Ann. Funct. Anal. 7 (2016), no. 4, 672-677
http://dx.doi.org/10.1215/20088752-3661116
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

A NEW CHARACTERIZATION OF THE BOUNDED APPROXIMATION PROPERTY

JU MYUNG KIM ${ }^{1}$ and KEUN YOUNG LEE ${ }^{2 *}$

Communicated by J. Esterle

Abstract

We prove that a Banach space X has the bounded approximation property if and only if, for every separable Banach space Z and every injective operator T from Z to X, there exists a net $\left(S_{\alpha}\right)$ of finite-rank operators from Z to X with $\left\|S_{\alpha}\right\| \leq \lambda_{T}$ such that $\lim _{\alpha}\left\|S_{\alpha} z-T z\right\|=0$ for every $z \in Z$.

1. Introduction

A Banach space X is said to have the approximation property (AP) if, for every compact subset K of X and every $\varepsilon>0$, there exists a finite-rank and continuous linear map (operator) S from X to X such that $\sup _{x \in K}\|S x-x\| \leq \varepsilon$; briefly, $\operatorname{id}_{X} \in \overline{\mathcal{F}(X, X)}{ }^{\tau_{c}}$, where id_{X} is the identity map on $X, \mathcal{F}(X, X)$ is the space of all finite-rank operators from X to X, and τ_{c} is the topology of uniformly compact convergence on the ideal \mathcal{L} of all operators. If there exists a $\lambda \geq 1$ such that $\mathrm{id}_{X} \in$ $\overline{\{S \in \mathcal{F}(X, X):\|S\| \leq \lambda\}}{ }^{\tau_{c}}$, then we say that X has the bounded approximation property (BAP) or λ-BAP when we need to indicate the constant λ.

Lima, Nygaard, and Oja [5, Corollary 1.5] proved that X has the AP if and only if, for every Banach space Y and every $T \in \mathcal{W}(Y, X)$, the space of all weakly compact operators from Y to $X, T \in \overline{\{S \in \mathcal{F}(Y, X):\|S\| \leq\|T\|\}^{\tau_{c}}}$. A simple verification shows that X has the BAP if and only if for every Banach space Y and every $T \in \mathcal{L}(Y, X)$, there exists a $\lambda_{T}>0$ such that $T \in\left\{S \in \mathcal{F}(Y, X):\|S\| \leq \lambda_{T}\right\}^{\tau_{c}}$.

[^0]We note that recently, Oja proved Lemma 2.1 differently in [10, Proposition 2.2], basing that proof on ideals and a Hahn-Banach extension operator.

The argument in the proof of the following lemma is a symmetric version of the argument in [3, proof of Proposition 2.1].
Lemma 2.2. Let X be a Banach space, and let $\mathcal{A}(X, X)$ be a convex subset of $\mathcal{L}(X, X)$. The following statements are equivalent.
(a) For every separable Banach space Y and every $T \in \mathcal{L}(Y, X)$, there exists a $\lambda_{T}>0$ such that

$$
T \in{\left.\overline{\{S T}: S \in \mathcal{A}(X, X),\|S T\| \leq \lambda_{T}\right\}^{\tau_{c}}}^{\text {. }}
$$

(b) For every separable Banach space Y and every $T \in \mathcal{L}(Y, X)$, there exists a $\lambda_{T}>0$ such that

$$
\operatorname{id}_{X} \in{\overline{\left\{S \in \mathcal{A}(X, X):\|S T\| \leq \lambda_{T}\right\}}}^{\tau_{c}}
$$

(c) There exists $a \lambda>0$ such that, for every separable Banach space Y and every $T \in \mathcal{L}(Y, X)$,

$$
T \in \overline{\{S T: S \in \mathcal{A}(X, X),\|S T\| \leq \lambda\|T\|\}^{\tau_{c}}}
$$

(d) There exists a $\lambda>0$ such that, for every separable Banach space Y and every $T \in \mathcal{L}(Y, X)$,

$$
\operatorname{id}_{X} \in \overline{\{S \in \mathcal{A}(X, X):\|S T\| \leq \lambda\|T\|\}}^{\tau_{c}} .
$$

