A NOTE ON WEAK ${ }^{*}$-CONVERGENCE IN $h^{1}\left(\mathbb{R}^{d}\right)$

HA DUY HUNG, ${ }^{1}$ DUONG QUOC HUY, ${ }^{2}$ and LUONG DANG KY ${ }^{3 *}$
Communicated by V. Valov

Abstract

We give a very simple proof of a result by Dafni that states that the weak ${ }^{*}$-convergence is true in the local Hardy space $h^{1}\left(\mathbb{R}^{d}\right)$.

1. Introduction

A famous and classical result of Fefferman [3, Theorem 1] states that the JohnNirenberg space $\operatorname{BMO}\left(\mathbb{R}^{d}\right)$ is the dual of the Hardy space $H^{1}\left(\mathbb{R}^{d}\right)$. It is also well known that $H^{1}\left(\mathbb{R}^{d}\right)$ is one of the few examples of separable, nonreflexive Banach space which is a dual space. In fact, let $C_{c}\left(\mathbb{R}^{d}\right)$ be the space of all continuous functions with compact support, and denote by $\operatorname{VMO}\left(\mathbb{R}^{d}\right)$ the closure of $C_{c}\left(\mathbb{R}^{d}\right)$ in $\operatorname{BMO}\left(\mathbb{R}^{d}\right)$. Coifman and Weiss showed in [1] that $H^{1}\left(\mathbb{R}^{d}\right)$ is the dual space of $\operatorname{VMO}\left(\mathbb{R}^{d}\right)$, which gives to $H^{1}\left(\mathbb{R}^{d}\right)$ a richer structure than $L^{1}\left(\mathbb{R}^{d}\right)$. For example, the classical Riesz transforms $\nabla(-\Delta)^{-1 / 2}$ are not bounded on $L^{1}\left(\mathbb{R}^{d}\right)$ but instead are bounded on $H^{1}\left(\mathbb{R}^{d}\right)$. In addition, the weak*-convergence is true in $H^{1}\left(\mathbb{R}^{d}\right)$ (see [5]), which is useful in the application of Hardy spaces to compensated compactness and in studying the endpoint estimates for commutators of singular integral operators (see [6], [7]). Recently, Dafni showed in [2] that the local Hardy space $h^{1}\left(\mathbb{R}^{d}\right)$ of Goldberg [4] is in fact the dual space of vmo $\left(\mathbb{R}^{d}\right)$, the closure of $C_{c}\left(\mathbb{R}^{d}\right)$ in bmo $\left(\mathbb{R}^{d}\right)$. Moreover, the weak*-convergence is true in $h^{1}\left(\mathbb{R}^{d}\right)$. More precisely, in [2], Dafni proved the following.

Theorem $1.1\left(\left[2\right.\right.$, Theorem 9]). The space $h^{1}\left(\mathbb{R}^{d}\right)$ is the dual space of $\operatorname{vmo}\left(\mathbb{R}^{d}\right)$.

[^0]Throughout this article, C denotes a positive geometric constant which is independent of the main parameters, but it may change from line to line.

2. Proof of Theorems 1.1 and 1.2

In this section, we fix $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \varphi \subset B(0,1)$ and $\int_{\mathbb{R}^{d}} \varphi(x) d x=1$. Let $\psi:=\varphi * \varphi$. The following lemma is due to Goldberg.

Lemma 2.1 ([4, Lemmas 4, 5]). There exists a positive constant $C=C(d, \varphi)$ such that
(i) for any $f \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
\|\varphi * f\|_{h^{1}} \leq C\|f\|_{L^{1}}
$$

(ii) for any $g \in h^{1}\left(\mathbb{R}^{d}\right)$,

$$
\|g-\psi * g\|_{H^{1}} \leq C\|g\|_{h^{1}}
$$

As a consequence of Lemma 2.1(ii), for any $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\|\phi-\bar{\psi} * \phi\|_{\mathrm{bmo}} \leq C\|\phi\|_{\mathrm{BMO}} \tag{2.1}
\end{equation*}
$$

so here and hereafter, $\bar{\psi}(x):=\psi(-x)$ for all $x \in \mathbb{R}^{d}$.
Proof of Theorem 1.1. Since $\operatorname{vmo}\left(\mathbb{R}^{d}\right)$ is a subspace of $\operatorname{bmo}\left(\mathbb{R}^{d}\right)$, which is the dual space of $h^{1}\left(\mathbb{R}^{d}\right)$, every function f in $h^{1}\left(\mathbb{R}^{d}\right)$ determines a bounded linear functional on $\operatorname{vmo}\left(\mathbb{R}^{d}\right)$ of norm bounded by $\|f\|_{h^{1}}$.

