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Abstract. This article is devoted to introducing new geometric constants
that quantify the difference between Roberts orthogonality and Birkhoff orthog-
onality in normed planes. We start by characterizing Roberts orthogonality in
two different ways: via bisectors of two points and the use of certain linear
transformations. Each of these characterizations yields one of those geometric
constants that we study.

1. Introduction

In [11] the authors introduced a geometric constant to measure the difference
between Birkhoff orthogonality and isosceles orthogonality, and in [15] analogous
results for Birkhoff orthogonality and Roberts orthogonality were obtained. The
main objective of this paper is to introduce two new geometric constants for quan-
tifying the difference between Birkhoff orthogonality and Roberts orthogonality
and, thus, continuing the investigations from [15]. For this purpose, we present
two new characterizations of Roberts orthogonality. One of them is related to
segments whose bisectors contain lines, and the other one associates this type of
orthogonality to certain symmetries of the unit circle. In order to prepare these
characterizations, which are given in Section 3, we devote Section 2 to the study
of the geometric structure of bisectors in normed planes. The results presented in
this section are not new and can be found in [9]. We present new proofs (which
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are slightly more geometric in nature) that will be useful for our aim, and we will
also highlight more references dealing with geometric properties of bisectors in
normed planes. In Section 4, we introduce the constant cB using the generalized
sine function defined in [16] and studied in [5]. In some sense, this constant esti-
mates how far the bisector of a segment is from being (or containing) a line. In
Section 5, we define the constant cS, which quantifies the maximum asymmetry
of the unit circle regarding directions which are Birkhoff-orthogonal. The rea-
son why both these constants can be used for estimating the difference between
Roberts orthogonality and Birkhoff orthogonality becomes clear in Section 3.

Let us introduce some notation. Throughout the text, (V, ‖ · ‖) will always
denote a real (normed or) Minkowski plane (i.e., a 2-dimensional vector space
over R endowed with a norm). Its origin will be denoted by o, and the letters
B and S stand, respectively, for the unit ball B := {x ∈ V : ‖x‖ ≤ 1} and
the unit circle S := {x ∈ V : ‖x‖ = 1} of (V, ‖ · ‖). Thus B is a compact,
convex set centered at o, which is an interior point of it. A normed plane is
said to be strictly convex if the triangle inequality is strict for vectors in distinct
directions. We deal with three orthogonality types (see also the expository papers
[2], [3], and [4]). Given two nonzero vectors x, y ∈ (V, ‖ · ‖), we say that x is
Birkhoff-orthogonal to y (x aB y) if ‖x + ty‖ ≥ ‖x‖ for all t ∈ R; we say that x
and y are Roberts-orthogonal (x aR y) if ‖x + ty‖ = ‖x − ty‖ for every t ∈ R;
finally, x and y are isosceles-orthogonal (x aI y) whenever ‖x + y‖ = ‖x − y‖.
It is worth mentioning that (uncommonly, but useful) we prefer to restrict our
orthogonality definitions to nonzero vectors. For distinct x, y ∈ V , we denote by
[xy], 〈xy〉, and [xy〉 the closed line segment connecting x and y (an open segment
is denoted by (xy)), the line spanned by x and y, and the half-line with origin
x and passing through y, respectively. We use int, relint and conv for interior,
relative interior and convex hull of a set, respectively. Given p ∈ V and a line
l ⊆ V , we denote the usual distance from p to l by d(p, l) := infq∈l ‖p− q‖.

The final part of this introductory section consists of some needed elementary
results from the geometry of Minkowski planes, all of them taken from [14]; this
means that for proofs and more details, the reader should consult [14]. First we
refer to strict convexity of the unit circle.

Proposition 1.1. Let a, b, c ∈ V be three noncollinear points. Then we have
the equality ‖a − c‖ = ‖a − b‖ + ‖b − c‖ if and only if there exists a segment
L ⊆ S containing the unit vectors b−a

‖b−a‖ and c−b
‖c−b‖ . In this case, we also have

c−a
‖c−a‖ ∈ relintL.

Lemma 1.1. Let (V, ‖ · ‖) be a normed plane, and let y, z ∈ V be distinct points.
Assume that w ∈ (yz). Then for every x ∈ V , we have ‖x− w‖ ≤ max(‖x− y‖,
‖x − z‖), with equality if and only if ‖x − w‖ = ‖x − y‖ = ‖x − z‖ . If equality
holds, we have the following consequences:

(a) ‖x− w‖ is the shortest distance from x to the line 〈yz〉;
(b) the segment [yz] is contained in the circle with center x and radius ‖x−w‖,

and hence, ‖x− v‖ = ‖x− w‖ for every v ∈ [yz].

In particular, the equality case cannot occur in strictly convex Minkowski planes.
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The next lemma concerns distances from points to lines, and the last proposi-
tion is an easy consequence of the triangle inequality for quadrilaterals.

Lemma 1.2. Let l be a line in a normed plane, and let p /∈ l and q ∈ l be such
that d(p, r) = ‖p− q‖. If p′ /∈ l and q′ ∈ l are points for which 〈p′q′〉 is parallel to
〈pq〉, then d(p′, r) = ‖p′ − q′‖.