Proof. (a) \Rightarrow (b) Let Y be a separable Banach space, and let $T \in \mathcal{L}(Y, X)$. We may assume that $\|T\| \leq 1$. Suppose that for every $\lambda>0, \mathrm{id}_{X} \notin$
 there exists a $g_{m} \in\left(\mathcal{L}(X, X), \tau_{c}\right)^{*}$ such that

$$
\operatorname{Re} g_{m}\left(\operatorname{id}_{X}\right)>\sup \left\{\operatorname{Re} g_{m}(S): S \in \mathcal{A}(X, X),\|S T\| \leq m\right\}
$$

By [8, Proposition 1.e.3], for each m, there exist sequences $\left(x_{n, m}\right)_{n=1}^{\infty}$ and $\left(x_{n, m}^{*}\right)_{n=1}^{\infty}$ in X and X^{*}, respectively, with $\sum_{n=1}^{\infty}\left\|x_{n, m}\right\|\left\|x_{n, m}^{*}\right\|<\infty$ such that

$$
g_{m}(R)=\sum_{n=1}^{\infty} x_{n, m}^{*}\left(R x_{n, m}\right)
$$

for all $R \in \mathcal{L}(X, X)$. We may assume that for every n and $m,\left\|x_{n, m}\right\| \leq 1$ and $\sum_{n=1}^{\infty}\left\|x_{n, m}^{*}\right\|<\infty$.

Let us consider the balanced and closed convex hull C of

$$
\left(\bigcup_{m=1}^{\infty}\left\{x_{n, m}\right\}_{n=1}^{\infty}\right) \cup T\left(B_{Y}\right)
$$

which is a separable subset of B_{X}. By [5, Lemmas 1.1, 2.1, Theorem 2.2] there exists a separable Banach space Z, which is a linear subspace of X, such that $C \subset B_{Z}$ and the inclusion map $J: Z \rightarrow X$ has norm 1. By (a) there exists a $\lambda_{J}>0$ such that

$$
J \in{\overline{\left\{S J: S \in \mathcal{A}(X, X),\|S J\| \leq \lambda_{J}\right\}}}^{\tau_{c}}
$$

Now choose an $N \in \mathbb{N}$ such that $N \geq \lambda_{J}$. Since $h_{N}=\sum_{n=1}^{\infty} x_{n, N}^{*}\left(\cdot x_{n, N}\right) \in$ $\left(\mathcal{L}(Z, X), \tau_{c}\right)^{*}$, we have

$$
\begin{aligned}
\operatorname{Re} g_{N}\left(\operatorname{id}_{X}\right) & =\operatorname{Re} h_{N}(J) \\
& \leq \sup \left\{\operatorname{Re} h_{N}(S J): S \in \mathcal{A}(X, X),\|S J\| \leq \lambda_{J}\right\} \\
& =\sup \left\{\operatorname{Re} g_{N}(S): S \in \mathcal{A}(X, X),\|S J\| \leq \lambda_{J}\right\}
\end{aligned}
$$

If $S \in \mathcal{A}(X, X)$ with $\|S J\| \leq \lambda_{J}$, then

$$
\|S T\|=\sup _{y \in B_{Y}}\|S J T y\| \leq\|S J\| \leq \lambda_{J}
$$

Hence we have

$$
\operatorname{Re} g_{N}\left(\operatorname{id}_{X}\right) \leq \sup \left\{\operatorname{Re} g_{N}(S): S \in \mathcal{A}(X, X),\|S T\| \leq \lambda_{J}\right\}
$$

which is a contradiction.
(b) \Rightarrow (c) Suppose that (c) fails. Then for every $m \in \mathbb{N}$ there exist a separable Banach space Y_{m} and $T_{m} \in \mathcal{L}\left(Y_{m}, X\right)$ such that

$$
T_{m} \notin{\overline{\left\{S T_{m}: S \in \mathcal{A}(X, X),\left\|S T_{m}\right\| \leq m\left\|T_{m}\right\|\right\}}}^{\tau_{c}}
$$