Conversely, given a bounded linear functional L on $\operatorname{vmo}\left(\mathbb{R}^{d}\right)$, we have

$$
|L(\phi)| \leq\|L\|\|\phi\|_{\mathrm{vmo}} \leq\|L\|\|\phi\|_{L^{\infty}}
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$. This implies (see [8]) that there exists a finite signed Radon measure μ on \mathbb{R}^{d} such that, for any $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$,

$$
L(\phi)=\int_{\mathbb{R}^{d}} \phi(x) d \mu(x)
$$

Moreover, the total variation of $\mu,|\mu|\left(\mathbb{R}^{d}\right)$ is bounded by $\|L\|$. Therefore,

$$
\begin{equation*}
\|\psi * \mu\|_{h^{1}}=\|\varphi *(\varphi * \mu)\|_{h^{1}} \leq C\|\varphi * \mu\|_{L^{1}} \leq C|\mu|\left(\mathbb{R}^{d}\right) \leq C\|L\| \tag{2.2}
\end{equation*}
$$

by Lemma 2.1. On the other hand, by (2.1) we have

$$
\begin{aligned}
|(L-\psi * \mu)(\phi)| & =|L(\phi-\bar{\psi} * \phi)| \leq\|L\|\|\phi-\bar{\psi} * \phi\|_{\mathrm{vmo}} \\
& \leq C\|L\|\|\phi\|_{\mathrm{BMO}}
\end{aligned}
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$. Consequently, by Theorem 1.3, there exists a function h belonging to $H^{1}\left(\mathbb{R}^{d}\right)$ such that $\|h\|_{H^{1}} \leq C\|L\|$ and

$$
(L-\psi * \mu)(\phi)=\int_{\mathbb{R}^{d}} h(x) \phi(x) d x
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$. This, together with (2.2), allows us to conclude that

$$
L(\phi)=\int_{\mathbb{R}^{d}} f(x) \phi(x) d x
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$, where $f:=h+\psi * \mu \in h^{1}\left(\mathbb{R}^{d}\right)$ satisfying $\|f\|_{h^{1}} \leq\|h\|_{H^{1}}+$ $\|\psi * \mu\|_{h^{1}} \leq C\|L\|$. The proof of Theorem 1.1 is thus completed.

In order to prove Theorem 1.2, we also need the following lemma due to Jones and Journé.

Lemma 2.2 ([5, p. 137]). Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence in $H^{1}\left(\mathbb{R}^{d}\right)$ and that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost every $x \in \mathbb{R}^{d}$. Then, $f \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ weak *-converges to f; that is, for every $\phi \in \operatorname{VMO}\left(\mathbb{R}^{d}\right)$, we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n}(x) \phi(x) d x=\int_{\mathbb{R}^{d}} f(x) \phi(x) d x
$$

Proof of Theorem 1.2. Let $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ be an arbitrary subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$. As $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ is a bounded sequence in $h^{1}\left(\mathbb{R}^{d}\right)$, by Theorem 1.1 and the BanachAlaoglu theorem there exists a subsequence $\left\{f_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ of $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ such that $\left\{f_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ weak *-converges to g for some $g \in h^{1}\left(\mathbb{R}^{d}\right)$. Therefore, for any $x \in \mathbb{R}^{d}$,

$$
\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n_{k_{j}}}(y) \psi(x-y) d y=\int_{\mathbb{R}^{d}} g(y) \psi(x-y) d y
$$

This implies that $\lim _{j \rightarrow \infty}\left[f_{n_{k_{j}}}(x)-\left(f_{n_{k_{j}}} * \psi\right)(x)\right]=f(x)-(g * \psi)(x)$ for almost every $x \in \mathbb{R}^{d}$. Hence, by Lemma 2.1(ii) and Lemma 2.2, we have

$$
\|f-g * \psi\|_{H^{1}} \leq \sup _{j \geq 1}\left\|f_{n_{k_{j}}}-f_{n_{k_{j}}} * \psi\right\|_{H^{1}} \leq C \sup _{j \geq 1}\left\|f_{n_{k_{j}}}\right\|_{h^{1}}<\infty .
$$

