Ann. Funct. Anal. 7 (2016), no. 4, 609-621
http://dx.doi.org/10.1215/20088752-3660801
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

ON m-GENERALIZED INVERTIBLE OPERATORS ON BANACH SPACES

HAMID EZZAHRAOUI

Communicated by M. Mbekhta

Abstract. A bounded linear operator S on a Banach space X is called an m-left generalized inverse of an operator T for a positive integer m if

$$
T \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} S^{m-j} T^{m-j}=0
$$

and it is called an m-right generalized inverse of T if

$$
S \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} S^{m-j}=0
$$

If T is both an m-left and an m-right generalized inverse of T, then it is said to be an m-generalized inverse of T.

This paper has two purposes. The first is to extend the notion of generalized inverse to m-generalized inverse of an operator on Banach spaces and to give some structure results. The second is to generalize some properties of m-partial isometries on Hilbert spaces to the class of m-left generalized invertible operators on Banach spaces. In particular, we study some cases in which a power of an m-left generalized invertible operator is again m-left generalized invertible.

1. Introduction and preliminaries

Throughout this paper, X shall denote a complex Banach space, and $\mathcal{L}(X)$ shall denote the algebra of all bounded linear operators on X. We denote X by

[^0]The set of all m-left invertible operators in $\mathcal{L}(X)$ will be denoted by $L^{m}(X)$. For $T \in L^{m}(X)$, we denote by $\mathfrak{L}^{m}(T)$ the set of all m-left inverses of T; that is,

$$
\mathfrak{L}^{m}(T)=\left\{S \in \mathcal{L}(X): \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} S^{m-j} T^{m-j}=0\right\}
$$

The set of all m-right invertible operators in $\mathcal{L}(X)$ will be denoted by $R^{m}(H)$. For $T \in R^{m}(X)$, we denote by $\Re^{m}(T)$ the set of all m-right inverses of T; that is,

$$
\mathfrak{R}^{m}(T)=\left\{R \in \mathcal{L}(X): \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} R^{m-j}=0\right\}
$$

An operator $T \in \mathcal{L}(H)$ is called an m-isometry if

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} T^{m-j}=0
$$

that is, $T \in L^{m}(H)$ and $T^{*} \in \mathfrak{L}^{m}(T)$. Evidently, an isometry (i.e., a 1-isometry) is an m-isometry for all integers $m \geq 1$. A detailed study of this class on Hilbert spaces has been the object of some intensive study, especially by J. Agler and M. Stankus in [1], [2], and [3], and by S. Shimorin in [13]. Also, we refer the reader to [11] for more information about 2-isometries.

In [12], A. Saddi and O. A. Mahmoud Sid Ahmed gave a generalization of partial isometries and m-isometries to m-partial isometries on Hilbert spaces. An operator $T \in \mathcal{L}(H)$ is called an m-partial isometry for some integer $m \geq 1$ if

$$
T \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} T^{* m-k} T^{m-k}=0 \quad \text { in } \mathcal{L}(H)
$$

The case when $m=1$ represents the partial isometries class. It is easily seen that an injective m-partial isometry is an m-isometry. An elementary operator theory of m-partial isometries is discussed in [12].

For an operator $T \in \mathcal{L}(X)$, the reduced minimum modulus is defined by

$$
\gamma(T):= \begin{cases}\inf \{\|T x\|: \operatorname{dist}(x, N(T))=1\} & \text { if } T \neq 0 \\ +\infty & \text { if } T=0\end{cases}
$$

It is well known that $\gamma(T)>0$ if and only if $R(T)$ is closed. Moreover, we have $\gamma(T)=\gamma\left(T^{*}\right)$.

The present paper is organized as follows. In Section 2, we generalize the notions of all classes already mentioned to m-left generalized inverses and m-right generalized inverses. We also extend some well-known results. In Section 3, we study some cases in which a power of an m-left (resp., m-right) generalized invertible operator is again an m-left (resp., m-right) generalized invertible operator.

2. m-GENERALIZED INVERTIBLE OPERATORS

Inspired by the above definitions of left generalized inverse and right generalized inverse and the work of m-partial isometries on Hilbert spaces (see [12]) and the work on m-left inverses and m-right inverses on Banach spaces (see [8]), we introduce the notions of m-left generalized inverse and m-right generalized inverse.