Proposition 1.2. Let abcd be a convex quadrilateral in a normed plane (V, ‖·‖),
with vertices in this written order. Then ‖a − c‖ + ‖b − d‖ ≥ ‖a − b‖ + ‖c − d‖
with equality if and only if [vw] ⊆ S, where v = c−a

‖c−a‖ , w = b−d
‖b−d‖ , and S is

the unit circle. The same holds for the other pair of opposite sides. Notice that,
in particular, the sum of lengths of the diagonals cannot be equal to the sum of
lengths of two opposite sides in a strictly convex normed plane.

2. The geometric structure of bisectors

Given two distinct points x, y ∈ (V, ‖ · ‖), we define the bisector of x and y (or
of the segment [xy]) to be the set

bis(x, y) :=
{
z ∈ V : ‖z − x‖ = ‖z − y‖

}
.

Geometric properties of bisectors in arbitrary Minkowski planes can be, as is
well known, quite complicated (see the surveys [14] and [13]; for bisectors in
higher-dimensional normed spaces, see also [7] and [8]). In [9] a general geometric
description of bisectors is given. We say that a pair (x, y) of vectors is a strict
pair if [xy] is not parallel to a segment of the unit circle. Otherwise we say that
(x, y) is a nonstrict pair. Also, we define a cone to be the convex hull of two
half-lines with the same origin (called the apex of the cone). In [9] it is proved
that if (x, y) is a strict pair, then bis(x, y) is a curve which is homeomorphic to
a line, and if (x, y) is a nonstrict pair, then bis(x, y) is the union of two cones
with a curve connecting their apices and itself homeomorphic to a closed interval.
The present section is devoted to tackling this theory from another point of view
(a little more geometric). This point of view will also be useful for characterizing
Roberts orthogonality in the next section.

Proposition 2.1. Let (V, ‖ ·‖) be a Minkowski plane, and let x, y ∈ V be distinct
points. Then any line l parallel to y − x intersects bis(x, y). This intersection
is given by only one point for any line l if and only if (x,y) is a strict pair. In
particular, a Minkowski plane is strictly convex if and only if for every pair of
points x, y ∈ V any line parallel to y− x intersects bis(x, y) in exactly one point.

Proof. First, fix distinct points x, y ∈ V and a line l which is parallel to y − x. If
l = 〈xy〉, then the midpoint of [xy] belongs to l∩bis(x, y). Assume now that l is not
the line 〈xy〉. Let p1 ∈ l be a point such that ‖x−p1‖ = d(x, l). Using Lemma 1.2
and taking p2 ∈ l such that [yp2] is parallel to [xp1], we have d(y, l) = ‖y− p2‖ =
‖x− p1‖ = d(x, l). Consider the continuous function p 7→ ‖y− p‖ − ‖x− p‖ with
p ranging over l. This function is nonnegative at p1 and nonpositive at p = p2.
Hence, by the intermediate value theorem we have ‖x − p‖ = ‖y − p‖ for some
p ∈ [p1p2] ⊆ l.
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Figure 1. Proposition 2.1.

Assume now that there exists a line l containing two distinct points p and q,
say, of bis(x, y). Hence, the points x, y, p and q are vertices of a quadrilateral
for which the sum of lengths of the diagonals equals the sum of the lengths of
two opposite sides. By Proposition 1.2 it follows that (interchanging p by q, if
necessary) the segment [ x−q

‖x−q‖
y−p

‖y−p‖ ] is contained in the unit circle. To show that

this segment is parallel to y−x it is enough to prove that ‖x−q‖ = ‖y−p‖ (since
p− q and y − x are parallel). If the segments [xp] and [yq] are parallel, then this
is obvious. Thus we suppose that they are not parallel. Choose points p1 and p2
in l such that [xp1] is parallel to [yq] and [yp2] is parallel to [xp] (see Figure 1).
By Lemma 1.1 it follows that ‖x− p‖ ≤ max(‖x− p1‖, ‖x− q‖) = ‖y − q‖, and
‖y − q‖ ≤ max(‖y − p2‖, ‖y − p‖) = ‖x− p‖. This shows the desired equality.

Suppose now that the unit circle contains a segment [ab] which is parallel to
[xy]. The line passing through the origin o and the point a−b

2
is parallel to b−a, and

it is easy to see that these two points belong to bis(a, a+b
2
). Therefore, since the

segment [aa+b
2
] is still parallel to y − x, it follows by translation and homothety

that there exists a line l parallel to y − x containing more than one point of
bis(x, y). �

Remark 2.1. The characterization of strictly convex norms given in Proposi-
tion 2.1 appeared for the first time in [6].

We will prove now that the bisector of a strict pair must be homeomorphic (in
the induced topology of V ) to a line. First, we need an auxiliary lemma.

Lemma 2.1. A segment [xy] is not parallel to any segment of the unit circle if
and only if for every z ∈ bis(x, y) \ [xy] it holds that bis(x, y) is contained in the
union of the convex region conv([zx〉 ∪ [zy〉) and its image symmetric through z.

Proof. If [xy] is a segment which is parallel to some segment of the unit circle,
then by Proposition 2.1 there exists a line which is parallel to 〈xy〉 containing (at
least) two points of bis(x, y). Choosing one of them to be z, it is clear that the
other one does not belong to the described region.

