

Ann. Funct. Anal. 7 (2016), no. 4, 609–621

http://dx.doi.org/10.1215/20088752-3660801

ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

ON m-GENERALIZED INVERTIBLE OPERATORS ON BANACH SPACES

HAMID EZZAHRAOUI

Communicated by M. Mbekhta

ABSTRACT. A bounded linear operator S on a Banach space X is called an m-left generalized inverse of an operator T for a positive integer m if

$$T\sum_{j=0}^{m} (-1)^{j} {m \choose j} S^{m-j} T^{m-j} = 0,$$

and it is called an m-right generalized inverse of T if

$$S\sum_{i=0}^{m} (-1)^{j} \binom{m}{j} T^{m-j} S^{m-j} = 0.$$

If T is both an m-left and an m-right generalized inverse of T, then it is said to be an m-generalized inverse of T.

This paper has two purposes. The first is to extend the notion of generalized inverse to m-generalized inverse of an operator on Banach spaces and to give some structure results. The second is to generalize some properties of m-partial isometries on Hilbert spaces to the class of m-left generalized invertible operators on Banach spaces. In particular, we study some cases in which a power of an m-left generalized invertible operator is again m-left generalized invertible.

1. Introduction and preliminaries

Throughout this paper, X shall denote a complex Banach space, and $\mathcal{L}(X)$ shall denote the algebra of all bounded linear operators on X. We denote X by

Copyright 2016 by the Tusi Mathematical Research Group.

Received Mar. 13, 2016; Accepted May 3, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B48; Secondary 47B99.

 $Keywords.\ m$ -isometry, m-partial-isometry, m-left inverse, m-right inverse, m-left generalized inverse, m-right generalized inverse.

H if it is a Hilbert space. For an arbitrary operator $T \in \mathcal{L}(X)$, we use N(T) to denote its kernel, R(T) its range, and T^* its adjoint.

An operator $T \in \mathcal{L}(X)$ is said to be *left invertible* if there is an operator $L \in \mathcal{L}(X)$ such that LT = I, and it is said to be *right invertible* if there is an operator $R \in \mathcal{L}(X)$ such that TR = I, where I denotes the identity operator.

The concept of generalized inverses of matrices was first proposed by E. H. Moore in the 1920s, and a generalization of his original idea to the bounded linear operators between Hilbert spaces with closed range was mainly due to his student Y.-Y. Tseng in the 1930s and 1940s via a series of papers (see [5] for more details). An operator $S \in \mathcal{L}(X)$ is said to be a left generalized inverse of $T \in \mathcal{L}(X)$ if TST = T, and it is said to be a generalized inverse of T if STS = S. An operator $S \in \mathcal{L}(X)$ is said to be a generalized inverse of $T \in \mathcal{L}(X)$ if it is both a left and right generalized inverse of T; that is, TST = T and STS = S. It is well known that an operator $T \in \mathcal{L}(X)$ has a generalized inverse if and only if N(T) and R(T) are closed and complemented subspaces of X (see, e.g., [6]). We notice that the equality TST = T is a necessary and sufficient condition for T to have a generalized inverse. Indeed, it is clear that S' = STS is a generalized inverse of T.

An operator $T \in \mathcal{L}(H)$ is said to be a partial isometry provided that ||Tx|| = ||x|| for every $x \in N(T)^{\perp}$; that is, T^* is a generalized inverse of T (i.e., $TT^*T = T$). It is known that T is a partial isometry if and only if T^* is a partial isometry. Partial isometries have been investigated by several authors (see, e.g., [4], [9], [10]). In particular, M. Mbekhta and L. Suciu [10] gave some results related to the problems of C. Badea and M. Mbekhta [4] concerning the similarity to partial isometries using the generalized inverses.

The article [8] extends the notions of left and right invertibility to m-left and m-right invertibility, respectively, on Banach spaces.

Definition 1.1. For some integer $m \geq 1$, an operator $T \in \mathcal{L}(X)$ is called

(1) m-left invertible if there exists $S \in \mathcal{L}(X)$ for which

$$S^{m}T^{m} - {m \choose 1}S^{m-1}T^{m-1} + \dots + (-1)^{m-1}{m \choose m-1}ST + (-1)^{m}I = 0$$

(in this case, S is called an m-left inverse for T);

(2) m-right invertible if there exists $R \in \mathcal{L}(X)$ for which

$$T^{m}R^{m} - \binom{m}{1}T^{m-1}R^{m-1} + \dots + (-1)^{m-1}\binom{m}{m-1}TR + (-1)^{m}I = 0.$$

In the latter case, R is called an m-right inverse for T, where $\binom{m}{j}$ is the binomial coefficient.

If $T \in \mathcal{L}(X)$ is both m-left and m-right invertible, we say that T is m-invertible.

Remark 1.2. An 1-left inverse (resp., 1-right inverse) for T is a left inverse (resp., right inverse) for T.