Definition 2.1. Let $m \geq 1$ be an integer, and let $T \in \mathcal{L}(X)$.
(1)
(i) An operator $B \in \mathcal{L}(X)$ is called an m-left generalized inverse of T if

$$
T \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} B^{m-j} T^{m-j}=0
$$

(ii) $R \in \mathcal{L}(X)$ is called an m-right generalized inverse of T if

$$
R \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} R^{m-j}=0
$$

(2) An operator $S \in \mathcal{L}(X)$ is called an m-generalized inverse of T if S is both an m-left and m-right generalized inverse of T; that is,

$$
T \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} S^{m-j} T^{m-j}=0
$$

and

$$
S \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} S^{m-j}=0
$$

The set of all m-left generalized invertible operators in $\mathcal{L}(X)$ will be denoted by $L_{G}^{m}(X)$. For $T \in L_{G}^{m}(X)$, we denote by $\mathfrak{L}_{G}^{m}(T)$ the set of all m-left generalized inverses of T; that is,

$$
\mathfrak{L}_{G}^{m}(T)=\left\{B \in \mathcal{L}(X): T \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} B^{m-j} T^{m-j}=0\right\} .
$$

The set of all m-right generalized invertible operators in $\mathcal{L}(X)$ will be denoted by $R_{G}^{m}(X)$. For $T \in R_{G}^{m}(X)$, we denote by $\mathfrak{R}_{G}^{m}(T)$ the set of all m-right generalized inverses of T; that is,

$$
\mathfrak{R}_{G}^{m}(T)=\left\{R \in \mathcal{L}(X): R \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} R^{m-j}=0\right\} .
$$

Remark 2.2. Let T be in $\mathcal{L}(X)$. Then
(1) a 1-left (resp., a 1-right) generalized inverse of T is a left (resp., a right) generalized inverse of T;
(2) a 1-generalized inverse of T is a generalized inverse of T;
(3) $T \in L_{G}^{m}(X)$ and $B \in \mathfrak{L}_{G}^{m}(T)$ if and only if $B \in R_{G}^{m}(X)$ and $T \in \mathfrak{R}_{G}^{m}(B)$.

It is clear that we have the following.

Proposition 2.3.

(1) We have $L^{m}(X) \subset L_{G}^{m}(X)$ and $R^{m}(X) \subset R_{G}^{m}(X)$. More precisely, if $T \in L^{m}(X)\left(\right.$ resp., $T \in R^{m}(X)$), then $\mathfrak{L}^{m}(T) \subset \mathfrak{L}_{G}^{m}(T)$ (resp., $\mathfrak{R}^{m}(T) \subset$ $\left.\mathfrak{R}_{G}^{m}(T)\right)$.
In particular,
(2) $T \in \mathcal{L}(H)$ is an m-partial isometry if and only if $T \in L_{G}^{m}(H)$ and $T^{*} \in \mathfrak{L}_{G}^{m}(T)$.

Example 2.4. Consider the operator $T=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and an arbitrary operator $S=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ acting on $H=\mathbb{C}^{2}$. An easy computation shows that $S^{2} T^{2}-2 S T+I \neq 0$ for all complex numbers a, b, c, and d. Thus $T \notin L^{2}(H)$. Now, for $S=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, it is easy to see that $T\left(S^{2} T^{2}-2 S T+I\right)=0$. Thus $T \in L_{G}^{2}(H)$ and $S \in \mathfrak{L}_{G}^{2}(T)$. This justifies the definitions of $L_{G}^{m}(X)$ and $R_{G}^{m}(X)$.

It is clear that if $S \in \mathcal{L}(X)$ is a generalized inverse of $T \in \mathcal{L}(X)$, then $P=T S$ and $Q=S T$ are idempotents (i.e., $P^{2}=P$ and $Q^{2}=Q$), $R(T)=R(P)$, and $N(T)=N(Q)=R(I-Q)$.

In the remainder of this paper, if S is an m-left generalized inverse of T, then we set

$$
Q_{m}=\sum_{j=0}^{m-1}(-1)^{j}\binom{m}{j} S^{m-j} T^{m-j}
$$

Moreover, if S is an m-right generalized inverse of T, then we set

$$
P_{m}=\sum_{j=0}^{m-1}(-1)^{j}\binom{m}{j} T^{m-j} S^{m-j}
$$

Clearly, we have $T Q_{m}=(-1)^{m+1} T$. In particular, S is an m-left inverse of T if and only if $Q_{m}=(-1)^{m+1} I$.

Proposition 2.5. If $T \in L_{G}^{m}(X)$ and $S \in \mathfrak{L}_{G}^{m}(T)$, then we have the following.
(1) $N\left(Q_{m}\right)=N(T)=R\left((-1)^{m+1} I-Q_{m}\right)$. In particular, $Q_{m}^{2}=(-1)^{m+1} Q_{m}$, and if m is an odd integer, then Q_{m} is idempotent.
(2) $R\left(Q_{m}\right)=N\left((-1)^{m+1} I-Q_{m}\right)$. In particular, $x \in R\left(Q_{m}\right)$ if and only if $Q_{m} x=(-1)^{m+1} x$.
(3) $N\left(Q_{m}\right)$ and $R\left(Q_{m}\right)$ are algebraically complemented subspaces of X; that is, $X=N\left(Q_{m}\right) \oplus R\left(Q_{m}\right)$.