Let now [xy] be a segment which is not parallel to a segment of the unit circle,
and let z ∈ bis(x, y)\[xy]. Assume that there exists a point p ∈ bis(x, y) that does
not lie in the described region. We have to consider two cases. First, suppose that
the points x, y, z, and p form a convex quadrilateral. Hence, we just have to draw
the segments from z to 〈xy〉 which are respectively parallel to [px] and [py] and
then we notice that both have the same length as [zx] and [zy] (see Lemma 1.1).
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Figure 2. Lemma 2.1.

This contradicts the hypothesis on [xy]. If x, y, z, and p do not form a convex
quadrilateral, then we proceed as follows: by Lemma 1.1, the distance from z to
〈xy〉 is achieved by some w ∈ (xy). Also, by Lemma 1.2 the distance from p to
〈xy〉must be attained, in particular, by some q ∈ 〈xy〉 for which the segments [zw]
and [pq] are parallel. Since q /∈ [xy], it follows that ‖p− q‖ = ‖p− x‖ = ‖p− y‖,
and hence Lemma 1.1 guarantees that [xy] is parallel to a segment of the unit
circle (see Figure 2). �

Proposition 2.2. If [xy] ⊆ V is a segment which is not parallel to any segment
of the unit circle, then bis(x, y) is homeomorphic (in the topology induced by V )
to a line.

Proof. Since bis(x, y) is symmetric with respect to x+y
2
, it is clearly sufficient to

prove that the intersection of bis(x, y) with one of the half-planes determined by
〈xy〉 is homeomorphic to the interval [0,∞). In view of Proposition 2.1, we may
define a function p : [0,∞) → V that associates each nonnegative number d to
the point p(d) ∈ bis(x, y) ∩ ld, where ld is the line parallel to 〈xy〉 at distance d.
We will show that p is a homeomorphism over its image. Notice that p is injective
(see Proposition 2.1), and it is also clear from the continuity of the distance
function that its inverse is continuous. Thus, we just have to show that p is
continuous. We start by showing that p is continuous at any d0 > 0. Fix such a
number and let (dn)n∈N be a sequence converging to d0. If n0 is a natural number
such that dn ≤ d0 +1 whenever n > n0, then by Lemma 2.1 we have that the set
{p(dn)}n>n0 is contained in the compact set conv{x, y, p(d0)}∪conv{x1, y1, p(d0)},
where x1 and y1 are the intersections of ld0+1 with the lines 〈xp(d0)〉 and 〈yp(d0)〉,
respectively. Hence the sequence (p(dn))n∈N is contained in some compact set
of V , and then it has a converging subsequence (p(dnk

))k∈N. Since dnk
→ d0, it

follows that p(dnk
) converges to a point of ld0 . Moreover, since ‖x − p(dnk

)‖ =
‖y − p(dnk

)‖ for every k ∈ N, we have that the limit point of p(dnk
) belongs

to bis(x, y). Therefore, p(dnk
) → p(d0). Notice that the same argument shows

that any converging subsequence of (pn)n∈N must converge to p(d0). Thus, by
standard analysis it follows that p(dn) converges itself to p(d0). To prove that p
is continuous at d = 0, we repeat the argument and see that if dn → 0, then for
some n0 ∈ N it holds that p(dn) ∈ conv{x, y, p(1)} whenever n > n0. �

Now we study the geometric structure of bisectors for nonstrict pairs. This is
established in the next two propositions. But first we notice that if (x, y) is such



QUANTIFYING THE DIFFERENCE BETWEEN ORTHOGONALITY TYPES 661

Figure 3. l ∩ bis(x, y) = [x1y1].

a pair, then the segment [xy] is a maximal segment of precisely two circles of
the plane, each of them with its center lying in one of the half-planes determined
by the line 〈xy〉. In fact, if [xy] is parallel to a maximal segment [ab] ⊆ S and

λ = ‖x−y‖
‖a−b‖ , then (assuming, without loss of generality, that y − x = λb− λa) we

just have to consider the circles λS + x− λa and λS + x+ λb.

Proposition 2.3. Let [xy] ⊆ V be a segment which is parallel to a segment of the
unit circle, and let p ∈ V be the center of one of the (two) circles which contain
[xy] as maximal segment. Let l be any line parallel to 〈xy〉 such that p lies in the
interior of the strip determined by these two lines. Then l ∩ bis(x, y) is precisely
the segment [x1y1], where x1 and y1 are the intersections of [xp〉 and [yp〉 with l,
respectively. In particular, bis(x, y) contains the cone conv([p(2p−x)〉∪[p(2p−y)〉)
and, consequently, int(bis(x, y)) 6= ∅.