The set of all m-left invertible operators in $\mathcal{L}(X)$ will be denoted by $L^m(X)$. For $T \in L^m(X)$, we denote by $\mathfrak{L}^m(T)$ the set of all m-left inverses of T; that is,

$$\mathfrak{L}^{m}(T) = \left\{ S \in \mathcal{L}(X) : \sum_{j=0}^{m} (-1)^{j} {m \choose j} S^{m-j} T^{m-j} = 0 \right\}.$$

The set of all m-right invertible operators in $\mathcal{L}(X)$ will be denoted by $R^m(H)$. For $T \in R^m(X)$, we denote by $\mathfrak{R}^m(T)$ the set of all m-right inverses of T; that is,

$$\mathfrak{R}^{m}(T) = \left\{ R \in \mathcal{L}(X) : \sum_{j=0}^{m} (-1)^{j} {m \choose j} T^{m-j} R^{m-j} = 0 \right\}.$$

An operator $T \in \mathcal{L}(H)$ is called an *m-isometry* if

$$\sum_{j=0}^{m} (-1)^j \binom{m}{j} T^{*m-j} T^{m-j} = 0;$$

that is, $T \in L^m(H)$ and $T^* \in \mathfrak{L}^m(T)$. Evidently, an isometry (i.e., a 1-isometry) is an m-isometry for all integers $m \geq 1$. A detailed study of this class on Hilbert spaces has been the object of some intensive study, especially by J. Agler and M. Stankus in [1], [2], and [3], and by S. Shimorin in [13]. Also, we refer the reader to [11] for more information about 2-isometries.

In [12], A. Saddi and O. A. Mahmoud Sid Ahmed gave a generalization of partial isometries and m-isometries to m-partial isometries on Hilbert spaces. An operator $T \in \mathcal{L}(H)$ is called an m-partial isometry for some integer $m \geq 1$ if

$$T\sum_{k=0}^{m} (-1)^k \binom{m}{k} T^{*m-k} T^{m-k} = 0 \quad \text{in } \mathcal{L}(H).$$

The case when m=1 represents the partial isometries class. It is easily seen that an injective m-partial isometry is an m-isometry. An elementary operator theory of m-partial isometries is discussed in [12].

For an operator $T \in \mathcal{L}(X)$, the reduced minimum modulus is defined by

$$\gamma(T) := \begin{cases} \inf\{\|Tx\| : \operatorname{dist}(x, N(T)) = 1\} & \text{if } T \neq 0, \\ +\infty & \text{if } T = 0. \end{cases}$$

It is well known that $\gamma(T) > 0$ if and only if R(T) is closed. Moreover, we have $\gamma(T) = \gamma(T^*)$.

The present paper is organized as follows. In Section 2, we generalize the notions of all classes already mentioned to m-left generalized inverses and m-right generalized inverses. We also extend some well-known results. In Section 3, we study some cases in which a power of an m-left (resp., m-right) generalized invertible operator is again an m-left (resp., m-right) generalized invertible operator.

2. m-Generalized invertible operators

Inspired by the above definitions of left generalized inverse and right generalized inverse and the work of m-partial isometries on Hilbert spaces (see [12]) and the work on m-left inverses and m-right inverses on Banach spaces (see [8]), we introduce the notions of m-left generalized inverse and m-right generalized inverse.

Definition 2.1. Let $m \geq 1$ be an integer, and let $T \in \mathcal{L}(X)$.

(1) (i) An operator $B \in \mathcal{L}(X)$ is called an *m-left generalized inverse* of T if

$$T\sum_{j=0}^{m} (-1)^{j} {m \choose j} B^{m-j} T^{m-j} = 0,$$

(ii) $R \in \mathcal{L}(X)$ is called an m-right generalized inverse of T if

$$R\sum_{j=0}^{m} (-1)^{j} {m \choose j} T^{m-j} R^{m-j} = 0.$$

(2) An operator $S \in \mathcal{L}(X)$ is called an *m*-generalized inverse of T if S is both an *m*-left and *m*-right generalized inverse of T; that is,

$$T\sum_{j=0}^{m} (-1)^{j} {m \choose j} S^{m-j} T^{m-j} = 0$$

and

$$S\sum_{j=0}^{m} (-1)^{j} {m \choose j} T^{m-j} S^{m-j} = 0.$$

The set of all m-left generalized invertible operators in $\mathcal{L}(X)$ will be denoted by $L_G^m(X)$. For $T \in L_G^m(X)$, we denote by $\mathfrak{L}_G^m(T)$ the set of all m-left generalized inverses of T; that is,

$$\mathfrak{L}_{G}^{m}(T) = \left\{ B \in \mathcal{L}(X) : T \sum_{j=0}^{m} (-1)^{j} {m \choose j} B^{m-j} T^{m-j} = 0 \right\}.$$