Proof.
(1) It is clear that $N(T) \subset N\left(Q_{m}\right)$, and since $T Q_{m}=(-1)^{m+1} T$, we also have $R\left((-1)^{m+1} I-Q_{m}\right) \subseteq N(T)$. Now, let $x \in N\left(Q_{m}\right)$, and since $(-1)^{m+1} x=$ $\left((-1)^{m+1} I-Q_{m}\right) x \in R\left((-1)^{m+1} I-Q_{m}\right)$, we get $x \in R\left((-1)^{m+1} I-Q_{m}\right)$.
(2) The inclusion $N\left((-1)^{m+1} I-Q_{m}\right) \subseteq R\left(Q_{m}\right)$ is obvious. Now, suppose that $x \in R\left(Q_{m}\right)$. Then $x=Q_{m} u$ for some $u \in X$. We have $\left((-1)^{m+1} I-Q_{m}\right) x=$ $\left((-1)^{m+1} Q_{m}-Q_{m}^{2}\right) u=0$, and hence $x \in N\left((-1)^{m+1} I-Q_{m}\right)$.
(3) It is easily seen that $X=R\left((-1)^{m+1} I-Q_{m}\right)+R\left(Q_{m}\right)$. But we have $R\left((-1)^{m+1} I-Q_{m}\right)=N\left(Q_{m}\right)$, and thus $X=N\left(Q_{m}\right)+R\left(Q_{m}\right)$. Since $N\left(Q_{m}\right) \cap R\left(Q_{m}\right)=N\left(Q_{m}\right) \cap N\left((-1)^{m+1} I-Q_{m}\right)=\{0\}$, we have the result.

In the following proposition, we generalize Proposition 2.2 in [9].
Proposition 2.6. Let $T \in \mathcal{L}(X)$, and let S be an m-generalized inverse of T. Then

$$
\frac{1}{m\|S\|(1+\|S\|\|T\|)^{m-1}} \leq \gamma(T) \leq \frac{\|T S\|\left\|Q_{m}\right\|}{\left\|Q_{m} S\right\|}
$$

Proof. Consider an arbitrary vector $x \in X$. We have

$$
\begin{aligned}
\left\|Q_{m} x\right\| & =\left\|\sum_{j=0}^{m-1}(-1)^{j}\binom{m}{j} S^{m-j} T^{m-j} x\right\| \\
& \leq\|S\|\left\|\sum_{j=0}^{m-1}\binom{m}{j}\right\| S\left\|^{m-1-j}\right\| T\left\|^{m-1-j}\right\|\|T x\| \\
& \leq m\|S\|(1+\|S\|\|T\|)^{m-1}\|T x\|
\end{aligned}
$$

where the last inequality follows since $\binom{m}{j} \leq m\binom{m-1}{j}$ for $0 \leq j \leq m-1$. On the other hand, $(-1)^{m} x+Q_{m} x \in N(T)$, and thus

$$
\operatorname{dist}(x, N(T))=\operatorname{dist}\left(Q_{m} x, N(T)\right) \leq\left\|Q_{m} x\right\| \leq m\|S\|(1+\|S\|\|T\|)^{m-1}\|T x\|
$$

Therefore,

$$
\frac{1}{m\|S\|(1+\|S\|\|T\|)^{m-1}} \leq \gamma(T)
$$

For the second inequality, let $v \in X$, and let $x=Q_{m} S v$. Since $S P_{m} v=$ $(-1)^{m+1} S v$, we have $T Q_{m} S P_{m} v=(-1)^{m+1} T Q_{m} S v=(-1)^{m+1} T x$. But $S P_{m}=$ $(-1)^{m+1} S$ and $T Q_{m}=(-1)^{m+1} T$, and thus $T S v=(-1)^{m+1} T x$. On the other hand, for $\varepsilon>0$, there exists $u \in N(T)$ such that $\operatorname{dist}(x, N(T)) \geq\|x+u\|-\varepsilon$. Therefore, it follows that

$$
\|x+u\| \leq \operatorname{dist}(x, N(T))+\varepsilon \leq \frac{1}{\gamma(T)}\|T x\|+\varepsilon=\frac{1}{\gamma(T)}\|T S v\|+\varepsilon
$$