Proof. Let q ∈ [x1y1]. It is immediate that the parallels to 〈qx〉 and 〈qy〉 through
p intersect the line 〈xy〉 in the interior of the segment [xy] (see Figure 3). Let x0

and y0 be these intersection points, respectively. Since [xy] belongs to a circle with

center p, it follows that ‖p−x0‖ = ‖p− y0‖. Also, it is clear that ‖q−x‖
‖p−x0‖ = ‖q−y‖

‖p−y0‖ ,

and then we have ‖q − x‖ = ‖q − y‖.
Assume now that q ∈ 〈x1y1〉 \ [x1y1]. We may suppose that, without loss of

generality, y1 lies between q and x1. If x0 and y0 are chosen in 〈xy〉 such that [px0]
is parallel to [qx] and [py0] is parallel to [qy], then it is easy to prove that x0 ∈ [xy]
but y0 /∈ [xy]. Since [xy] is maximal, we therefore must have ‖p− y0‖ > ‖p− x0‖
(see Lemma 1.1). Hence, ‖q − y‖ > ‖q − x‖. �

We described the shape of bisector bis(x, y) outside the strip given by the lines
parallel to 〈xy〉 and passing through the centers of the circles which contain [xy]
as maximal segment. We now describe the shape of bis(x, y) within this strip.

Proposition 2.4. Let [xy] be a segment which is parallel to a segment from the
unit circle, and assume that p and q are the centers of the circles which contain
[xy] as a maximal segment. Let lp and lq be the parallels to 〈xy〉 through p and q,
respectively. Then the intersection bis(x, y) ∩ conv(lp ∪ lq) is a curve from p to q
which is homeomorphic to a compact interval.

Proof. Notice that since bis(x, y) is symmetric with respect to x+y
2
, it is enough to

prove the result for the strip determined by 〈xy〉 and lp. First we show that if l ⊆
conv(〈xy〉∪ lp) is a line parallel to 〈xy〉, then the intersection l∩bis(x, y) contains
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Figure 4. l = lp.

Figure 5. l ⊆ int(conv(〈xy〉 ∪ lp)).

precisely one point. This is obvious if l = 〈xy〉. Assume now that l = lp, and
suppose that there exists a point p0 6= p with p0 ∈ lp ∩ bis(x, y). Let x0, y0 ∈ 〈xy〉
be such that [px0] is parallel to [p0x] and [py0] is parallel to [p0y]. Then, renaming
the points if necessary, we may say that x0 ∈ (xy) and y0 ∈ 〈xy〉 \ [xy] (see
Figure 4). Since [xy] belongs to a circle with center p, we have ‖p−x0‖ = ‖p−x‖.
In particular, it follows that ‖p−x‖ = ‖p−y‖ = ‖p−y0‖. Thus, by Lemma 1.1 we
see that the segment [xy0] belongs to a circle with center p, and this contradicts
the maximality of [xy].

Let now l be a line parallel to and strictly between 〈xy〉 and lp. Let z and w be
the intersections of l with the segments [xp] and [yp], respectively. It is easy to
see that the segments [zx], [wy], [zz0], and [ww0] have the same length, where z0
and w0 are the points of [xy] such that [zz0] and [ww0] are parallel to [px+y

2
] (see

Figure 5). By Lemma 1.1 it follows that ‖z−y‖ > ‖z−x‖ and ‖w−x‖ > ‖w−y‖;
one may wonder whether equality cannot hold. If this were the case, then [xy]
would be a segment of a circle with radius ‖p−z‖ < ‖p−x‖, and this contradicts
the maximality of [xy] in the circle with radius ‖p−x‖. Now, by the intermediate
value theorem applied to the function v ∈ [zw] 7→ ‖v − x‖ − ‖v − y‖, it follows
that there exists a point v0 ∈ (zw) ∩ bis(x, y). To prove that v0 is the only point
of l ∩ bis(x, y), we just have to repeat the proof for the case l = lp (actually,
we would have a segment properly containing [xy] in a circle with radius smaller
than ‖p− x‖).

From the previous argument, it also follows that bis(x, y) ∩ conv(〈xy〉 ∩ lp) is
contained in the compact set conv{x, y, p}. Hence, we may repeat the proof of
Proposition 2.2 to prove that the function which associates each d ∈ [0, ‖p− x‖]
to the point ld ∩ bis(x, y), where ld is the parallel to 〈xy〉 at distance d, is a
homeomorphism. �

Corollary 2.1. The bisector of a segment [xy] can contain at most one line. If
[xy] is parallel to some segment of the unit circle, then this line must be necessarily
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Figure 6. Lemma 2.2.

the line through the centers of the two circles which contain [xy] as maximal
segment.

Proof. If (x, y) is a strict pair, then the assertion follows immediately from Propo-
sition 2.2. For the other case, notice that if bis(x, y) contains a line, then the curve
described in Proposition 2.4 must be a segment passing through the mentioned
points. �

Remark 2.2. By homothety and translation it follows that if the bisector bis(x, y)
of a segment [xy] contains a line l, then the bisector of any parallel segment also
contains a line (in the same direction as l).

Lemma 2.2. Let [xy] ⊆ V be a segment such that there exists a line l contained
in bis(x, y). Then, for any segment [zw] ⊆ l centered at x+y

2
, we have 〈xy〉 ⊆

bis(z, w).

