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Abstract. We give a very simple proof of a result by Dafni that states that
the weak∗-convergence is true in the local Hardy space h1(Rd).

1. Introduction

A famous and classical result of Fefferman [3, Theorem 1] states that the John–
Nirenberg space BMO(Rd) is the dual of the Hardy space H1(Rd). It is also well
known that H1(Rd) is one of the few examples of separable, nonreflexive Banach
space which is a dual space. In fact, let Cc(Rd) be the space of all continuous
functions with compact support, and denote by VMO(Rd) the closure of Cc(Rd)
in BMO(Rd). Coifman and Weiss showed in [1] that H1(Rd) is the dual space of
VMO(Rd), which gives to H1(Rd) a richer structure than L1(Rd). For example,
the classical Riesz transforms ∇(−∆)−1/2 are not bounded on L1(Rd) but instead
are bounded onH1(Rd). In addition, the weak∗-convergence is true inH1(Rd) (see
[5]), which is useful in the application of Hardy spaces to compensated compact-
ness and in studying the endpoint estimates for commutators of singular integral
operators (see [6], [7]). Recently, Dafni showed in [2] that the local Hardy space
h1(Rd) of Goldberg [4] is in fact the dual space of vmo(Rd), the closure of Cc(Rd)
in bmo(Rd). Moreover, the weak∗-convergence is true in h1(Rd). More precisely,
in [2], Dafni proved the following.

Theorem 1.1 ([2, Theorem 9]). The space h1(Rd) is the dual space of vmo(Rd).
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Theorem 1.2 ([2, Theorem 11]). Suppose that {fn}∞n=1 is a bounded sequence in
h1(Rd) and that limn→∞ fn(x) = f(x) for almost every x ∈ Rd. Then f ∈ h1(Rd)
and {fn}∞n=1 weak∗-converges to f ; that is, for every φ ∈ vmo(Rd), we have

lim
n→∞

∫
Rd

fn(x)φ(x) dx =

∫
Rd

f(x)φ(x) dx.

The aim of the present paper is to give very simple proofs of the two above
theorems. To this end, we first recall some definitions of the function spaces. As
usual, S(Rd) denotes the Schwartz class of test functions on Rd. The subset A of
S(Rd) is then defined by

A =
{
φ ∈ S(Rd) :

∣∣φ(x)∣∣+ |∇φ(x)| ≤ (1 + |x|2)−(d+1)
}
,

where ∇ = (∂/∂x1, . . . , ∂/∂xd) denotes the gradient. We define

Mf(x) := sup
φ∈A

sup
|y−x|<t

∣∣f ∗ φt(y)
∣∣ and mf(x) := sup

φ∈A
sup

|y−x|<t<1

∣∣f ∗ φt(y)
∣∣,

where φt(·) = t−dφ(t−1·). The space H1(Rd) is the space of all integrable functions
f such that Mf ∈ L1(Rd) equipped with the norm ‖f‖H1 = ‖Mf‖L1 . The space
h1(Rd) denotes the space of all integrable functions f such that mf ∈ L1(Rd)
equipped with the norm ‖f‖h1 = ‖mf‖L1 .

We remark that the local real Hardy space h1(Rd), first introduced by Goldberg
in [4], is larger than H1(Rd) and allows more flexibility, since global cancellation
conditions are not necessary. For example, the Schwartz class S(Rd) is contained
in h1(Rd) but not in H1(Rd), and multiplication by cutoff functions preserves
h1(Rd) but not H1(Rd). Thus it makes h1(Rd) more suitable for working in do-
mains and on manifolds.

It is well known (see [3]) that the dual space of H1(Rd) is BMO(Rd), the space
of all locally integrable functions f with

‖f‖BMO := sup
B

1

|B|

∫
B

∣∣∣f(x)− 1

|B|

∫
B

f(y) dy
∣∣∣ dx <∞,

where the supremum is taken over all balls B ⊂ Rd. It was also shown in [4] that
the dual space of h1(Rd) can be identified with the space bmo(Rd), consisting of
locally integrable functions f with

‖f‖bmo := sup
|B|≤1

1

|B|

∫
B

∣∣∣f(x)− 1

|B|

∫
B

f(y) dy
∣∣∣ dx+ sup

|B|≥1

1

|B|

∫
B

∣∣f(x)∣∣ dx <∞,

where the suprema are taken over all balls B ⊂ Rd.
It is clear that, for any f ∈ H1(Rd) and g ∈ bmo(Rd),

‖f‖h1 ≤ ‖f‖H1 and ‖g‖BMO ≤ ‖g‖bmo.

Recall that the space VMO(Rd) (resp., vmo(Rd)) is the closure of Cc(Rd) in
(BMO(Rd), ‖ · ‖BMO) (resp., (bmo(Rd), ‖ · ‖bmo)). The following theorem is due to
Coifman and Weiss.

Theorem 1.3 ([1, Theorem 4.1]). The space H1(Rd) is the dual space of VMO(Rd).
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Throughout this article, C denotes a positive geometric constant which is in-
dependent of the main parameters, but it may change from line to line.

2. Proof of Theorems 1.1 and 1.2

In this section, we fix ϕ ∈ Cc(Rd) with supp ϕ ⊂ B(0, 1) and
∫
Rd ϕ(x) dx = 1.

Let ψ := ϕ ∗ ϕ. The following lemma is due to Goldberg.

Lemma 2.1 ([4, Lemmas 4, 5]). There exists a positive constant C = C(d, ϕ)
such that

(i) for any f ∈ L1(Rd),

‖ϕ ∗ f‖h1 ≤ C‖f‖L1 ;

(ii) for any g ∈ h1(Rd),

‖g − ψ ∗ g‖H1 ≤ C‖g‖h1 .

