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Abstract. We prove that a Banach space X has the bounded approximation
property if and only if, for every separable Banach space Z and every injective
operator T from Z to X, there exists a net (Sα) of finite-rank operators from
Z to X with ‖Sα‖ ≤ λT such that limα ‖Sαz − Tz‖ = 0 for every z ∈ Z.

1. Introduction

A Banach space X is said to have the approximation property (AP) if, for every
compact subset K of X and every ε > 0, there exists a finite-rank and continuous
linear map (operator) S from X to X such that supx∈K ‖Sx − x‖ ≤ ε; briefly,

idX ∈ F(X,X)
τc
, where idX is the identity map on X, F(X,X) is the space of all

finite-rank operators from X to X, and τc is the topology of uniformly compact
convergence on the ideal L of all operators. If there exists a λ ≥ 1 such that idX ∈
{S ∈ F(X,X) : ‖S‖ ≤ λ}

τc
, then we say that X has the bounded approximation

property (BAP) or λ-BAP when we need to indicate the constant λ.
Lima, Nygaard, and Oja [5, Corollary 1.5] proved thatX has the AP if and only

if, for every Banach space Y and every T ∈ W(Y,X), the space of all weakly com-

pact operators from Y toX, T ∈ {S ∈ F(Y,X) : ‖S‖ ≤ ‖T‖}
τc
. A simple verifica-

tion shows that X has the BAP if and only if for every Banach space Y and every
T ∈ L(Y,X), there exists a λT > 0 such that T ∈ {S ∈ F(Y,X) : ‖S‖ ≤ λT}

τc
.
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Figiel and Johnson [1] proved that the AP does not imply the BAP in general.
Consequently, the BAP cannot be characterized by all weakly compact operators
in that criterion of the BAP. The purpose of this paper is to replace Banach
spaces Y in that criterion of the BAP by separable Banach spaces.

Theorem 1.1. A Banach space X has the BAP if and only if, for every separable
Banach space Z and every injective operator J from Z to X, there exists a λJ > 0
such that

J ∈
{
S ∈ F(Z,X) : ‖S‖ ≤ λJ

}τc
.

2. Proof of Theorem 1.1

When the ideal of finite-rank operators in the definition of the BAP for a
Banach space X is replaced by the ideal K of compact operators, we say that X
has the bounded compact approximation property (BCAP). The following lemma
gives an affirmative answer to a problem in [4].

Lemma 2.1. Let λ ≥ 1. A Banach space X has the λ-BAP (resp., λ-BCAP) if
and only if for every separable closed subspace Y of X,

JY ∈
{
S ∈ F(Y,X)

(
resp., K(Y,X)

)
: ‖S‖ ≤ λ

}τc
,

where JY : Y → X is the inclusion map.

Proof. We only need to prove the “if” part. This proof comes from the one in
[2, Lemma 3(b)]. Let F be a finite-dimensional subspace of X, and let ε > 0
be given. Then by [7, Lemma 1] there exists a separable closed subspace Y of
X such that, for every finite-dimensional subspace E of X with F ⊂ E, there
exists an operator TE : E → Y satisfying ‖TE‖ ≤ 1+ 1/ dimE and such that the
restriction TE|F is the identity map.

Now, by the assumption there exists an S ∈ F(Y,X) (resp., K(Y,X)) with
‖S‖ ≤ λ such that

‖Sf − f‖ ≤ ε‖f‖
for every f ∈ F . We define the map SE : X → X by

SEx = STEx if x ∈ E, SE = 0 otherwise,

for every finite-dimensional subspace E of X with F ⊂ E. Let us consider the
product topological space

Π :=
∏
x∈X

S
(
2‖x‖BY

)
equipped with the product topology of norms. Then Π is a compact Hausdorff
space. We see that (

∏
x∈X SEx) is a net in Π, where E2 � E1 if and only if

E2 ⊃ E1. Then there exists a subnet (
∏

x∈X SGx) of (
∏

x∈X SEx) such that

S̃x := lim
G

SGx ∈ S
(
2‖x‖BY

)
exists for each x ∈ X. We see that S̃ : X → X is a finite-rank linear operator

(resp., compact operator), ‖S̃‖ ≤ λ, and ‖S̃f−f‖ ≤ ε‖f‖ for every f ∈ F . Hence
it follows that X has the λ-BAP (resp., λ-BCAP). �
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We note that recently, Oja proved Lemma 2.1 differently in [10, Proposi-
tion 2.2], basing that proof on ideals and a Hahn–Banach extension operator.

