Ext(SK(X;Y )∗) =
{
x∗∗ ⊗ y∗ ∈ K(X;Y )∗ : x∗∗ ∈ Ext(SX∗∗), y∗ ∈ Ext(SY ∗)

}
,

where x∗∗⊗y∗ : K(X;Y ) → K, (x∗∗⊗y∗)(T ) := x∗∗(T ∗y∗) for every T ∈ K(X;Y ).

2. Main results

It will be assumed that all Banach spaces are over K. We will extend Theo-
rem 1.1 in this section. But first we need to prove the following lemma.

Lemma 2.1. Suppose that A,B ∈ K(X;Y ). Then

A ⊥B B ⇒ ∃h∈{2,3}∃λ1,...,λh∈[0,1]∃y∗1 ,...,y
∗
h∈M(A∗)∩Ext(SY ∗ )∃x∗∗

k ∈J(A∗y∗k)∩Ext(SX∗∗ ) :

h∑
k=1

λkx
∗∗
k (B∗y∗k) = 0 and

h∑
k=1

λk = 1.

Proof. Suppose that A ⊥B B. Then A∗ ⊥B B∗. Clearly, dim(span{B∗}) = 1.
Applying Theorem 1.3, we obtain

h∑
k=1

λkϕk(B
∗) = 0 and ϕk(A

∗) = ‖A∗‖ and
h∑

k=1

λk = 1 (2.1)

for some h ∈ {2, 3}, λ1, . . . , λh ∈ [0, 1] and for some ϕ1, . . . , ϕh ∈ Ext(SK(X;Y )∗).
By Theorem 1.4, we have ϕk = x∗∗

k ⊗ y∗k for some x∗∗
k ∈ Ext(SX∗∗), y∗k ∈

Ext(SY ∗). Now the condition (2.1) becomes

h∑
k=1

λkx
∗∗
k (B∗y∗k) = 0 and x∗∗

k (A∗y∗k) = ‖A∗‖ and
h∑

k=1

λk = 1.

Since x∗∗
k (A∗y∗k) = ‖A∗‖ and ‖x∗∗

k ‖ = 1, we also have ‖A∗y∗k‖ = ‖A∗‖. Thus we
obtain y∗k ∈ M(A∗) and x∗∗

k ∈ J(A∗y∗k), which completes the proof. �

Now, we are ready to present a generalization of Theorem 1.1. We prove the
main result of this paper.

Theorem 2.2. Suppose that A,B ∈ K(X;Y ) and that A 6= 0. Then

Dϕ(A,B) = sup
{
Dϕ(A

∗y∗, B∗y∗) : y∗ ∈ M(A∗) ∩ Ext(SY ∗)
}
. (2.2)
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Proof. First, we show that

D(A,B) = sup
{
D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗) ∩ Ext(SY ∗)

}
. (2.3)

It is easy to check that D(A,B) = D(A∗, B∗). Indeed,

D(A,B) = lim
t→0+

‖A+ tB‖ − ‖A‖
t

= lim
t→0+

‖A∗ + tB∗‖ − ‖A∗‖
t

= D(A∗, B∗).

Therefore, we may compute D(A∗, B∗) instead of D(A,B). Fix t ∈ (0,+∞). Fix
y∗ ∈ M(A∗) ∩ Ext(SY ∗) to obtain

‖A∗y∗ + tB∗y∗‖ − ‖A∗y∗‖
t

=
‖A∗y∗ + tB∗y∗‖ − ‖A∗‖

t

≤ ‖A∗ + tB∗‖ − ‖A∗‖
t

.

(2.4)

Since t was arbitrarily chosen from the interval (0,+∞), letting t → 0+ in (2.4)
we obtain

D(A∗y∗, B∗y∗) ≤ D(A∗, B∗).

Since y∗ was arbitrarily chosen from the set M(A∗) ∩ Ext(SY ∗), we get

sup
{
D(A∗y∗, B∗y∗) : t ∈ M(A∗) ∩ Ext(SY ∗)

}
≤ D(A∗, B∗).

Now we prove the converse inequality. It follows from the above inequality that

D(A∗, B∗) ≥ sup
{
D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗) ∩ Ext(SY ∗)

}
(1.4)
≥ sup

{
sup

{
Rex∗∗(B∗y∗) : x∗∗ ∈ J(A∗y∗)

}
:

y∗ ∈ M(A∗) ∩ Ext(SY ∗)
}

=: β.