As a consequence of Lemma 2.1(ii), for any φ ∈ Cc(Rd),

‖φ− ψ ∗ φ‖bmo ≤ C‖φ‖BMO, (2.1)

so here and hereafter, ψ(x) := ψ(−x) for all x ∈ Rd.

Proof of Theorem 1.1. Since vmo(Rd) is a subspace of bmo(Rd), which is the dual
space of h1(Rd), every function f in h1(Rd) determines a bounded linear functional
on vmo(Rd) of norm bounded by ‖f‖h1 .

Conversely, given a bounded linear functional L on vmo(Rd), we have∣∣L(φ)∣∣ ≤ ‖L‖‖φ‖vmo ≤ ‖L‖‖φ‖L∞

for all φ ∈ Cc(Rd). This implies (see [8]) that there exists a finite signed Radon
measure µ on Rd such that, for any φ ∈ Cc(Rd),

L(φ) =

∫
Rd

φ(x) dµ(x).

Moreover, the total variation of µ, |µ|(Rd) is bounded by ‖L‖. Therefore,

‖ψ ∗ µ‖h1 =
∥∥ϕ ∗ (ϕ ∗ µ)

∥∥
h1 ≤ C‖ϕ ∗ µ

∥∥
L1≤ C|µ|(Rd) ≤ C

∥∥L‖ (2.2)

by Lemma 2.1. On the other hand, by (2.1) we have∣∣(L− ψ ∗ µ)(φ)
∣∣ = ∣∣L(φ− ψ ∗ φ)

∣∣ ≤ ‖L‖‖φ− ψ ∗ φ‖vmo

≤ C‖L‖‖φ‖BMO

for all φ ∈ Cc(Rd). Consequently, by Theorem 1.3, there exists a function h
belonging to H1(Rd) such that ‖h‖H1 ≤ C‖L‖ and

(L− ψ ∗ µ)(φ) =
∫
Rd

h(x)φ(x) dx

for all φ ∈ Cc(Rd). This, together with (2.2), allows us to conclude that

L(φ) =

∫
Rd

f(x)φ(x) dx
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for all φ ∈ Cc(Rd), where f := h + ψ ∗ µ ∈ h1(Rd) satisfying ‖f‖h1 ≤ ‖h‖H1 +
‖ψ ∗ µ‖h1 ≤ C‖L‖. The proof of Theorem 1.1 is thus completed. �

In order to prove Theorem 1.2, we also need the following lemma due to Jones
and Journé.

Lemma 2.2 ([5, p. 137]). Suppose that {fn}∞n=1 is a bounded sequence in H1(Rd)
and that limn→∞ fn(x) = f(x) for almost every x ∈ Rd. Then, f ∈ H1(Rd) and
{fn}∞n=1 weak∗-converges to f ; that is, for every φ ∈ VMO(Rd), we have

lim
n→∞

∫
Rd

fn(x)φ(x) dx =

∫
Rd

f(x)φ(x) dx.

Proof of Theorem 1.2. Let {fnk
}∞k=1 be an arbitrary subsequence of {fn}∞n=1. As

{fnk
}∞k=1 is a bounded sequence in h1(Rd), by Theorem 1.1 and the Banach–

Alaoglu theorem there exists a subsequence {fnkj
}∞j=1 of {fnk

}∞k=1 such that

{fnkj
}∞j=1 weak∗-converges to g for some g ∈ h1(Rd). Therefore, for any x ∈ Rd,

lim
j→∞

∫
Rd

fnkj
(y)ψ(x− y) dy =

∫
Rd

g(y)ψ(x− y) dy.

This implies that limj→∞[fnkj
(x)− (fnkj

∗ ψ)(x)] = f(x)− (g ∗ ψ)(x) for almost

every x ∈ Rd. Hence, by Lemma 2.1(ii) and Lemma 2.2, we have

‖f − g ∗ ψ‖H1 ≤ sup
j≥1

‖fnkj
− fnkj

∗ ψ‖H1 ≤ C sup
j≥1

‖fnkj
‖h1 <∞.

Moreover,

lim
j→∞

∫
Rd

[
fnkj

(x)− (fnkj
∗ ψ)(x)

]
φ(x) dx =

∫
Rd

[
f(x)− (g ∗ ψ)(x)

]
φ(x) dx

for all φ ∈ Cc(Rd). As a consequence, we obtain that

‖f‖h1 ≤ ‖f − g ∗ ψ‖h1 + ‖g ∗ ψ‖h1 ≤ ‖f − g ∗ ψ‖H1 + C‖g‖h1

≤ C sup
j≥1

‖fnkj
‖h1 <∞,

and moreover,

lim
j→∞

∫
Rd

fnkj
(x)φ(x) dx

= lim
j→∞

∫
Rd

[
fnkj

(x)− (fnkj
∗ ψ)(x)

]
φ(x) dx+ lim

j→∞

∫
Rd

fnkj
(x)(ψ ∗ φ)(x) dx

=

∫
Rd

[
f(x)− (g ∗ ψ)(x)

]
φ(x) dx+

∫
Rd

g(x)(ψ ∗ φ)(x) dx

=

∫
Rd

f(x)φ(x) dx

since {fnkj
}∞j=1 weak∗-converges to g in h1(Rd). This allows us to complete the

proof of Theorem 1.2 since {fnk
}∞k=1 is an arbitrary subsequence of {fn}∞n=1. �
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