Proof. Let [zw] be such a segment and fix an arbitrary point p ∈ 〈xy〉 which lies
in the same half-plane determined by l as y. Assume that q ∈ 〈xy〉 is symmetric
to p through x+y

2
. Hence, ‖z− p‖ = ‖w− q‖. Let v ∈ l be such that [vy] and [wp]

are parallel segments, and notice that, thus, [xv] is parallel to [wq] (see Figure 6).
Since l ⊆ bis(x, y), it follows that ‖v − x‖ = ‖v − y‖. Then, by homothety, we
have ‖w − q‖ = ‖w − p‖. Therefore ‖z − p‖ = ‖w − p‖, as we wished. �

3. New characterizations of Roberts orthogonality

Considering homothety and translation, one can observe that the geometric
structure of bisectors in normed planes can be studied by looking at the bisectors
of the diameters of the unit circle. Despite the simplicity of the proof, the next
theorem is important. Namely, it shows why the geometric constants, which will
be defined later, indeed quantify the difference between Roberts orthogonality
and Birkhoff orthogonality.

Theorem 3.1. Let x, y ∈ S be linearly independent unit vectors. Then the fol-
lowing statements are equivalent:

(a) the bisector bis(−x, x) contains the line 〈oy〉,
(b) x aR y,
(c) the unit circle is invariant through the linear transformation T : V → V

defined by setting T (x) = x and T (y) = −y.
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Proof. If (a) holds, then ‖ty−x‖ = ‖ty+x‖ for every t ∈ R, and this means that
x aR y. If (b) holds, then we have ‖αx + βy‖ = ‖αx − βy‖ for every α, β ∈ R.
Hence, T is an isometry, and therefore (c) follows. Assume now that (c) is true.
Since T is an isometry, we have ‖ty − x‖ = ‖T (ty − x)‖ = ‖ty + x‖ for every
t ∈ R, and this gives 〈oy〉 ⊆ bis(−x, x). �

Using this theorem, we can provide a coordinate-free characterization of ellipses
among all centrally symmetric 2-dimensional convex figures.

Proposition 3.1. Let [xy] be a chord of the unit circle. Then bis(x, y) contains
a line if and only if the unit circle is invariant with respect to the linear transfor-
mation T : V → V such that T (y − x) = y − x and T (x+ y) = −x− y.

Proof. If bis(x, y) contains a line, then it must necessarily be the line l passing
through the origin o and the midpoint w = x+y

2
(see Lemma 2.2). Let [(−v)v] be

the diameter of the unit circle which is parallel to [xy]. It is clear that bis(−v, v)
must contain a line parallel to l. But since the origin is obviously contained in the
bisector of [(−v)v], we have l ⊆ bis(−v, v). Now, from Theorem 3.1 it follows that
the unit circle is invariant through the linear map T : V → V for which T (v) = v
and T (w) = −w, and this clearly yields the assertion. For the converse, assume
again that [(−v)v] is the diameter of the unit circle which is parallel to [xy], and let
w = x+y

2
. Clearly, the hypothesis gives that the unit circle is invariant with respect

to the linear transformation T : V → V for which T (v) = v and T (w) = −w.
Hence, bis(−v, v) contains a line, and therefore bis(x, y) does also. �

Lemma 3.1. If every bisector in a normed plane (V, ‖ · ‖) contains a line, then
any bisector in V is, in fact, a line.

Proof. We just have to prove that if every bisector contains a line, then the plane
is strictly convex. Assume the hypothesis and suppose that [xz] is a segment
of the unit circle. We can take [xz] to be maximal. Let y be the midpoint of
[xz]. Since the bisector of [xy] contains a line, it follows that the unit circle is
invariant under the linear transformation T which takes T (x+ y) to −x− y and
T (y − x) to y − x. Then we have z0 = T (z) ∈ S. Writing z = 2y − x, we have
z0 = T (2y − x) = 2T (y) − T (x) = 2(−x) + (−1)(−y). It follows that −x is
the midpoint between z0 and (−y). In particular, the segment [−zz0] properly
contains the segment [(−z)(−x)]. This contradicts the maximality of [xz]. �

Corollary 3.1. A centrally symmetric convex body K in a 2-dimensional vector
space is an ellipse if and only if, for every x, y ∈ ∂K, K is invariant under the
linear transformation T defined by setting T (x+y) = −x−y and T (y−x) = y−x.

Proof. It is known that a normed plane is an inner product plane if and only
if the bisector of each segment is a line (see [13]). Thus, the assertion follows
immediately from Proposition 3.1 and Lemma 3.1. �

We finish this section with a characterization of inner product planes that we
will need later, too.
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Proposition 3.2. A norm is derived from an inner product if and only if, for
every x ∈ S, the bisector bis(−x, x) contains the line segment connecting the
points of S at which the direction x supports the unit ball.

Proof. Assume that (V, ‖ · ‖) is not an inner product space. Then there exist
x, y ∈ S such that y aB x but ‖x − y‖ 6= ‖x + y‖ (see [4], Theorem 5.1). Thus,
the segment joining the points of S where x supports the unit ball is [(−y)y], but
y /∈ bis(−x, x). The converse is trivial. �

4. The constant cB

Let x ∈ S be a unit vector. We define the inner bisector of the segment [(−x)x]
to be the set bisI(−x, x) := bis(−x, x) ∩ B. In other words, the inner bisector of
a diameter is the set of points of its bisector which lie in the unit ball. We also
define the inner projection of bis(−x, x) to be the set

PI(x) :=
{ z

‖z‖
: z ∈

(
bis(−x, x) ∩B

)
\ {o}

}
.