The argument in the proof of the following lemma is a symmetric version of
the argument in [3, proof of Proposition 2.1].

Lemma 2.2. Let X be a Banach space, and let A(X,X) be a convex subset of
L(X,X). The following statements are equivalent.

(a) For every separable Banach space Y and every T ∈ L(Y,X), there exists
a λT > 0 such that

T ∈
{
ST : S ∈ A(X,X), ‖ST‖ ≤ λT

}τc
.

(b) For every separable Banach space Y and every T ∈ L(Y,X), there exists
a λT > 0 such that

idX ∈
{
S ∈ A(X,X) : ‖ST‖ ≤ λT

}τc
.

(c) There exists a λ > 0 such that, for every separable Banach space Y and
every T ∈ L(Y,X),

T ∈
{
ST : S ∈ A(X,X), ‖ST‖ ≤ λ‖T‖

}τc
.

(d) There exists a λ > 0 such that, for every separable Banach space Y and
every T ∈ L(Y,X),

idX ∈
{
S ∈ A(X,X) : ‖ST‖ ≤ λ‖T‖

}τc
.

Proof. (a) ⇒ (b) Let Y be a separable Banach space, and let T ∈ L(Y,X).
We may assume that ‖T‖ ≤ 1. Suppose that for every λ > 0, idX /∈
{S ∈ A(X,X) : ‖ST‖ ≤ λ}

τc
. Then by the separation theorem, for each m ∈ N,

there exists a gm ∈ (L(X,X), τc)
∗ such that

Re gm(idX) > sup
{
Re gm(S) : S ∈ A(X,X), ‖ST‖ ≤ m

}
.

By [8, Proposition 1.e.3], for eachm, there exist sequences (xn,m)
∞
n=1 and (x∗

n,m)
∞
n=1

in X and X∗, respectively, with
∑∞

n=1 ‖xn,m‖‖x∗
n,m‖ < ∞ such that

gm(R) =
∞∑
n=1

x∗
n,m(Rxn,m)

for all R ∈ L(X,X). We may assume that for every n and m, ‖xn,m‖ ≤ 1 and∑∞
n=1 ‖x∗

n,m‖ < ∞.
Let us consider the balanced and closed convex hull C of( ∞⋃

m=1

{xn,m}∞n=1

)
∪ T (BY ),

which is a separable subset of BX . By [5, Lemmas 1.1, 2.1, Theorem 2.2] there
exists a separable Banach space Z, which is a linear subspace of X, such that
C ⊂ BZ and the inclusion map J : Z → X has norm 1. By (a) there exists a
λJ > 0 such that

J ∈
{
SJ : S ∈ A(X,X), ‖SJ‖ ≤ λJ

}τc
.
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Now choose an N ∈ N such that N ≥ λJ . Since hN =
∑∞

n=1 x
∗
n,N(·xn,N) ∈

(L(Z,X), τc)
∗, we have

Re gN(idX) = RehN(J)

≤ sup
{
RehN(SJ) : S ∈ A(X,X), ‖SJ‖ ≤ λJ

}
= sup

{
Re gN(S) : S ∈ A(X,X), ‖SJ‖ ≤ λJ

}
.

If S ∈ A(X,X) with ‖SJ‖ ≤ λJ , then

‖ST‖ = sup
y∈BY

‖SJTy‖ ≤ ‖SJ‖ ≤ λJ .

Hence we have

Re gN(idX) ≤ sup
{
Re gN(S) : S ∈ A(X,X), ‖ST‖ ≤ λJ

}
,

which is a contradiction.
(b) ⇒ (c) Suppose that (c) fails. Then for every m ∈ N there exist a separable

Banach space Ym and Tm ∈ L(Ym, X) such that

Tm /∈
{
STm : S ∈ A(X,X), ‖STm‖ ≤ m‖Tm‖

}τc
.

Wemay assume that ‖Tm‖ = 1 for allm. Let us define the map T : (
∑

m ⊕Ym)`1 →
X by

T (ym)
∞
m=1 =

∞∑
n=1

Tmym.

Then the map is well defined and linear, and ‖T‖ ≤ 1. Thus by (b) there exists
a λT > 0 such that

idX ∈
{
S ∈ A(X,X) : ‖ST‖ ≤ λT

}τc
.