The set of all m-right generalized invertible operators in $\mathcal{L}(X)$ will be denoted by $R_G^m(X)$. For $T \in R_G^m(X)$, we denote by $\mathfrak{R}_G^m(T)$ the set of all m-right generalized inverses of T; that is,

$$\mathfrak{R}_{G}^{m}(T) = \left\{ R \in \mathcal{L}(X) : R \sum_{j=0}^{m} (-1)^{j} {m \choose j} T^{m-j} R^{m-j} = 0 \right\}.$$

Remark 2.2. Let T be in $\mathcal{L}(X)$. Then

- (1) a 1-left (resp., a 1-right) generalized inverse of T is a left (resp., a right) generalized inverse of T;
- (2) a 1-generalized inverse of T is a generalized inverse of T;
- (3) $T \in L_G^m(X)$ and $B \in \mathfrak{L}_G^m(T)$ if and only if $B \in R_G^m(X)$ and $T \in \mathfrak{R}_G^m(B)$.

It is clear that we have the following.

Proposition 2.3.

(1) We have $L^m(X) \subset L^m_G(X)$ and $R^m(X) \subset R^m_G(X)$. More precisely, if $T \in L^m(X)$ (resp., $T \in R^m(X)$), then $\mathfrak{L}^m(T) \subset \mathfrak{L}^m_G(T)$ (resp., $\mathfrak{R}^m(T) \subset \mathfrak{R}^m_G(T)$).

In particular,

(2) $T \in \mathcal{L}(H)$ is an m-partial isometry if and only if $T \in L_G^m(H)$ and $T^* \in \mathfrak{L}_G^m(T)$.

Example 2.4. Consider the operator $T = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and an arbitrary operator $S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ acting on $H = \mathbb{C}^2$. An easy computation shows that $S^2T^2 - 2ST + I \neq 0$ for all complex numbers a, b, c, and d. Thus $T \notin L^2(H)$. Now, for $S = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, it is easy to see that $T(S^2T^2 - 2ST + I) = 0$. Thus $T \in L^2_G(H)$ and $S \in \mathfrak{L}^2_G(T)$. This justifies the definitions of $L^m_G(X)$ and $R^m_G(X)$.

It is clear that if $S \in \mathcal{L}(X)$ is a generalized inverse of $T \in \mathcal{L}(X)$, then P = TS and Q = ST are idempotents (i.e., $P^2 = P$ and $Q^2 = Q$), R(T) = R(P), and N(T) = N(Q) = R(I - Q).

In the remainder of this paper, if S is an m-left generalized inverse of T, then we set

$$Q_m = \sum_{j=0}^{m-1} (-1)^j \binom{m}{j} S^{m-j} T^{m-j}.$$

Moreover, if S is an m-right generalized inverse of T, then we set

$$P_m = \sum_{j=0}^{m-1} (-1)^j \binom{m}{j} T^{m-j} S^{m-j}.$$

Clearly, we have $TQ_m = (-1)^{m+1}T$. In particular, S is an m-left inverse of T if and only if $Q_m = (-1)^{m+1}I$.

Proposition 2.5. If $T \in L_G^m(X)$ and $S \in \mathfrak{L}_G^m(T)$, then we have the following.

- (1) $N(Q_m) = N(T) = R((-1)^{m+1}I Q_m)$. In particular, $Q_m^2 = (-1)^{m+1}Q_m$, and if m is an odd integer, then Q_m is idempotent.
- (2) $R(Q_m) = N((-1)^{m+1}I Q_m)$. In particular, $x \in R(Q_m)$ if and only if $Q_m x = (-1)^{m+1}x$.
- (3) $N(Q_m)$ and $R(Q_m)$ are algebraically complemented subspaces of X; that is, $X = N(Q_m) \oplus R(Q_m)$.

Proof.

- (1) It is clear that $N(T) \subset N(Q_m)$, and since $TQ_m = (-1)^{m+1}T$, we also have $R((-1)^{m+1}I Q_m) \subseteq N(T)$. Now, let $x \in N(Q_m)$, and since $(-1)^{m+1}x = ((-1)^{m+1}I Q_m)x \in R((-1)^{m+1}I Q_m)$, we get $x \in R((-1)^{m+1}I Q_m)$.
- (2) The inclusion $N((-1)^{m+1}I Q_m) \subseteq R(Q_m)$ is obvious. Now, suppose that $x \in R(Q_m)$. Then $x = Q_m u$ for some $u \in X$. We have $((-1)^{m+1}I Q_m)x = ((-1)^{m+1}Q_m Q_m^2)u = 0$, and hence $x \in N((-1)^{m+1}I Q_m)$.

(3) It is easily seen that $X = R((-1)^{m+1}I - Q_m) + R(Q_m)$. But we have $R((-1)^{m+1}I - Q_m) = N(Q_m)$, and thus $X = N(Q_m) + R(Q_m)$. Since $N(Q_m) \cap R(Q_m) = N(Q_m) \cap N((-1)^{m+1}I - Q_m) = \{0\}$, we have the result.

In the following proposition, we generalize Proposition 2.2 in [9].