Now, since $x \in R\left(Q_{m}\right)$ and $N\left(Q_{m}\right)=N(T)$, from Proposition 2.5 we have $Q_{m}(x+u)=Q_{m} x=(-1)^{m+1} x$. Therefore,

$$
\left\|Q_{m} S v\right\|=\|x\|=\left\|Q_{m}(x+u)\right\| \leq\left\|Q_{m}\right\|\|x+u\| \leq\left\|Q_{m}\right\|\left\{\frac{1}{\gamma(T)}\|T S\|\|v\|+\varepsilon\right\} .
$$

Because $\varepsilon>0$ is arbitrary, for every $v \in X$, we obtain

$$
\left\|Q_{m} S v\right\| \leq \frac{1}{\gamma(T)}\|T S\|\left\|Q_{m}\right\|\|v\|
$$

The result is proved.

For $m=1, S$ is a generalized inverse of $T, Q_{m}=Q=S T, P_{m}=P=T S$, $Q_{m} S=S$, and $m\|S\|(1+\|S\|\|T\|)^{m-1}=\|S\|$. Therefore, we retrieve the following result given in [9].

Corollary 2.7 ([9, Proposition 2.2]). Let $T \in \mathcal{L}(X)$, and let S be a generalized inverse of T. Then

$$
\frac{1}{\|S\|} \leq \gamma(T) \leq \frac{\|P\|\|Q\|}{\|S\|}
$$

Corollary 2.8. If T is m-invertible and S is an m-left inverse of T, then

$$
\frac{1}{m\|S\|(1+\|S\|\|T\|)^{m-1}} \leq \gamma(T) \leq \frac{\|T S\|}{\|S\|}
$$

Proof. Since $Q_{m}=(-1)^{m+1} I$, we have $\frac{\|T S\|\left\|Q_{m}\right\|}{\left\|Q_{m} S\right\|}=\frac{\|T S\|}{\|S\|}$.
Corollary 2.9. If $T \in L_{G}^{m}(X)$, then $\gamma(T)>0$. In particular, if $T \in L_{G}^{m}(X)$, then $R(T)$ is closed.

Recall that $T \in \mathcal{L}(H)$ is an m-isometry if and only if it is an injective m-partial isometry. In the following we extend this property.

Proposition 2.10. If $T \in \mathcal{L}(X)$, then the following assertions are equivalent:
(1) $T \in L_{G}^{m}(X)$ and T is injective,
(2) $T \in L^{m}(X)$.

Proof. (1) $\Longrightarrow(2)$: Suppose that $T \in L_{G}^{m}(X)$ is injective, and let S be an m-left generalized inverse of T. By Proposition 2.5 , we have $R\left((-1)^{m+1} I-Q_{m}\right)=$ $N(T)=\{0\}$. This implies that $Q_{m}=(-1)^{m+1} I$, and thus $T \in L^{m}(X)$.
$(2) \Longrightarrow(1)$: Let T be in $L^{m}(X)$. Since $L^{m}(X) \subset L_{G}^{m}(X)$, it suffices to show that T is injective. Since $Q_{m}=(-1)^{m+1} I$, according to Proposition 2.5, we have $N(T)=N\left(Q_{m}\right)=N(I)=\{0\}$. The proof is completed.

The following result extends Theorem 3.1 given in [12].
Theorem 2.11. If $T, S \in \mathcal{L}(H)$ such that $N(T)^{\perp}$ is an invariant subspace for both T and S, then the following properties are equivalent:
(1) $T \in L_{G}^{m}(H)$ and $S \in \mathfrak{L}_{G}^{m}(T)$,
(2) $T_{\mid N(T)^{\perp}} \in L^{m}(H)$ and $S_{\mid N(T)^{\perp}} \in \mathfrak{L}^{m}(T)$.

Proof. (1) $\Longrightarrow(2):$ Suppose that $T \in L_{G}^{m}(H)$, let $S \in \mathfrak{L}_{G}^{m}(T)$, and let x be in $N(T)^{\perp}$. Since by assumption $N(T)^{\perp}$ is an invariant subspace for both T and S, we have

$$
\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x \in N(T)^{\perp}
$$

On the other hand,

$$
\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x \in N(T)
$$

thus,

$$
\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x=0
$$

for all $x \in N(T)^{\perp}$, and so $T_{\mid N(T)^{\perp}} \in L^{m}(H)$ and $S_{\mid N(T)^{\perp}} \in \mathfrak{L}^{m}(T)$.
$(2) \Longrightarrow(1)$: Let $x \in H$ such that $x=x_{1}+x_{2}$ with $x_{1} \in N(T)$ and $x_{2} \in N(T)^{\perp}$.
We have

$$
T \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x=T \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x_{2}
$$