The intuitive reason why we define these sets is the following: fix x ∈ S and
assume that y ∈ S is such that y aB x. If bis(−x, x) contains a line, then it
is clear that PI(x) = {−y, y} (recall that Roberts orthogonality implies Birkhoff
orthogonality; cf. [4]). If this is not the case, then x is not Roberts-orthogonal to y,
and the inner projection cannot be a 2-point set anymore. Measuring, somehow,
how far the inner projection is from y is a way to quantify the difference between
Birkhoff orthogonality and Roberts orthogonality. This will be made more precise
after a few more steps (using a generalized sine function).

Proposition 4.1. For any x ∈ S, the inner bisector bisI(−x, x) is a curve which
is homeomorphic to a closed interval.

Proof. This follows immediately from Propositions 2.2, 2.3, and 2.4. Notice that if
(−x, x) is a nonstrict pair, then the inner bisector is a portion of the 1-dimensional
component of bis(−x, x) and equals all of it if and only if the plane is rectilinear.

�

Remark 4.1. The preceding proposition can also be regarded as an immediate
consequence of the following uniqueness property of isosceles orthogonality: if
x ∈ V \ {o}, then for each number 0 ≤ α ≤ ‖x‖ there exists a unique (up to the
sign) point y ∈ V such that x aI y and ‖y‖ = α. (See [1] for a proof.)

In [5], the function s : S × S → R given by s(x, y) = inf{‖x + ty‖ : t ∈ R} is
studied. This function somehow plays the role of the sine function in a normed
plane (or space). It is known that s(x, y) ≤ 1 for every x, y ∈ S, with equality if
and only if x aB y. Having said this, we define the constant cB(‖ · ‖) to be

cB
(
‖ · ‖

)
:= inf

x∈S

(
inf

w∈PI(x)
s(w, x)

)
.

Geometrically, we have that if y aB x, then the value of s(w, x) is the length
of the segment whose endpoints are the origin and the intersection between the
line t 7→ w + tx and the segment [oy]. Hence, the number infw∈PI(x) s(w, x) is
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Figure 7. s(w, x), w ∈ PI(x).

Figure 8. bisI(−x, x).

the infimum of the lengths that the parallels to x passing through the points of
PI(x) determine over the segment [oy]. Figure 7 illustrates the situation. Before
studying upper and lower bounds for cB, we first calculate this constant, as an
example, for rectilinear planes.

Example 4.1. Choose (V, ‖ · ‖) as a rectilinear plane (i.e., its unit circle be a
parallelogram). Then cB(‖ · ‖) = 1/2.

Proof. Let (V, ‖·‖) be a rectilinear plane and assume that p and q are consecutive
vertices of the unit circle. It is clear that we can consider x ranging through the
segment [p(p+q

2
)] to perform our calculations. First, we determine the structure

of the inner bisectors. Note that bisI(−p, p) = [(−q)q] and bisI(−p+q
2
, p+q

2
) =

[−( q−p
2
) q−p

2
]. It follows that infw∈PI(x) s(w, x) = 1 if x = p or x = p+q

2
.

Now let x ∈ (pp+q
2
), and let y ∈ [q(−p)] be such that ‖y − q‖ = ‖x − p‖.

Then it is easy to see that bisI(−x, x) is the union of the segments [(−y)(p− x)],
[(p−x)(x−p)], and [(x−p)y] (see Figure 8). Hence, the inner projection PI(x) is
the union of the segment [y( q−p

2
)] with its symmetric image. It follows from the

geometric approach given above that infw∈PI(x) s(w, x) is attained for w = q−p
2

whenever x ∈ (pp+q
2
). A simple calculation gives s( q−p

2
, x) = 1

2−‖x−p‖ . Therefore,

cB(‖ · ‖) = 1/2. �

An interesting phenomenon appears in the previous example: the segments
which form PI(x) when x ranges within (pp+q

2
) degenerate to points when x = p

or x = p+q
2
. Thus, the transformation which maps each x ∈ S to infw∈PI(x) s(w, x)

is not necessarily continuous. Moreover, the rectilinear plane is an example of a
normed plane for which cB(‖ · ‖) is not attained for a pair x ∈ S, w ∈ PI(x).
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It seems to be difficult to calculate cB for more complicated norms without
computational methods. Nevertheless, we can give sharp lower and upper bounds
for it.

Theorem 4.1. Let (V, ‖ · ‖) be a normed plane. Then, 1/2 ≤ cB(‖ · ‖) ≤ 1, and
equality on the right holds if and only if the norm is Euclidean.

Proof. The inequality cB(‖ · ‖) ≤ 1 is obvious since s(x, y) ≤ 1 for any x, y ∈ S.
If equality holds, then, for every x ∈ S and w ∈ PI(x), we have s(w, x) = 1. It
follows that for every x ∈ S the set bisI(−x, x) is the segment connecting the two
points of S where x supports B. By Proposition 3.2, (V, ‖ · ‖) is Euclidean.