We may assume that $\left\|T_{m}\right\|=1$ for all m. Let us define the map $T:\left(\sum_{m} \oplus Y_{m}\right)_{\ell_{1}} \rightarrow$ X by

$$
T\left(y_{m}\right)_{m=1}^{\infty}=\sum_{n=1}^{\infty} T_{m} y_{m}
$$

Then the map is well defined and linear, and $\|T\| \leq 1$. Thus by (b) there exists a $\lambda_{T}>0$ such that

$$
\operatorname{id}_{X} \in \overline{\left\{S \in \mathcal{A}(X, X):\|S T\| \leq \lambda_{T}\right\}^{\tau_{c}}}
$$

Hence for every m, we have

$$
\begin{aligned}
T_{m} & \in{\overline{\left\{S T_{m}: S \in \mathcal{A}(X, X),\|S T\| \leq \lambda_{T}\right\}^{\tau_{c}}}} \subset \overline{\left\{S T_{m}: S \in \mathcal{A}(X, X),\left\|S T_{m}\right\| \leq \lambda_{T}\right\}^{\tau_{c}}},
\end{aligned}
$$

which is a contradiction.
(c) \Rightarrow (d) Let Y be a separable Banach space, and let $T \in \mathcal{L}(Y, X)$. We may assume that $\|T\| \leq 1$. Let K be a compact subset of B_{X}, and let $\varepsilon>0$ be given. Let us consider the balanced and closed convex hull C of

$$
K \cup T\left(B_{Y}\right),
$$

which is a separable subset of B_{X}. Then by [5, Lemmas 1.1, 2.1, Theorem 2.2] there exists a separable Banach space Z, which is a linear subspace of X, such that $C \subset B_{Z}$ and the inclusion map $J: Z \rightarrow X$ has norm 1. Moreover, K is also compact in Z. By (c), we have

$$
J \in \overline{\{S J: S \in \mathcal{A}(X, X),\|S J\| \leq \lambda\}}^{\tau_{c}}
$$

Hence there exists an $S \in \mathcal{A}(X, X)$ with $\|S T\| \leq\|S J\| \leq \lambda$ such that

$$
\sup _{x \in K}\|S x-x\|=\sup _{x \in K}\|S J x-J x\| \leq \varepsilon
$$

$(\mathrm{d}) \Rightarrow(\mathrm{a})$ This is clear.
Now, we prove Theorem 1.1. Let Y be a separable Banach space, and let $T \in \mathcal{L}(Y, X)$. Then by [5, Lemmas 1.1, 2.1, Theorem 2.2], there exist a separable Banach space $Z \subset X$ and an operator $R: Y \rightarrow Z$ such that $T=J R$, where the inclusion map $J: Z \rightarrow X$ has norm 1. By the assumption and [4, Lemma 3.5], there exists a $\lambda_{J}>0$ such that

$$
J \in{\overline{\left\{S \in \mathcal{F}(Z, X):\|S\| \leq \lambda_{J}\right\}}}^{\tau_{c}}={\overline{\left\{S J: S \in \mathcal{F}(X, X),\|S J\| \leq \lambda_{J}\right\}}}^{\tau_{c}} .
$$

Thus there exists a net $\left(S_{\alpha}\right)$ in $\mathcal{F}(X, X)$ such that $\left\|S_{\alpha} J\right\| \leq \lambda_{J}$ for all α and

$$
S_{\alpha} J \xrightarrow{\tau_{c}} J
$$

Then for every $y \in Y$, we have

$$
\left\|S_{\alpha} T y-T y\right\|=\left\|S_{\alpha} J R y-J R y\right\| \longrightarrow 0
$$

and $\left\|S_{\alpha} T\right\|=\left\|S_{\alpha} J R\right\| \leq \lambda_{J}\|R\|$. It follows that

$$
T \in \overline{\left\{S T: S \in \mathcal{F}(X, X),\|S T\| \leq \lambda_{T}\right\}^{\tau_{c}}}
$$

for some $\lambda_{T}>0$. Hence by Lemmas 2.1 and 2.2, X has the BAP.

3. Open problems

Considering a symmetric version of Theorem 1.1, we ask the following question.
Problem 1. Let X be a Banach space. If, for every separable Banach space Z and every $T \in \mathcal{L}(X, Z)$, there exists a $\lambda_{T}>0$ such that $T \in$ $\overline{\left\{S \in \mathcal{F}(X, Z):\|S\| \leq \lambda_{T}\right\}}{ }^{\tau_{c}}$, then does X have the BAP?