But by assumption we have

$$
\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x_{2}=0
$$

and thus

$$
T \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} S^{m-j} T^{m-j} x=0
$$

Since $x \in H$ is arbitrary, $T \in L_{G}^{m}(H)$ and $S \in \mathfrak{L}_{G}^{m}(T)$. The result is obtained.
Corollary 2.12. If $T, R \in \mathcal{L}(H)$ such that $N(R)^{\perp}$ is an invariant subspace for both T and R, then the following properties are equivalent:
(1) $T \in R_{G}^{m}(H)$ and $R \in \mathfrak{R}_{G}^{m}(T)$,
(2) $T_{\mid N(R)^{\perp}} \in R^{m}(H)$ and $R_{\mid N(R)^{\perp}} \in \mathfrak{R}^{m}(T)$.

From the Theorem 2.11, we conclude Theorem 3.1 from [12] alternatively.
Corollary 2.13 ([12, Theorem 3.1]). If $T \in \mathcal{L}(H)$ and $N(T)$ is a reducing subspace for T, then the following properties are equivalent:
(1) T is an m-partial isometry,
(2) $T_{\mid N(T) \perp}$ is an m-isometry.

Proof. (1) $\Longrightarrow(2)$: Since $N(T)$ is reducing for T, we see that $\left(T_{\mid N(T)^{\perp}}\right)^{*}=$ $T_{\mid N(T)^{\perp}}^{*}=S_{\mid N(T)^{\perp}}$ where $S=T^{*}$. Moreover, $N(T)^{\perp}$ is an invariant subspace for both T and S. Since T is an m-partial isometry, by Proposition 2.3, we have $T \in L_{G}^{m}(H)$ and $S \in \mathfrak{L}_{G}^{m}(T)$. Now, by Theorem 2.11, we get $T_{\mid N(T)^{\perp}} \in L^{m}(H)$ and $\left(T_{\mid N(T)^{\perp}}\right)^{*}=S_{\mid N(T)^{\perp}} \in \mathfrak{L}^{m}(T)$. Hence $T_{\mid N(T)^{\perp}}$ is an m-isometry.
$(2) \Longrightarrow(1)$: Suppose that $T_{\mid N(T)^{\perp}}$ is an m-isometry. Then $T_{\mid N(T)^{\perp}} \in L^{m}(H)$
 From Theorem 2.11, $T \in L_{G}^{m}(H)$ and $T^{*} \in \mathfrak{L}_{G}^{m}(T)$, and by Proposition 2.3 we infer that T is an m-partial isometry.

3. Power of m-LEFT AND m-RIGHT GENERALIZED INVERTIBLE OPERATORS

In [11, Theorem 2.1], S. M. Patel showed that a power of 2-isometry is again a 2-isometry. This result was extended in [8] for 2-left and 2-right invertible operators. Another result for m-partial operators is given in [7, Theorem 2.16]. In the following, we extend this result more generally for 2-left generalized and 2-right generalized invertible operators.

Theorem 3.1. Let $T \in L_{G}^{2}(H)$, and let $B \in \mathfrak{L}_{G}^{2}(T)$. If $N(T)^{\perp}$ is an invariant subspace for both T and S, then $T^{n} \in L_{G}^{2}(H)$ and $B^{n} \in \mathfrak{L}_{G}^{2}\left(T^{n}\right)$ for all $n \in \mathbb{N}$.

Proof. Let $n \geq 0$ be an integer. From Theorem 2.11, $T_{\mid N(T)^{\perp}} \in L^{2}(H)$ and $B_{\mid N(T)^{\perp}} \in \mathfrak{L}^{2}(T)$. According to [8, Proposition 3.1], we have $T_{\mid N(T)^{\perp}}^{n} \in L^{2}(H)$ and $B_{\mid N(T)^{\perp}}^{n} \in \mathfrak{L}^{2}\left(T^{n}\right)$. Now, by Theorem 2.11, we derive that $T^{n} \in L_{G}^{2}(H)$ and $B^{n} \in \mathfrak{L}_{G}^{2}\left(T^{n}\right)$.