(2.5)

So it suffices to show that D(A∗, B∗) ≤ β. It follows from (2.5) that

∀y∗∈M(A∗)∩Ext(SY ∗ )∀x∗∗∈J(A∗y∗) Rex∗∗(B∗y∗) ≤ β. (2.6)

Fix f ∈ J(A∗). Then by (1.2), f ∈ K(Y ∗;X∗)∗, ‖f‖ = 1, and f(A∗) = ‖A∗‖.
Note in particular that f : K(Y ∗;X∗) → K. Let us define α := −f(B∗)

f(A∗)
= −f(B∗)

‖A‖ .

Then

f(αA∗ +B∗) = 0,

whence, for all λ in K,

‖A∗‖ = f(A∗) = f(A∗) + λ0 = f(A∗) + λf(αA∗ +B∗)

= f
(
A∗ + λ(αA∗ +B∗)

)
≤

∥∥A∗ + λ(αA∗ +B∗)
∥∥.

That means that A∗ ⊥B αA∗ +B∗, which implies also that A ⊥B αA+B. Using
Lemma 2.1, we obtain

h∑
k=1

λkx
∗∗
k

(
αA∗(y∗k) +B∗(y∗k)

)
= 0,

h∑
k=1

λk = 1 (2.7)
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for some h ∈ {2, 3}, y∗k ∈ M(A∗)∩Ext(SY ∗), x∗∗
k ∈ J(A∗y∗k)∩Ext(SX∗∗), and for

some λ1, . . . , λh ∈ [0, 1]. It follows from (2.7) that

0 =
h∑

k=1

λkx
∗∗
k

(
αA∗(y∗k) +B∗(y∗k)

)
= α

h∑
k=1

λkx
∗∗
k

(
A∗(y∗k)

)
+

h∑
k=1

λkx
∗∗
k

(
B∗(y∗k)

)
= −f(B∗)

‖A∗‖

h∑
k=1

λk‖A∗‖+
h∑

k=1

λkx
∗∗
k

(
B∗(y∗k)

)
= −f(B∗)

‖A∗‖
‖A∗‖

h∑
k=1

λk +
h∑

k=1

λkx
∗∗
k

(
B∗(y∗k)

)
= −f(B∗) +

h∑
k=1

λkx
∗∗
k

(
B∗(y∗k)

)
.

That means that f(B∗) =
∑h

k=1 λkx
∗∗
k (B∗(y∗k)), which also implies that

Re f(B∗) =
h∑

k=1

λk Rex
∗∗
k

(
B∗(y∗k)

)
(2.6)
≤

h∑
k=1

λkβ = β.

Since f was arbitrarily chosen from the set J(A∗), we get

sup
{
Re f(B∗) : f ∈ J(A∗)

}
≤ β. (2.8)

Combining (1.3) and (2.8), we immediately get D(A∗, B∗) ≤ β. The proof of the
equality (2.3) is complete. Next we show (2.2). Finally, we deduce from (1.1) that

Dϕ(A,B) = D(A, eiϕB)

(2.3)
= sup

{
D(Ay∗, eiϕBy∗) : y∗ ∈ M(A∗) ∩ Ext(SY ∗)

}
= sup

{
Dϕ(Ay

∗, By∗) : y∗ ∈ M(A∗) ∩ Ext(SY ∗)
}
.

The proof of Theorem 2.2 is complete. �

Theorem 2.2 can be strengthened as follows.

Theorem 2.3. Let Y be a reflexive Banach space. Suppose that A,B ∈ K(X;Y )
and A 6= 0. Then

Dϕ(A,B) = max
{
Dϕ(A

∗y∗, B∗y∗) : y∗ ∈ M(A∗)
}
.

Proof. Bearing in mind the above proof and (1.1), we may prove only that

D(A,B) = max
{
D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗)

}
.
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In a way similar to the proof of Theorem 2.2, we obtain an inequality

sup
{
D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗)

}
≤ D(A,B). (2.9)

By Theorems 1.2 and 2.2, let us choose sequences (y∗n)n∈N ⊂ M(A∗), x∗∗
n ∈

J(A∗y∗n) such that

Rex∗∗
n (B∗y∗n) −→ D(A,B). (2.10)

The closed unit ball BX∗∗ is weak∗-compact. By reflexivity of Y ∗, the closed unit
ball BY ∗ is weak-compact. Therefore, without loss of generality, we may assume
that there are an element y∗o in BY ∗ , a functional x∗∗

o ∈ BX∗∗ , and subsequences
(y∗nk

)k∈N ⊂ BY ∗ , (x∗∗
nk
)k∈N ⊂ BX∗∗ such that

y∗nk

w−→ y∗o , x∗∗
nk

w∗
−→ x∗∗

o .