To show the other inequality, we use Theorem 4.2 in [10], which states that if
x 6= o and y are two isosceles-orthogonal vectors, then ‖x+ λy‖ > 1/2‖x‖ for all
λ ∈ R. By the definition, for each w ∈ PI(x) there exists an 0 < α ≤ 1 such that
αw is isosceles-orthogonal to x. Hence, w is isosceles-orthogonal to α−1x, and
then ‖w + λx‖ > 1/2‖w‖ = 1/2 for every λ ∈ R. It follows that s(w, x) ≥ 1/2
whenever w ∈ PI(x). This concludes the proof. �

Proposition 4.2. In any normed plane (V, ‖·‖) we have the inequality cB(‖·‖) ≤
D(‖ · ‖), where D is the constant defined in [11] as

D := inf
{
inf
t∈R

‖x+ ty‖ : x, y ∈ S and x aI y
}
.

Proof. Clearly, we may write D = inf{s(x, y) : x, y ∈ S and x aI y}. If x aI y,
then y ∈ PI(x). Hence infw∈PI(x) s(w, x) ≤ s(y, x), and the desired assertion
follows. �

To finish this section, we use the same method as in Example 4.1 to calculate
the constant cB for regular (4n)-gonal norms. These are the norms whose unit
ball is an affine regular (4n)-gon.

Proposition 4.3. Given n ∈ N, let (V, ‖ · ‖4n) denote a Minkowski plane whose
unit circle is an affine regular (4n)-gon. Then, cB(‖ · ‖4n) = (cos π

4n
)2.

Proof. The reason why it is not difficult to calculate the constant cB for regular
(4n)-gonal norms is that we can locate the inner projections of its bisectors. Let
a1a2 · · · a4n be an affine regular (4n)-gon which is the unit circle of the Minkowski
plane (V, ‖·‖4n), and denote bym2 andm1, respectively, the midpoints of the sides
[a1a2] and [an+1an+2]. Then V is a symmetric Minkowski plane and {m1,m2} is a
pair of axes (i.e., ‖m1+tm2‖ = ‖m1−tm2‖ = ‖m2+tm1‖ = ‖m2−tm1‖ for every
t ∈ R; for more on symmetric Minkowski planes, see [11]). It is clear that we may
consider x ranging through the segment [a1m2] to describe all inner projections.
It is also clear that if x = a1 or x = m2, then bisI(−x, x) is a straight segment,
and hence infw∈PI(x) s(w, x) = 1. We describe now the inner projection in the case
x ∈ (a1m2). We will consider only one of the half-planes determined by 〈(−x)x〉
(namely, the one containing m1, which we call H), since the bisector is symmetric
through the origin. From Section 2.2 in [12], we have thatH∩bisI(−x, x) must be a
polygonal chain, and it is easy to see that [o(x−a1)] is its first segment. Moreover,
following [11, Theorem 10], it is immediate that the point y ∈ [an+1an+2] such
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Figure 9. bisI(−x, x).

that ‖y − an+1‖ = ‖x − a1‖ belongs to bisI(−x, x). Since our polygonal circle is
regular, we have that there exist precisely two directions in which the segments
of bisI(−x, x) can lie. One of them is the direction m1 and the other one is the
direction an+1 (see Figure 9). It follows that the inner projection PI(x) is precisely
the segment [m1y] (if bisI(−x, x) cuts the unit circle in a segment which is in the
direction an+1) or it is contained in the segment [m1an+1] (otherwise), and thus
infw∈PI(x) s(w, x) is attained for w = m1. Indeed, since the direction x supports
the polygon at the vertex an+1, it follows that we can compute s(w, x) by looking
at the distance from the intersection of the line t 7→ w + tx with the segment
[oan+1] to the origin. It is easy to see that this distance increases as w ranges
from m1 to y.

Summarizing, if x ∈ (a1m2), then infw∈PI(x) s(w, x) = s(m1, x). Hence, in order
to determine the constant cB, we must calculate the infimum of the values of
s(m1, x) as x ranges within the segment (a1m2). It is clear that the function
x 7→ s(m1, x) is increasing as x goes from a1 to m2 (one can check this by using
the same geometric argument used right above). Finally, since the sine function
is continuous (see [5]), we have cB(‖ · ‖4n) = limx→a1 s(m1, x) = s(m1, a1). To
calculate s(m1, a1) we take, for simplicity, the unit circle as the standard regular
(4n)-gon in the Euclidean plane. The angle between the segments [oan+1] and
[om1] is π/4n, and the line parallel to a1 drawn through m1 cuts perpendicu-
larly the segment [oan+1] in a point q, say. Therefore, the value of s(m1, a1) is
the ratio between the Euclidean lengths of the segments [oq] and [oan+1]. Basic
trigonometry gives the desired value. �

Remark 4.2. One may prefer setting cB(‖ · ‖) to be 1− infx∈S(infw∈PI(x) s(w, x)),
replacing our definition in this way. In this case, cB(‖ · ‖) = 0 would characterize
the Euclidean plane.