Lemma 3.2.
(1) Let $T \in L_{G}^{2}(X)$, and let $B \in \mathfrak{L}_{G}^{2}(T)$ such that $B T=T B$. Then

$$
T B^{k} T^{k}=k T B T-(k-1) T, \quad k=0,1, \ldots
$$

(2) If $T \in R_{G}^{2}(X)$ and $R \in \mathfrak{R}_{G}^{2}(T)$ such that $R T=T R$, then

$$
R T^{k} R^{k}=k R T R-(k-1) R, \quad k=0,1, \ldots
$$

Proof.
(1) We will proceed by induction on k. For $k=0,1$ there is nothing to prove. Since $B \in \mathfrak{L}_{G}^{2}(T)$, we have

$$
T\left(B^{2} T^{2}-2 B T+I\right)=0
$$

and thus

$$
T B^{2} T^{2}=2 T B T-T
$$

Then the equation is verified for $k=2$. Now, suppose that $T B^{k} T^{k}=$ $k T B T-(k-1) T$ for some k. We have

$$
\begin{aligned}
T B^{k+1} T^{k+1} & =T B B^{k} T^{k} T \\
& =B T B^{k} T^{k} T \quad(\text { since } B T=T B) \\
& =B(k T B T-(k-1) T) T \quad(\text { by assumption }) \\
& =k T B^{2} T^{2}-(k-1) B T^{2} \quad(\text { since } B T=T B) \\
& =k(2 T B T-T)-(k-1) B T^{2} \quad\left(T B^{2} T^{2}=2 T B T-T\right) \\
& =2 k T B T-k T-(k-1) T B T \quad(\text { since } B T=T B) \\
& =(2 k-k+1) T B T-k T \\
& =(k+1) T B T-k T .
\end{aligned}
$$

(2) Since R is a 2-right generalized inverse of T, then T is a 2-left generalized inverse of R, and the result follows from the first part.

Theorem 3.3. Let T be in $L_{G}^{2}(X)$, and let m be an integer such that $m \geq 1$. If there exists an operator $B \in \mathfrak{L}_{G}^{2}(T)$ such that $B T=T B$, then $T^{n} \in L_{G}^{m}(X)$ and $B^{n} \in \mathfrak{L}_{G}^{m}\left(T^{n}\right)$ for all integers n.
Proof. Suppose that $B \in \mathfrak{L}_{G}^{2}(T)$ is such that $B T=T B$ and $m \geq 1$ is an integer. Since $\binom{m}{k} k=m\binom{m-1}{k-1}$ for $k=1,2, \ldots, m$, we have

$$
\begin{aligned}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} k & =\sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k} k \\
& =\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m-1}{k} m \\
& =(-1+1)^{m-1} m \\
& =0
\end{aligned}
$$

On the other hand, from Lemma 3.2 we have $T B^{n k} T^{n k}=n k T B T-(n k-1) T$ for $k=0,1,2, \ldots$. Thus, for all $n \geq 1$, we have

$$
\begin{aligned}
T^{n} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} B^{n k} T^{n k}= & T^{n-1} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} T B^{n k} T^{n k} \\
= & T^{n-1} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}(n k T B T-(n k-1) T) \\
= & n \underbrace{\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}}_{=0} k T^{n}(B T-I) \\
& +\underbrace{\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}}_{=0} T^{n} \\
= & 0
\end{aligned}
$$

Corollary 3.4. Let T be a 2-right generalized invertible operator, and let m be an integer such that $m \geq 1$. If there exists an operator $R \in \mathfrak{R}_{G}^{2}(T)$ such that $R T=T R$, then $T^{n} \in R_{G}^{m}(X)$ and $R^{n} \in \mathfrak{R}_{G}^{m}\left(T^{n}\right)$ for all integers n.

It is well known from [7, Proposition 2.2] that if T is an m-partial isometry such that T^{k} is a partial isometry for $k=1, \ldots, m-1$, for some integer $m \geq 2$, then the power T^{m} is a partial isometry. In the following, we generalize this result.
Proposition 3.5. Let $T \in \mathcal{L}(X)$ be in $L_{G}^{m}(X)$, and let $B \in \mathfrak{L}_{G}^{m}(T)$ for some integer $m \geq 2$. If $T^{k} \in L_{G}^{1}(X)$ and $B^{k} \in \mathfrak{L}_{G}^{1}\left(T^{k}\right)$ for $k=0,1, \ldots, m-1$, then $T^{m} \in L_{G}^{1}(X)$ and $B^{m} \in \mathfrak{L}_{G}^{1}\left(T^{m}\right)$.
Proof. Since T is an m-left generalized invertible operator and $B \in \mathfrak{L}_{G}^{m}(T)$, we have

$$
T \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k}=0
$$

Multiplying the above equation from the left by T^{m-1}, we get

$$
T^{m} B^{m} T^{m}+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} T^{m} B^{m-k} T^{m-k}=0
$$

But by assumption we have $T^{k} B^{k} T^{k}=T^{k}$ for $k=1, \ldots, m-1$, and thus

$$
\begin{aligned}
T^{m} B^{m-k} T^{m-k} & =T^{k} T^{m-k} B^{m-k} T^{m-k} \\
& =T^{k} T^{m-k} \\
& =T^{m}
\end{aligned}
$$