Proposition 2.6. Let $T \in \mathcal{L}(X)$, and let S be an m-generalized inverse of T. Then

$$\frac{1}{m||S||(1+||S||||T||)^{m-1}} \le \gamma(T) \le \frac{||TS||||Q_m||}{||Q_mS||}.$$

Proof. Consider an arbitrary vector $x \in X$. We have

$$||Q_m x|| = \left\| \sum_{j=0}^{m-1} (-1)^j {m \choose j} S^{m-j} T^{m-j} x \right\|$$

$$\leq ||S|| \left\| \sum_{j=0}^{m-1} {m \choose j} ||S||^{m-1-j} ||T||^{m-1-j} \right\| ||Tx||$$

$$\leq m ||S|| (1 + ||S|| ||T||)^{m-1} ||Tx||,$$

where the last inequality follows since $\binom{m}{j} \leq m \binom{m-1}{j}$ for $0 \leq j \leq m-1$. On the other hand, $(-1)^m x + Q_m x \in N(T)$, and thus

$$\operatorname{dist}(x, N(T)) = \operatorname{dist}(Q_m x, N(T)) \le ||Q_m x|| \le m ||S|| (1 + ||S|| ||T||)^{m-1} ||Tx||.$$

Therefore,

$$\frac{1}{m\|S\|(1+\|S\|\|T\|)^{m-1}} \le \gamma(T).$$

For the second inequality, let $v \in X$, and let $x = Q_m S v$. Since $S P_m v = (-1)^{m+1} S v$, we have $T Q_m S P_m v = (-1)^{m+1} T Q_m S v = (-1)^{m+1} T x$. But $S P_m = (-1)^{m+1} S$ and $T Q_m = (-1)^{m+1} T$, and thus $T S v = (-1)^{m+1} T x$. On the other hand, for $\varepsilon > 0$, there exists $u \in N(T)$ such that $\operatorname{dist}(x, N(T)) \ge ||x + u|| - \varepsilon$. Therefore, it follows that

$$||x + u|| \le \operatorname{dist}(x, N(T)) + \varepsilon \le \frac{1}{\gamma(T)} ||Tx|| + \varepsilon = \frac{1}{\gamma(T)} ||TSv|| + \varepsilon.$$

Now, since $x \in R(Q_m)$ and $N(Q_m) = N(T)$, from Proposition 2.5 we have $Q_m(x+u) = Q_m x = (-1)^{m+1} x$. Therefore,

$$||Q_m Sv|| = ||x|| = ||Q_m(x+u)|| \le ||Q_m|| ||x+u|| \le ||Q_m|| \left\{ \frac{1}{\gamma(T)} ||TS|| ||v|| + \varepsilon \right\}.$$

Because $\varepsilon > 0$ is arbitrary, for every $v \in X$, we obtain

$$||Q_m Sv|| \le \frac{1}{\gamma(T)} ||TS|| ||Q_m|| ||v||.$$

The result is proved.

For m = 1, S is a generalized inverse of T, $Q_m = Q = ST$, $P_m = P = TS$, $Q_m S = S$, and $m||S||(1+||S||||T||)^{m-1} = ||S||$. Therefore, we retrieve the following result given in [9].

Corollary 2.7 ([9, Proposition 2.2]). Let $T \in \mathcal{L}(X)$, and let S be a generalized inverse of T. Then

$$\frac{1}{\|S\|} \le \gamma(T) \le \frac{\|P\| \|Q\|}{\|S\|}.$$

Corollary 2.8. If T is m-invertible and S is an m-left inverse of T, then

$$\frac{1}{m\|S\|(1+\|S\|\|T\|)^{m-1}} \le \gamma(T) \le \frac{\|TS\|}{\|S\|}.$$

Proof. Since $Q_m = (-1)^{m+1}I$, we have $\frac{\|TS\|\|Q_m\|}{\|Q_mS\|} = \frac{\|TS\|}{\|S\|}$.

Corollary 2.9. If $T \in L_G^m(X)$, then $\gamma(T) > 0$. In particular, if $T \in L_G^m(X)$, then R(T) is closed.

Recall that $T \in \mathcal{L}(H)$ is an *m*-isometry if and only if it is an injective *m*-partial isometry. In the following we extend this property.

Proposition 2.10. If $T \in \mathcal{L}(X)$, then the following assertions are equivalent:

- (1) $T \in L_G^m(X)$ and T is injective,
- (2) $T \in L^m(X)$.

Proof. (1) \Longrightarrow (2): Suppose that $T \in L_G^m(X)$ is injective, and let S be an m-left generalized inverse of T. By Proposition 2.5, we have $R((-1)^{m+1}I - Q_m) = N(T) = \{0\}$. This implies that $Q_m = (-1)^{m+1}I$, and thus $T \in L^m(X)$. (2) \Longrightarrow (1): Let T be in $L^m(X)$. Since $L^m(X) \subset L_G^m(X)$, it suffices to show

 $(2) \Longrightarrow (1)$: Let T be in $L^m(X)$. Since $L^m(X) \subset L^m_G(X)$, it suffices to show that T is injective. Since $Q_m = (-1)^{m+1}I$, according to Proposition 2.5, we have $N(T) = N(Q_m) = N(I) = \{0\}$. The proof is completed.