Hence for every m, we have

Tm ∈
{
STm : S ∈ A(X,X), ‖ST‖ ≤ λT

}τc

⊂
{
STm : S ∈ A(X,X), ‖STm‖ ≤ λT

}τc
,

which is a contradiction.
(c) ⇒ (d) Let Y be a separable Banach space, and let T ∈ L(Y,X). We may

assume that ‖T‖ ≤ 1. Let K be a compact subset of BX , and let ε > 0 be given.
Let us consider the balanced and closed convex hull C of

K ∪ T (BY ),

which is a separable subset of BX . Then by [5, Lemmas 1.1, 2.1, Theorem 2.2]
there exists a separable Banach space Z, which is a linear subspace of X, such
that C ⊂ BZ and the inclusion map J : Z → X has norm 1. Moreover, K is also
compact in Z. By (c), we have

J ∈
{
SJ : S ∈ A(X,X), ‖SJ‖ ≤ λ

}τc
.
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Hence there exists an S ∈ A(X,X) with ‖ST‖ ≤ ‖SJ‖ ≤ λ such that

sup
x∈K

‖Sx− x‖ = sup
x∈K

‖SJx− Jx‖ ≤ ε.

(d) ⇒ (a) This is clear. �

Now, we prove Theorem 1.1. Let Y be a separable Banach space, and let
T ∈ L(Y,X). Then by [5, Lemmas 1.1, 2.1, Theorem 2.2], there exist a separable
Banach space Z ⊂ X and an operator R : Y → Z such that T = JR, where the
inclusion map J : Z → X has norm 1. By the assumption and [4, Lemma 3.5],
there exists a λJ > 0 such that

J ∈
{
S ∈ F(Z,X) : ‖S‖ ≤ λJ

}τc
=

{
SJ : S ∈ F(X,X), ‖SJ‖ ≤ λJ

}τc
.

Thus there exists a net (Sα) in F(X,X) such that ‖SαJ‖ ≤ λJ for all α and

SαJ
τc−→ J.

Then for every y ∈ Y , we have

‖SαTy − Ty‖ = ‖SαJRy − JRy‖ −→ 0

and ‖SαT‖ = ‖SαJR‖ ≤ λJ‖R‖. It follows that

T ∈
{
ST : S ∈ F(X,X), ‖ST‖ ≤ λT

}τc

for some λT > 0. Hence by Lemmas 2.1 and 2.2, X has the BAP.

3. Open problems

Considering a symmetric version of Theorem 1.1, we ask the following question.

Problem 1. Let X be a Banach space. If, for every separable Banach space
Z and every T ∈ L(X,Z), there exists a λT > 0 such that T ∈
{S ∈ F(X,Z) : ‖S‖ ≤ λT}

τc
, then does X have the BAP?

Considering a symmetric version of Lemma 2.1, we ask the following question.

Problem 2. Let X be a Banach space, and let λ ≥ 1. If, for every separable
Banach space Z and every T ∈ L(X,Z), T ∈ {S ∈ F(X,Z) : ‖S‖ ≤ λ‖T‖}

τc
,

then does X have the λ-BAP?

Lima and Oja [6] introduced a weaker notion of the BAP. A Banach space X
is said to have the weak BAP if there exists a λ ≥ 1 such that for every Banach
space Y and every T ∈ W(X,Y ), idX ∈ {S ∈ F(X,X) : ‖TS‖ ≤ λ‖T‖}

τc
. Oja

[9, Theorem 2] proved that X has the weak λ-BAP if and only if for every
Banach space Y whose dual space has the Radon–Nikodým property and every
T ∈ L(X,Y ), idX ∈ {S ∈ F(X,X) : ‖TS‖ ≤ λ‖T‖}

τc
. One may naturally ask

whether the weak λ-BAP is equivalent to the λ-BAP. Lima and Oja [6] con-
jectured that the weak λ-BAP is strictly weaker than the λ-BAP. We ask the
following question.
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Problem 3. LetX be a Banach space, and let λ ≥ 1. If, for every separable Banach
space Z and every T ∈ L(X,Z), idX ∈ {S ∈ F(X,X) : ‖TS‖ ≤ λ‖T‖}

τc
, then

does X have the λ-BAP?

At the present time, we do not know whether the assumptions in the above
problems would be equivalent.
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