Therefore,

$$
T^{m} B^{m} T^{m}+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} T^{m}=0
$$

Since $\sum_{k=1}^{m}(-1)^{k}\binom{m}{k}=-1$, we get

$$
T^{m} B^{m} T^{m}=T^{m}
$$

Therefore, $T^{m} \in L_{G}^{1}(X)$ and $B^{m} \in \mathfrak{L}_{G}^{1}\left(T^{m}\right)$.
Theorem 3.6. Let $T \in \mathcal{L}(X)$ be in $L_{G}^{m}(X)$, and let $B \in \mathfrak{L}_{G}^{m}(T)$ for some integer $m \geq 1$. If $S \in L^{1}(X)$ and $A \in \mathfrak{L}^{1}(S)$ are such that S and A commute with both T and B, then $T S \in L_{G}^{m}(X)$ and $A B \in \mathfrak{L}_{G}^{m}(S T)$.

Proof. We have

$$
\begin{aligned}
& T S \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(A B)^{m-k}(T S)^{m-k} \\
& \quad=T S \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k}\left(A^{m-k} S^{m-k}\right) \\
& =T \underbrace{T \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k}}_{=0} S \\
& \quad=0
\end{aligned}
$$

and the result is obtained.
Corollary 3.7 ([12, Proposition 3.2]). Let $T, S \in \mathcal{L}(H)$ be such that T is an m-partial isometry and S is an isometry with $T S=S T$ and $T S^{*}=S^{*} T$. Then $T S$ is an m-partial isometry.

Proof. Since T is an m-partial isometry, $T \in L_{G}^{m}(X)$ and $T^{*} \in \mathfrak{L}_{G}^{m}(T)$. Let $A=$ S^{*}, and let $B=T^{*}$. It is clear that all the conditions of Theorem 3.6 are satisfied, and thus we have the result.

Proposition 3.8 ([8, Proposition 3.3]). We have the following inclusions.
(1) If $T \in L^{m}(X)$, then $\mathfrak{L}^{m}(T) \subset \mathfrak{L}^{m+k}(T), k \in \mathbb{N}$.
(2) If $T \in R^{m}(X)$, then $\mathfrak{R}^{m}(T) \subset \mathfrak{R}^{m+k}(T), k \in \mathbb{N}$.

The following result is given in [12].
Proposition 3.9 ([12, Proposition 3.5]). Let $T \in \mathcal{L}(H)$ be an m-partial isometry such that $N(T)$ is a reducing subspace for T. Then T is an $(m+n)$-partial isometry for $n=0,1,2, \ldots$.

In the following, we generalize the previous result for m-left generalized invertible operators.

Theorem 3.10. Let $T \in \mathcal{L}(H)$ be in $L_{G}^{m}(H)$, and let $S \in \mathfrak{L}_{G}^{m}(T)$. If $N(T)^{\perp}$ is an invariant subspace for both T and S, then $T \in L_{G}^{m+n}(H)$ and $S \in \mathfrak{L}_{G}^{m+n}(T)$ for $n=0,1,2, \ldots$.

Proof. Since $T \in L_{G}^{m}(H)$ and $S \in \mathfrak{L}_{G}^{m}(T)$, from Theorem 2.11 we have $T_{\mid N(T)^{\perp}} \in$ $L^{m}(H)$ and $S_{\mid N(T)^{\perp}} \in \mathfrak{L}^{m}(T)$. Now, by Proposition 3.8, we get $T_{\mid N(T)^{\perp}} \in L^{m+n}(H)$ and $S_{\mid N(T)^{\perp}} \in \mathfrak{L}^{m+n}(T)$ for $n=0,1,2, \ldots$. From Theorem 2.11 again we get the desired result.

Corollary 3.11. Let $T \in \mathcal{L}(H)$ be an m-right generalized invertible operator, and let $R \in \mathfrak{R}_{G}^{m}(T)$. If $N(R)^{\perp}$ is an invariant subspace for both T and R, then $T \in R_{G}^{m+n}(H)$ and $R \in \mathfrak{R}_{G}^{m+n}(T)$ for $n=0,1,2, \ldots$.

Proof. Since $T \in R_{G}^{m}(H)$ and $R \in \Re_{G}^{m}(T)$, we have $R \in L_{G}^{m}(H)$ and $T \in \mathfrak{L}_{G}^{m}(R)$ and the result follows from Theorem 3.10.
S. Hamidou Jah proved in [7, Theorem 2.12] that if T is an m-partial isometry such that T is an m-isometry on $R(T)$, then T is an $(m+1)$-partial isometry. In the following, we generalize this result.