Moreover,

$$
\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{d}}\left[f_{n_{k_{j}}}(x)-\left(f_{n_{k_{j}}} * \psi\right)(x)\right] \phi(x) d x=\int_{\mathbb{R}^{d}}[f(x)-(g * \psi)(x)] \phi(x) d x
$$

for all $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$. As a consequence, we obtain that

$$
\begin{aligned}
\|f\|_{h^{1}} & \leq\|f-g * \psi\|_{h^{1}}+\|g * \psi\|_{h^{1}} \leq\|f-g * \psi\|_{H^{1}}+C\|g\|_{h^{1}} \\
& \leq C \sup _{j \geq 1}\left\|f_{n_{k_{j}}}\right\|_{h^{1}}<\infty
\end{aligned}
$$

and moreover,

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n_{k_{j}}}(x) \phi(x) d x \\
& \quad=\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{d}}\left[f_{n_{k_{j}}}(x)-\left(f_{n_{k_{j}}} * \psi\right)(x)\right] \phi(x) d x+\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n_{k_{j}}}(x)(\bar{\psi} * \phi)(x) d x \\
& \quad=\int_{\mathbb{R}^{d}}[f(x)-(g * \psi)(x)] \phi(x) d x+\int_{\mathbb{R}^{d}} g(x)(\bar{\psi} * \phi)(x) d x \\
& \quad=\int_{\mathbb{R}^{d}} f(x) \phi(x) d x
\end{aligned}
$$

since $\left\{f_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ weak *-converges to g in $h^{1}\left(\mathbb{R}^{d}\right)$. This allows us to complete the proof of Theorem 1.2 since $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ is an arbitrary subsequence of $\left\{f_{n}\right\}_{n=1}^{\infty}$.

Acknowledgments. This work was completed when Ky was visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM), and he would like to thank that institution for its support and hospitality. The authors would also like to thank the referees for their careful reading and helpful suggestions. Hung's work was partially supported by Vietnam National Foundation for Science and Technology Development grant No. 101.02-2014.51.

References

1. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. Zbl 0358.30023. MR0447954. 573, 574
2. G. Dafni, Local VMO and weak convergence in h^{1}, Canad. Math. Bull. 45 (2002), no. 1, 46-59. Zbl 1004.42020. MR1884133. DOI 10.4153/CMB-2002-005-2. 573, 574
3. C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), no. 4, 587-588. Zbl 0229.46051. MR0280994. 573, 574
4. D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27-42. Zbl 0409.46060. MR0523600. 573, 574, 575
5. P. W. Jones and J.-L. Journé, On weak convergence in $H^{1}\left(\boldsymbol{R}^{d}\right)$, Proc. Amer. Math. Soc. 120 (1994), no. 1, 137-138. Zbl 0814.42011. MR1159172. DOI 10.2307/2160177. 573, 576
6. L. D. Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2931-2958. Zbl 1272.42010. MR3034454. DOI 10.1090/ S0002-9947-2012-05727-8. 573
7. L. D. Ky, Endpoint estimates for commutators of singular integrals related to Schrödinger operators, Rev. Mat. Iberoam. 31 (2015), no. 4, 1333-1373. Zbl 06539486. MR3438392. DOI 10.4171/RMI/871. 573
8. H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988. Zbl 0704.26006. MR1013117. 575
${ }^{1}$ High School for Gifted Students, Hanoi National University of Education, 136
Xuan Thuy, Hanoi, Vietnam.
E-mail address: hunghaduy@gmail.com
${ }^{2}$ Department of Natural Science and Technology, Tay Nguyen University, DakLak, Vietnam.

E-mail address: duongquochuy@ttn.edu.vn
${ }^{3}$ Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

E-mail address: luongdangky@tdt.edu.vn

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Jan. 21, 2016; Accepted Apr. 8, 2016.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 42B30; Secondary 46E15.
 Keywords. H^{1}, BMO, VMO, Banach-Alaoglu.