Since A∗, B∗ are compact operators, then A∗, B∗ are completely continuous.
That means that A∗y∗nk

−→ A∗y∗o and B∗y∗nk
−→ B∗y∗o . Now the condition (2.10)

becomes

Rex∗∗
o (B∗y∗o) = D(A,B). (2.11)

Then by a straightforward computation, we can prove that x∗∗
o ∈ J(A∗y∗o), y

∗
o ∈

M(A∗). Finally, we prove that the supremum in (2.9) is attained. Indeed, we have

D(A,B)
(2.11)
= Rex∗∗

o (B∗y∗o)
(1.4)
≤ D(A∗y∗o , B

∗y∗o)

≤ sup
{
D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗)

} (2.9)
≤ D(A,B).

Therefore D(A,B) = D(A∗y∗o , B
∗y∗o) = sup{D(A∗y∗, B∗y∗) : y∗ ∈ M(A∗)}, so we

can write max instead of sup. The proof of Theorem 2.3 is complete. �

If X and Y are Banach spaces and A ∈ K(X;Y ), then: A∗∗|X = A. If X is
reflexive, then X∗∗ is identified with X. Moreover, A∗∗|X is identified with A. In
this case, M(A) 6= ∅ for each A in K(X;Y ). Clearly, Dϕ(A

∗, B∗) = Dϕ(A,B).
Combining these facts with our Theorems 2.2 and 2.3, we obtain the following
corollary.

Theorem 2.4. Let X be a reflexive Banach space, and let A,B ∈ K(X;Y ). Then

Dϕ(A,B) = sup
{
Dϕ(Ay,By) : y ∈ M(A) ∩ Ext(SX)

}
= max

{
Dϕ(Ay,By) : y ∈ M(A)

}
.

3. Remarks

Let X be a complex normed space. The mappings D, Dϕ are continuous with
respect to the second variable. Fix x, y ∈ X, and note that, due to (1.1), a
mapping [0, 2π) 3 ϕ → Dϕ(x, y) ∈ R is also continuous.

The functions D, Dϕ characterize the Birkhoff orthogonality in the following
sense. If x, y ∈ X, then it is well known that

x ⊥B y ⇔ inf
{
Dϕ(x, y) : ϕ ∈ [0, 2π)

}
≥ 0.

As a consequence, we give a characterization of orthogonality in the sense of
Birkhoff in the space K(X;Y ).
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Theorem 3.1. Let X, Y be reflexive Banach spaces over C. Suppose that A,B ∈
K(X;Y ) and A 6= 0. Then the following conditions are equivalent:

(a) A ⊥B B,
(b) inf{sup{Dϕ(Ay,By) : y ∈ M(A) ∩ Ext(SX)} : ϕ ∈ [0, 2π)} ≥ 0,
(c) inf{max{Dϕ(Ay,By) : y ∈ M(A)} : ϕ ∈ [0, 2π)} ≥ 0,
(d) min{max{Dϕ(Ay,By) : y ∈ M(A)} : ϕ ∈ [0, 2π)} ≥ 0.

Proof. The equivalence between (a), (b), and (c) follows from Theorem 2.4. Obvi-
ously (d) ⇒ (c). We prove the implication (c) ⇒ (d). Note that a mapping
[0, 2π) 3 ϕ → Dϕ(A,B) ∈ R is continuous. It is easy to see that a set T := {eiϕ ∈
C : ϕ ∈ [0, 2π)} is compact. Then we define a mapping γ : T → R by

γ(eiϕ) := D(A, eiϕB) = Dϕ(A,B) = max
{
Dϕ(Ay,By) : y ∈ M(A)

}
.

The mapping γ is continuous, so γ attains its minimum. Therefore, we can write
min instead of inf. �

Remark 3.2. If X = Y is a Hilbert space, it is possible to expand Theorem 3.1.
Namely, A ⊥B B if and only if there is x ∈ X such that ‖x‖ = 1, ‖Ax‖ = ‖A‖,
and Ax ⊥B Bx. It is known as the Bhatia–Šemrl property (see, e.g., [2], [6], [7]).
However, in the absence of an inner product, this is impossible (see [1], [8]).

In fact, condition (d) in Theorem 3.1 is equivalent to the Bhatia–Šemrl property
in Hilbert spaces, but not in Banach spaces! This makes this theorem interesting
even in the framework of finite-dimensional normed spaces, since condition (d)
in Theorem 3.1 is, probably, the closest condition to the Bhatia–Šemrl property
that can be obtained.
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