Theorem 3.12. Let $T \in \mathcal{L}(X)$ be an m-left generalized invertible operator, and let $B \in \mathfrak{L}_{G}^{m}(T)$. If T is m-left invertible on $R(T)$ and B is an m-left inverse of T on $R(T)$, then $T \in L_{G}^{m+1}(X)$ and $B \in \mathfrak{L}_{G}^{m+1}(T)$.

Proof. The proof outlines the one of Theorem 2.12 given in [7]:

$$
\begin{aligned}
& T \sum_{k=0}^{m+1}(-1)^{k}\binom{m+1}{k} B^{m+1-k} T^{m+1-k} \\
& = \\
& =T\left(B^{m+1} T^{m+1}+\sum_{k=1}^{m}(-1)^{k}\left\{\binom{m}{k}+\binom{m}{k-1}\right\} B^{m+1-k} T^{m+1-k}-(-1)^{m} I\right) \\
& =T\left(B^{m+1} T^{m+1}+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} B^{m+1-k} T^{m+1-k}\right) \\
& \quad+T\left(\sum_{k=1}^{m}(-1)^{k}\binom{m}{k-1} B^{m+1-k} T^{m+1-k}-(-1)^{m} I\right) \\
& = \\
& \quad T B\left(B^{m} T^{m}+\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k}\right) T-\underbrace{T \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k}}_{=0}
\end{aligned}
$$

$$
\begin{aligned}
& =T B \underbrace{\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} B^{m-k} T^{m-k} T}_{=0} \quad(B \text { is an } m \text {-left inverse of } T \text { on } R(T)) \\
& =0
\end{aligned}
$$

Acknowledgment. The author wishes to thank E. H. Zerouali for many helpful discussions and for his valuable comments and suggestions.

References

1. J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, I, Integral Equations Operator Theory 21 (1995), no. 4, 383-429. Zbl 0836.47008. MR1321694. DOI 10.1007/BF01222016. 611
2. J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, II, Integral Equations Operator Theory 23 (1995), no. 1, 1-48. Zbl 0857.47011. MR1346617. DOI 10.1007/ BF01261201. 611
3. J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, III, Integral Equations Operator Theory 24 (1996), no. 4, 379-421. Zbl 0871.47012. MR1382018. DOI 10.1007/BF01191619. 611
4. C. Badea and M. Mbekhta, Operators similar to partial isometries, Acta Sci. Math. (Szeged) 71 (2005), 663-680. Zbl 1122.47001. MR2206602. 610
5. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. CMS Books Math./Ouvrages Math SMC 15, Springer, New York, 2003. Zbl 1026.15004. MR1987382. 610
6. S. R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., Kingston, Ont., 1978. Zbl 0434.47003. MR0523736. 610
7. S. H. Jah, Power of m-partial isometries on Hilbert spaces, Bull. Math. Anal. Appl. 5 (2013), no. 4, 79-89. Zbl 1314.47056. MR3152252. 617, 618, 620
8. O. A. Mahmoud Sid Ahmed, Some properties of m-isometries and m-invertible operators on Banach spaces, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 2, 520-530. Zbl 1255.47003. MR2921894. DOI 10.1016/S0252-9602(12)60034-4. 610, 612, 617, 619
9. M. Mbekhta, Partial isometries and generalized inverses, Acta Sci. Math. (Szeged) 70 (2004), nos. 3-4, 767-781. Zbl 1087.47001. MR2107540. 610, 614, 615
10. M. Mbekhta and L. Suciu, Generalized inverses and similarity to partial isometries, J. Math. Anal. Appl. 372 (2010), no. 2, 559-564. Zbl 1197.47005. MR2678883. DOI 10.1016/ j.jmaa.2010.06.022. 610
11. S. M. Patel, 2-isometric operators, Glas. Mat. Ser. III 37 (2002), no. 1, 141-145. Zbl 1052.47010. MR1918101. 611, 617
12. A. Saddi and O. A. Mahmoud Sid Ahmed, m-partial isometries on Hilbert spaces, Int. J. Funct. Anal. Oper. Theory Appl. 2 (2010), no. 1, 67-83. Zbl 1216.47065. MR3012441. 611, 612, 615, 616, 619, 620
13. S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001), 147-189. Zbl 0974.47014. MR1810120. DOI 10.1515/crll.2001.013. 611

Hamid Ezzahraoui, Faculty of Sciences, Mohamed V University, BP 1014 Rabat, Morocco.

E-mail address: ezzahraouifsr@gmail.com

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 13, 2016; Accepted May 3, 2016.
 2010 Mathematics Subject Classification. Primary 47B48; Secondary 47B99.
 $K e y w o r d s . m$-isometry, m-partial-isometry, m-left inverse, m-right inverse, m-left generalized inverse, m-right generalized inverse.