The following result extends Theorem 3.1 given in [12].

Theorem 2.11. If $T, S \in \mathcal{L}(H)$ such that $N(T)^{\perp}$ is an invariant subspace for both T and S, then the following properties are equivalent:

- (1) $T \in L_G^m(H)$ and $S \in \mathfrak{L}_G^m(T)$,
- (2) $T_{|N(T)^{\perp}} \in L^m(H)$ and $S_{|N(T)^{\perp}} \in \mathfrak{L}^m(T)$.

Proof. (1) \Longrightarrow (2): Suppose that $T \in L_G^m(H)$, let $S \in \mathfrak{L}_G^m(T)$, and let x be in $N(T)^{\perp}$. Since by assumption $N(T)^{\perp}$ is an invariant subspace for both T and S, we have

$$\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x \in N(T)^{\perp}.$$

On the other hand,

$$\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x \in N(T);$$

thus,

$$\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x = 0$$

for all $x \in N(T)^{\perp}$, and so $T_{|N(T)^{\perp}} \in L^m(H)$ and $S_{|N(T)^{\perp}} \in \mathfrak{L}^m(T)$.

(2) \Longrightarrow (1): Let $x \in H$ such that $x = x_1 + x_2$ with $x_1 \in N(T)$ and $x_2 \in N(T)^{\perp}$. We have

$$T\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x = T\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x_{2}.$$

But by assumption we have

$$\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x_{2} = 0,$$

and thus

$$T\sum_{j=0}^{m} {m \choose j} (-1)^{j} S^{m-j} T^{m-j} x = 0.$$

Since $x \in H$ is arbitrary, $T \in L_G^m(H)$ and $S \in \mathfrak{L}_G^m(T)$. The result is obtained. \square

Corollary 2.12. If $T, R \in \mathcal{L}(H)$ such that $N(R)^{\perp}$ is an invariant subspace for both T and R, then the following properties are equivalent:

- (1) $T \in R_G^m(H)$ and $R \in \mathfrak{R}_G^m(T)$,
- (2) $T_{|N(R)^{\perp}} \in R^m(H) \text{ and } R_{|N(R)^{\perp}} \in \mathfrak{R}^m(T).$

From the Theorem 2.11, we conclude Theorem 3.1 from [12] alternatively.

Corollary 2.13 ([12, Theorem 3.1]). If $T \in \mathcal{L}(H)$ and N(T) is a reducing subspace for T, then the following properties are equivalent:

- (1) T is an m-partial isometry,
- (2) $T_{|N(T)^{\perp}}$ is an m-isometry.

Proof. (1) \Longrightarrow (2): Since N(T) is reducing for T, we see that $(T_{|N(T)^{\perp}})^* = T_{|N(T)^{\perp}}^* = S_{|N(T)^{\perp}}$ where $S = T^*$. Moreover, $N(T)^{\perp}$ is an invariant subspace for both T and S. Since T is an m-partial isometry, by Proposition 2.3, we have $T \in L_G^m(H)$ and $S \in \mathfrak{L}_G^m(T)$. Now, by Theorem 2.11, we get $T_{|N(T)^{\perp}} \in L^m(H)$ and $(T_{|N(T)^{\perp}})^* = S_{|N(T)^{\perp}} \in \mathfrak{L}^m(T)$. Hence $T_{|N(T)^{\perp}}$ is an m-isometry.

(2) \Longrightarrow (1): Suppose that $T_{|N(T)^{\perp}}$ is an m-isometry. Then $T_{|N(T)^{\perp}} \in L^m(H)$ and $(T_{|N(T)^{\perp}})^* \in \mathfrak{L}^m(T)$. But $(T_{|N(T)^{\perp}})^* = T_{|N(T)^{\perp}}^*$, and thus $T_{|N(T)^{\perp}}^* \in \mathfrak{L}^m(T)$. From Theorem 2.11, $T \in L_G^m(H)$ and $T^* \in \mathfrak{L}_G^m(T)$, and by Proposition 2.3 we infer that T is an m-partial isometry.

3. Power of m-left and m-right generalized invertible operators

In [11, Theorem 2.1], S. M. Patel showed that a power of 2-isometry is again a 2-isometry. This result was extended in [8] for 2-left and 2-right invertible operators. Another result for m-partial operators is given in [7, Theorem 2.16]. In the following, we extend this result more generally for 2-left generalized and 2-right generalized invertible operators.

Theorem 3.1. Let $T \in L^2_G(H)$, and let $B \in \mathfrak{L}^2_G(T)$. If $N(T)^{\perp}$ is an invariant subspace for both T and S, then $T^n \in L^2_G(H)$ and $B^n \in \mathfrak{L}^2_G(T^n)$ for all $n \in \mathbb{N}$.