Considering a symmetric version of Lemma 2.1, we ask the following question.
Problem 2. Let X be a Banach space, and let $\lambda \geq 1$. If, for every separable Banach space Z and every $T \in \mathcal{L}(X, Z), T \in \overline{\{S \in \mathcal{F}(X, Z):\|S\| \leq \lambda\|T\|\}}{ }^{\tau_{c}}$, then does X have the λ-BAP?

Lima and Oja [6] introduced a weaker notion of the BAP. A Banach space X is said to have the weak BAP if there exists a $\lambda \geq 1$ such that for every Banach space Y and every $T \in \mathcal{W}(X, Y), \operatorname{id}_{X} \in \overline{\{S \in \mathcal{F}(X, X):\|T S\| \leq \lambda\|T\|\}}{ }^{\tau_{c}}$. Oja [9, Theorem 2] proved that X has the weak λ-BAP if and only if for every Banach space Y whose dual space has the Radon-Nikodým property and every $T \in \mathcal{L}(X, Y), \operatorname{id}_{X} \in \overline{\{S \in \mathcal{F}(X, X):\|T S\| \leq \lambda\|T\|\}}{ }^{\tau_{c}}$. One may naturally ask whether the weak λ-BAP is equivalent to the λ-BAP. Lima and Oja [6] conjectured that the weak λ-BAP is strictly weaker than the λ-BAP. We ask the following question.

Problem 3. Let X be a Banach space, and let $\lambda \geq 1$. If, for every separable Banach space Z and every $T \in \mathcal{L}(X, Z), \operatorname{id}_{X} \in \overline{\{S \in \mathcal{F}(X, X):\|T S\| \leq \lambda\|T\|\}^{\tau_{c}}}$, then does X have the λ-BAP?

At the present time, we do not know whether the assumptions in the above problems would be equivalent.

Acknowledgment. Kim's work was partially supported by National Research Foundation of Korea grant NRF-2013R1A1A2A10058087.

References

1. T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200. Zbl 0289.46015. MR0341032. 673
2. W. B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301-310. Zbl 0252.46024. MR0326356. 673
3. J. M. Kim and B. Zheng, The strong approximation property and the weak bounded approximation property, J. Funct. Anal. 266 (2014), no. 8, 5439-5447. Zbl 1330.46024. MR3177343. DOI 10.1016/j.jfa.2013.12.016. 674
4. K. Y. Lee, The separable weak bounded approximation property, Bull. Korean Math. Soc. 52 (2015), no. 1, 69-83. Zbl 1319.46015. MR3313425. DOI 10.4134/BKMS.2015.52.1.069. 673, 676
5. Å. Lima, O. Nygaard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325-348. Zbl 0983.46024. MR1802659. DOI 10.1007/BF02810673. 672, 674, 675, 676
6. Å. Lima and E. Oja, The weak metric approximation property, Math. Ann. 333 (2005), no. 3, 471-484. Zbl 1097.46012. MR2198796. DOI 10.1007/s00208-005-0656-0. 676
7. J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. (N.S.) 72 (1966), 967-970. Zbl 0156.36403. MR0205040. 673
8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I: Sequence Spaces, Ergeb. Math. Grenzgeb (3) 92, Springer, Berlin, 1977. Zbl 0362.46013. MR0500056. 674
9. E. Oja, The impact of the Radon-Nikodym property on the weak bounded approximation property, Rev. R. Acad. Cien. Exactas Fís. Nat. Ser. A. Mat. RACSAM 100 (2006), no. 1-2, 325-331. Zbl 1112.46017. MR2267414. 676
10. E. Oja, On a separable weak version of the bounded approximation property, Arch. Math. (Basel) 107 (2016), no. 2, 185-189. Zbl 0661.9006. MR3528390. 674
${ }^{1}$ Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea.

E-mail address: kjm21@kaist.ac.kr
${ }^{2}$ Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, Korea.

E-mail address: northstar@kaist.ac.kr

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 22, 2016; Accepted Jun. 24, 2016.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 46B28; Secondary 47L20.
 Keywords. bounded approximation property, bounded compact approximation property, separable Banach space.