5. The constant cS

As we saw in Theorem 3.1, Roberts orthogonality is related to the invariance of
the unit circle with respect to certain linear reflections (i.e., automorphisms of V
whose eigenvalues are 1 and −1). Hence we can quantify the difference between
Roberts orthogonality and Birkhoff orthogonality by estimating the distortion of
the images of the unit circle with respect to the linear reflections whose eigen-
vectors are Birkhoff-orthogonal vectors. Given two linearly independent vectors
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x, y ∈ V , denote by Txy the linear transformation defined by setting Txy(x) = x
and Txy(y) = −y. Thus, we define

cS
(
‖ · ‖

)
:= sup

xaBy

(
sup

z∈Txy(S)

‖z‖ − inf
w∈Txy(S)

‖w‖
)
.

We head now to produce sharp lower and upper bounds for cS, but before this
we need a geometric lemma.

Lemma 5.1. Let x, y ∈ (V, ‖ · ‖) be such that x aB y. Then ‖Txy(z)‖ ≤ 3 for any
z ∈ S. Moreover, equality is only possible if the plane is rectilinear.

Proof. For simplicity, assume through the proof that x, y ∈ S, and let z ∈ S.
Let α, β 6= 0 be such that z = αx + βy (the other cases are obvious). Since
x aB y, we have 1 = ‖αx + βy‖ = |α|‖x + β

α
y‖ ≥ |α|. On the other hand,

1 = ‖αx + βy‖ ≥ |β| − |α|. It follows that |β| ≤ |α| + 1 ≤ 2. Now, ‖Txy(z)‖ =
‖αx− βy‖ ≤ |α|+ |β| ≤ 3.

Suppose now that there exists a unit vector z such that ‖Txy(z)‖ = 3. Writing
z = αx + βy, again we have 2|β| ≤ ‖αx + βy‖ + ‖αx − βy‖ = 4. It follows
that |β| = 2 (the inverse inequality was proved above). Now we have 2|α| =
‖αx+ βy + αx− βy‖ ≥ ‖αx− βy‖ − ‖αx+ βy‖ = 2, and this yields |α| = 1. We
may assume that y + 2x ∈ S (the other cases are completely analogous). Since
x, y ∈ S, it follows immediately that the segments [y(y+2x)] and [(−y)(y+2x)]
are contained in the unit circle. Therefore, S is the parallelogram whose vertices
are ±y and ±(y + 2x). �

Note that we always have supz∈S ‖Txy(z)‖ = (infw∈S ‖Txy(w)‖)−1. The next
corollary follows from this observation.

Corollary 5.1. Let x aB y. Then it will hold that supz∈S ‖Txy(z)‖ ≤ 3 and
infw∈S ‖Txy(w)‖ ≥ 1/3. In both cases, equality occurs if and only if the plane is
rectilinear.

Proof. This is straightforward from Lemma 5.1. A compactness argument shows
that the supremum and the infimum are indeed attained for some z, w ∈ S. �

Theorem 5.1. In any normed plane (V, ‖ · ‖) we have 0 ≤ cS(‖ · ‖) ≤ 8/3.
Equality on the left side holds if and only if the norm is derived from an inner
product, and equality on the right side holds if and only if the plane is rectilinear.

Proof. The right side follows from Corollary 5.1. For the left side, if cS(‖ · ‖) =
0, then the unit circle is invariant with respect to Txy whenever x aB y. By
Theorem 3.1 it follows that x aR y whenever x aB y. This is a characterization
of the Euclidean plane (see [4]). �

We finish by outlining an example where we can calculate the constant cS. The
proof is long and very technical, and so we will not present it here.

Example 5.1. If (V, ‖ · ‖) is a normed plane whose unit circle is an affine regular
hexagon, then cS(‖ · ‖) is attained, for example, whenever y is in the direction of
one of its sides, x is in the direction of a vertex of this side, and its value equals
3/2. It is worth mentioning that the constant cE defined in [5] has the same
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Figure 10. S and Txy(S).

value in regular hexagonal planes. In some sense, this plane is as far from being
Euclidean as Birkhoff and Roberts-orthogonal are far from each other. Figure 10
illustrates this (Txy(S) is the dotted polygon).
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Sci. Math. Québec 18 (1994), no. 1, 25–38. Zbl 0806.46017. MR1273866. 665

2. J. Alonso and C. Benitez, Orthogonality in normed linear spaces, I: Main properties,
Extracta Math. 3 (1988), no. 1, 1–15. MR1056805. 657

3. J. Alonso and C. Benitez, Orthogonality in normed linear spaces, II: Relations between main
orthogonalities, Extracta Math. 4 (1989), no. 3, 121–131. MR1056810. 657

4. J. Alonso, H. Martini, and S. Wu, On Birkhoff orthogonality and isosceles orthogonality
in normed linear spaces, Aequationes Math. 83 (2012), no. 1–2, 153–189. Zbl 1241.46006.
MR2885507. DOI 10.1007/s00010-011-0092-z. 657, 665, 669

5. V. Balestro, H. Martini, and R. Teixeira, Geometric properties of a sine func-
tion extendable to arbitrary normed planes, to appear in Monatsh. Math., preprint,
arXiv:1601.06287v1 [math.MG]. 657, 665, 668, 669

6. J. R. Holub, Rotundity, orthogonality, and characterizations of inner product spaces, Bull.
Amer. Math. Soc. 81 (1975), 1087–1089. Zbl 0317.46022. MR0380363. 659
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