Proof. Let $n \geq 0$ be an integer. From Theorem 2.11, $T_{|N(T)^{\perp}} \in L^2(H)$ and $B_{|N(T)^{\perp}} \in \mathfrak{L}^2(T)$. According to [8, Proposition 3.1], we have $T^n_{|N(T)^{\perp}} \in L^2(H)$ and $B^n_{|N(T)^{\perp}} \in \mathfrak{L}^2(T^n)$. Now, by Theorem 2.11, we derive that $T^n \in L^2_G(H)$ and $B^n \in \mathfrak{L}^2_G(T^n)$.

Lemma 3.2.

- (1) Let $T \in L_G^2(X)$, and let $B \in \mathfrak{L}_G^2(T)$ such that BT = TB. Then $TB^kT^k = kTBT (k-1)T, \quad k = 0, 1, \dots$
- (2) If $T \in R_G^2(X)$ and $R \in \mathfrak{R}_G^2(T)$ such that RT = TR, then $RT^k R^k = kRTR (k-1)R, \quad k = 0, 1, \dots$

Proof.

(1) We will proceed by induction on k. For k = 0, 1 there is nothing to prove. Since $B \in \mathcal{L}^2_G(T)$, we have

$$T(B^2T^2 - 2BT + I) = 0,$$

and thus

$$TB^2T^2 = 2TBT - T.$$

Then the equation is verified for k = 2. Now, suppose that $TB^kT^k = kTBT - (k-1)T$ for some k. We have

$$TB^{k+1}T^{k+1} = TBB^kT^kT$$

$$= BTB^kT^kT \quad \text{(since } BT = TB\text{)}$$

$$= B(kTBT - (k-1)T)T \quad \text{(by assumption)}$$

$$= kTB^2T^2 - (k-1)BT^2 \quad \text{(since } BT = TB\text{)}$$

$$= k(2TBT - T) - (k-1)BT^2 \quad (TB^2T^2 = 2TBT - T)$$

$$= 2kTBT - kT - (k-1)TBT \quad \text{(since } BT = TB\text{)}$$

$$= (2k - k + 1)TBT - kT$$

$$= (k+1)TBT - kT.$$

(2) Since R is a 2-right generalized inverse of T, then T is a 2-left generalized inverse of R, and the result follows from the first part.

Theorem 3.3. Let T be in $L_G^2(X)$, and let m be an integer such that $m \geq 1$. If there exists an operator $B \in \mathfrak{L}_G^2(T)$ such that BT = TB, then $T^n \in L_G^m(X)$ and $B^n \in \mathfrak{L}_G^m(T^n)$ for all integers n.

Proof. Suppose that $B \in \mathcal{L}_G^2(T)$ is such that BT = TB and $m \ge 1$ is an integer. Since $\binom{m}{k}k = m\binom{m-1}{k-1}$ for $k = 1, 2, \dots, m$, we have

$$\sum_{k=0}^{m} (-1)^{m-k} {m \choose k} k = \sum_{k=1}^{m} (-1)^{m-k} {m \choose k} k$$

$$= \sum_{k=0}^{m-1} (-1)^{m-1-k} {m-1 \choose k} m$$

$$= (-1+1)^{m-1} m$$

$$= 0$$

On the other hand, from Lemma 3.2 we have $TB^{nk}T^{nk} = nkTBT - (nk-1)T$ for $k = 0, 1, 2, \ldots$ Thus, for all $n \ge 1$, we have

$$T^{n} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} B^{nk} T^{nk} = T^{n-1} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T B^{nk} T^{nk}$$

$$= T^{n-1} \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \left(nkTBT - (nk-1)T \right)$$

$$= n \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} k T^{n} (BT - I)$$

$$= 0$$

$$+ \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} T^{n}$$

$$= 0.$$

Corollary 3.4. Let T be a 2-right generalized invertible operator, and let m be an integer such that $m \geq 1$. If there exists an operator $R \in \mathfrak{R}^2_G(T)$ such that RT = TR, then $T^n \in R^m_G(X)$ and $R^n \in \mathfrak{R}^m_G(T^n)$ for all integers n.

It is well known from [7, Proposition 2.2] that if T is an m-partial isometry such that T^k is a partial isometry for $k = 1, \ldots, m - 1$, for some integer $m \geq 2$, then the power T^m is a partial isometry. In the following, we generalize this result.

Proposition 3.5. Let $T \in \mathcal{L}(X)$ be in $L_G^m(X)$, and let $B \in \mathfrak{L}_G^m(T)$ for some integer $m \geq 2$. If $T^k \in L_G^1(X)$ and $B^k \in \mathfrak{L}_G^1(T^k)$ for k = 0, 1, ..., m - 1, then $T^m \in L_G^1(X)$ and $B^m \in \mathfrak{L}_G^1(T^m)$.

Proof. Since T is an m-left generalized invertible operator and $B \in \mathfrak{L}_G^m(T)$, we have

$$T\sum_{k=0}^{m} (-1)^k \binom{m}{k} B^{m-k} T^{m-k} = 0.$$

Multiplying the above equation from the left by T^{m-1} , we get

$$T^{m}B^{m}T^{m} + \sum_{k=1}^{m} (-1)^{k} \binom{m}{k} T^{m}B^{m-k}T^{m-k} = 0.$$

But by assumption we have $T^k B^k T^k = T^k$ for k = 1, ..., m-1, and thus

$$\begin{split} T^m B^{m-k} T^{m-k} &= T^k T^{m-k} B^{m-k} T^{m-k} \\ &= T^k T^{m-k} \\ &= T^m. \end{split}$$

Therefore,

$$T^m B^m T^m + \sum_{k=1}^m (-1)^k \binom{m}{k} T^m = 0.$$

Since $\sum_{k=1}^{m} (-1)^k \binom{m}{k} = -1$, we get

$$T^m B^m T^m = T^m$$

Therefore, $T^m \in L^1_G(X)$ and $B^m \in \mathfrak{L}^1_G(T^m)$.

Theorem 3.6. Let $T \in \mathcal{L}(X)$ be in $L_G^m(X)$, and let $B \in \mathfrak{L}_G^m(T)$ for some integer $m \geq 1$. If $S \in L^1(X)$ and $A \in \mathfrak{L}^1(S)$ are such that S and A commute with both T and B, then $TS \in L_G^m(X)$ and $AB \in \mathfrak{L}_G^m(ST)$.

Proof. We have

$$TS \sum_{k=0}^{m} (-1)^{k} {m \choose k} (AB)^{m-k} (TS)^{m-k}$$

$$= TS \sum_{k=0}^{m} (-1)^{k} {m \choose k} B^{m-k} T^{m-k} (A^{m-k} S^{m-k})$$

$$= T \sum_{k=0}^{m} (-1)^{k} {m \choose k} B^{m-k} T^{m-k} S$$

$$= 0$$

and the result is obtained.

Corollary 3.7 ([12, Proposition 3.2]). Let $T, S \in \mathcal{L}(H)$ be such that T is an m-partial isometry and S is an isometry with TS = ST and $TS^* = S^*T$. Then TS is an m-partial isometry.

Proof. Since T is an m-partial isometry, $T \in L_G^m(X)$ and $T^* \in \mathfrak{L}_G^m(T)$. Let $A = S^*$, and let $B = T^*$. It is clear that all the conditions of Theorem 3.6 are satisfied, and thus we have the result.

Proposition 3.8 ([8, Proposition 3.3]). We have the following inclusions.

- (1) If $T \in L^m(X)$, then $\mathfrak{L}^m(T) \subset \mathfrak{L}^{m+k}(T)$, $k \in \mathbb{N}$.
- (2) If $T \in R^m(X)$, then $\mathfrak{R}^m(T) \subset \mathfrak{R}^{m+k}(T)$, $k \in \mathbb{N}$.

The following result is given in [12].

Proposition 3.9 ([12, Proposition 3.5]). Let $T \in \mathcal{L}(H)$ be an m-partial isometry such that N(T) is a reducing subspace for T. Then T is an (m+n)-partial isometry for $n = 0, 1, 2, \ldots$

In the following, we generalize the previous result for m-left generalized invertible operators.

Theorem 3.10. Let $T \in \mathcal{L}(H)$ be in $L_G^m(H)$, and let $S \in \mathfrak{L}_G^m(T)$. If $N(T)^{\perp}$ is an invariant subspace for both T and S, then $T \in L_G^{m+n}(H)$ and $S \in \mathfrak{L}_G^{m+n}(T)$ for $n = 0, 1, 2, \ldots$

Proof. Since $T \in L_G^m(H)$ and $S \in \mathfrak{L}_G^m(T)$, from Theorem 2.11 we have $T_{|N(T)^{\perp}} \in L^m(H)$ and $S_{|N(T)^{\perp}} \in \mathfrak{L}^m(T)$. Now, by Proposition 3.8, we get $T_{|N(T)^{\perp}} \in L^{m+n}(H)$ and $S_{|N(T)^{\perp}} \in \mathfrak{L}^{m+n}(T)$ for $n = 0, 1, 2, \ldots$ From Theorem 2.11 again we get the desired result.

Corollary 3.11. Let $T \in \mathcal{L}(H)$ be an m-right generalized invertible operator, and let $R \in \mathfrak{R}_G^m(T)$. If $N(R)^{\perp}$ is an invariant subspace for both T and R, then $T \in R_G^{m+n}(H)$ and $R \in \mathfrak{R}_G^{m+n}(T)$ for $n = 0, 1, 2, \ldots$

Proof. Since $T \in R_G^m(H)$ and $R \in \mathfrak{R}_G^m(T)$, we have $R \in L_G^m(H)$ and $T \in \mathfrak{L}_G^m(R)$ and the result follows from Theorem 3.10.

S. Hamidou Jah proved in [7, Theorem 2.12] that if T is an m-partial isometry such that T is an m-isometry on R(T), then T is an (m+1)-partial isometry. In the following, we generalize this result.

Theorem 3.12. Let $T \in \mathcal{L}(X)$ be an m-left generalized invertible operator, and let $B \in \mathfrak{L}_G^m(T)$. If T is m-left invertible on R(T) and B is an m-left inverse of T on R(T), then $T \in L_G^{m+1}(X)$ and $B \in \mathfrak{L}_G^{m+1}(T)$.

Proof. The proof outlines the one of Theorem 2.12 given in [7]:

$$T \sum_{k=0}^{m+1} (-1)^k \binom{m+1}{k} B^{m+1-k} T^{m+1-k}$$

$$= T \left(B^{m+1} T^{m+1} + \sum_{k=1}^m (-1)^k \left\{ \binom{m}{k} + \binom{m}{k-1} \right\} B^{m+1-k} T^{m+1-k} - (-1)^m I \right)$$

$$= T \left(B^{m+1} T^{m+1} + \sum_{k=1}^m (-1)^k \binom{m}{k} B^{m+1-k} T^{m+1-k} \right)$$

$$+ T \left(\sum_{k=1}^m (-1)^k \binom{m}{k-1} B^{m+1-k} T^{m+1-k} - (-1)^m I \right)$$

$$= T B \left(B^m T^m + \sum_{k=1}^m (-1)^k \binom{m}{k} B^{m-k} T^{m-k} \right) T - T \sum_{k=0}^m (-1)^k \binom{m}{k} B^{m-k} T^{m-k}$$

$$= TB \underbrace{\sum_{k=0}^{m} (-1)^k \binom{m}{k} B^{m-k} T^{m-k} T}_{=0} \quad (B \text{ is an } m\text{-left inverse of } T \text{ on } R(T))$$

$$= 0.$$

Acknowledgment. The author wishes to thank E. H. Zerouali for many helpful discussions and for his valuable comments and suggestions.

References

- J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, I, Integral Equations Operator Theory 21 (1995), no. 4, 383–429. Zbl 0836.47008. MR1321694. DOI 10.1007/BF01222016. 611
- 2. J. Agler and M. Stankus, *m-Isometric transformations of Hilbert space*, *II*, Integral Equations Operator Theory **23** (1995), no. 1, 1–48. Zbl 0857.47011. MR1346617. DOI 10.1007/BF01261201. 611
- J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, III, Integral Equations Operator Theory 24 (1996), no. 4, 379–421. Zbl 0871.47012. MR1382018. DOI 10.1007/BF01191619. 611
- 4. C. Badea and M. Mbekhta, Operators similar to partial isometries, Acta Sci. Math. (Szeged) 71 (2005), 663–680. Zbl 1122.47001. MR2206602. 610
- A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. CMS Books Math./Ouvrages Math SMC 15, Springer, New York, 2003. Zbl 1026.15004. MR1987382. 610
- S. R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., Kingston, Ont., 1978. Zbl 0434.47003. MR0523736. 610
- S. H. Jah, Power of m-partial isometries on Hilbert spaces, Bull. Math. Anal. Appl. 5 (2013), no. 4, 79–89. Zbl 1314.47056. MR3152252. 617, 618, 620
- 8. O. A. Mahmoud Sid Ahmed, Some properties of m-isometries and m-invertible operators on Banach spaces, Acta Math. Sci. Ser. B Engl. Ed. **32** (2012), no. 2, 520–530. Zbl 1255.47003. MR2921894. DOI 10.1016/S0252-9602(12)60034-4. 610, 612, 617, 619
- 9. M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged) 70 (2004), nos. 3-4, 767-781. Zbl 1087.47001. MR2107540. 610, 614, 615
- M. Mbekhta and L. Suciu, Generalized inverses and similarity to partial isometries, J. Math. Anal. Appl. 372 (2010), no. 2, 559–564. Zbl 1197.47005. MR2678883. DOI 10.1016/j.jmaa.2010.06.022. 610
- S. M. Patel, 2-isometric operators, Glas. Mat. Ser. III 37 (2002), no. 1, 141–145.
 Zbl 1052.47010. MR1918101. 611, 617
- 12. A. Saddi and O. A. Mahmoud Sid Ahmed, *m-partial isometries on Hilbert spaces*, Int. J. Funct. Anal. Oper. Theory Appl. **2** (2010), no. 1, 67–83. Zbl 1216.47065. MR3012441. 611, 612, 615, 616, 619, 620
- S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001), 147–189. Zbl 0974.47014. MR1810120. DOI 10.1515/crll.2001.013. 611

HAMID EZZAHRAOUI, FACULTY OF SCIENCES, MOHAMED V UNIVERSITY, BP 1014 RABAT, MOROCCO.

E-mail address: ezzahraouifsr@gmail.com