Ann. Funct. Anal. 7 (2016), no. 3, 381-385
http://dx.doi.org/10.1215/20088752-3605762
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

# PROPERTY T OF REDUCED $C^{*}$-CROSSED PRODUCTS BY DISCRETE GROUPS 

BAOJIE JIANG ${ }^{1^{*}}$ and CHI-KEUNG NG ${ }^{2}$<br>Communicated by V. Runde


#### Abstract

We generalize a result of Kamalov and we show that if $G$ is an amenable discrete group with an action $\alpha$ on a finite nuclear unital $C^{*}$-algebra $A$ such that the reduced crossed product $A \rtimes_{\alpha, r} G$ has property $T$, then $G$ is finite and $A$ is finite-dimensional. As an application, an infinite discrete group $H$ is nonamenable if and only if the corresponding uniform Roe algebra $C_{u}^{*}(H)$ has property $T$.


## 1. Introduction

Property $T$ for unital $C^{*}$-algebras was introduced by Bekka in [1] and has been studied by many different people. Recently, it was shown by Kamalov (in [6]) that
"...if $G$ is a discrete amenable group acting on a commutative unital $C^{*}$-algebra $A$ such that the crossed product has property $T$, then $G$ is finite and $A$ is finitedimensional."
The aims of this paper is to extend this result to the case of finite nuclear unital $C^{*}$-algebras, and to give an application concerning a characterization of the amenability of $G$. The main result of Brown in [2] is one of our essential tools.

## 2. The main Results

Throughout this article, $G$ is a discrete group acting on a unital $C^{*}$-algebra $A$ through an action $\alpha$ (by automorphisms).

[^0]We warn the readers that part (c) above does not hold for nonunital $C^{*}$-algebras. Our main theorem concerns a relation between nuclearity and property $T$ of $A \rtimes_{\alpha, r} G$. We recall from [2, Theorem 5.1] that if $A \rtimes_{\alpha, r} G$ is nuclear and has property $T$, then

$$
\begin{equation*}
A \rtimes_{\alpha, r} G=B_{\mathbf{n t}} \oplus B_{\mathrm{fd}} \tag{2.1}
\end{equation*}
$$

where $B_{\mathbf{n t}}$ is a nuclear $C^{*}$-algebra with no tracial state and $B_{\mathrm{fd}}$ is a finitedimensional $C^{*}$-algebra (note that although all $C^{*}$-algebras in [2] are assumed to be separable, [2, Theorem 5.1] is true in the nonseparable case because one can use [3, Theorem 6.2.7] to replace [2, Theorem 4.2] in the proof of this result). The following theorem implies that if $G$ is infinite, then we arrive at one of the extreme case of (2.1); namely, the algebra $B_{\mathrm{fd}}$ is zero. This proposition and its proof are essential ingredients in the argument of our main theorem.
Proposition 2.2. Let $G$ be an infinite discrete group acting on a unital $C^{*}$-algebra $A$ through an action $\alpha$. If $A \rtimes_{\alpha, r} G$ is nuclear and has property $T$, then $T\left(A \rtimes_{\alpha, r}\right.$ $G)=\emptyset$.

Proof. Let $I_{\alpha}:=\bigcap_{\tau \in T_{\alpha}(A)} \operatorname{ker} \pi_{\tau}$ and $A_{\alpha}:=A / I_{\alpha}$. Suppose on contrary that $T\left(A \rtimes_{\alpha, r} G\right) \neq \emptyset$. Then $I_{\alpha} \neq A$ because of Lemma 2.1(a). Moreover, as

$$
\operatorname{ker} \pi_{\tau}=\left\{x \in A: \tau\left(x^{*} x\right)=0\right\}, \quad \tau \in T(A)
$$

we know that $I_{\alpha}$ is $\alpha$-invariant, and hence $\alpha$ produces an action $\beta$ of $G$ on $A_{\alpha}$. Furthermore, every state in $T_{\alpha}(A)$ induces a state in $T_{\beta}\left(A_{\alpha}\right)$. This tells us that $T_{\beta}\left(A_{\alpha}\right)$ will separate points of $\left(A_{\alpha}\right)_{+}$.

Since $A_{\alpha} \rtimes_{\beta, r} G$ is a quotient $C^{*}$-algebra of $A \rtimes_{\alpha, r} G$ (see, e.g., [7]), the hypothesis implies that $A_{\alpha} \rtimes_{\beta, r} G$ is nuclear and has property $T$. Therefore, [2, Theorem 5.1] tells us that $A_{\alpha} \rtimes_{\beta, r} G=D_{\mathbf{n t}} \oplus D_{\mathrm{fd}}$, where $D_{\mathrm{fd}}$ is finite-dimensional and $T\left(D_{\mathbf{n t}}\right)=\emptyset$. However, the finiteness of $A_{\alpha} \rtimes_{\beta, r} G$ (which follows from Lemma 2.1(b)) tells us that $D_{\mathrm{nt}}=(0)$. Consequently, $A_{\alpha} \rtimes_{\beta, r} G$ is a nonzero finite-dimensional $C^{*}$-algebra, which contradicts the fact that $G$ is infinite.

Our main result concerns the other extreme case of (2.1) - that is, the algebra $B_{\mathbf{n t}}$ is zero. In order words, it gives a situation (that extends the one in [6]) ensuring that the reduced crossed product is finite-dimensional.

Notice that the finiteness assumption of $A$ in this theorem is indispensable. In fact, if $D$ is the direct sum of $\mathbb{C}$ with an infinite-dimensional nuclear unital $C^{*}$-algebra having no tracial state, then $D$ is not finite (although it has a tracial state), the crossed product $D \rtimes H$ of the trivial action of a finite group $H$ on $D$ is nuclear and has property $T$, but $D \rtimes H$ is infinite-dimensional. We will see at the end of this article that the amenability of $G$ is also indispensable (even if we assume that $A \rtimes_{\alpha, r} G$ is nuclear).

Theorem 2.3. Let $G$ be an amenable discrete group and let $A$ be a finite nuclear unital $C^{*}$-algebra. If there is an action $\alpha$ of $G$ on $A$ such that $A \rtimes_{\alpha, r} G$ has property $T$, then $G$ is finite and $A$ is finite-dimensional.
Proof. Let us set $I_{\alpha}:=\bigcap_{\tau \in T_{\alpha}(A)} \operatorname{ker} \pi_{\tau}$ and $A_{\alpha}:=A / I_{\alpha}$. Denote $B:=A \rtimes_{\alpha, r} G$. The finiteness assumption of $A$ as well as parts (a) and (c) of Lemma 2.1 imply
that $T(B) \neq \emptyset$ and $I_{\alpha} \neq A$. By Proposition 2.2, we know that the group $G$ has to be finite. Moreover, the argument of Proposition 2.2 tells us that $I_{\alpha}$ is $\alpha$-invariant and $B_{\alpha}:=A_{\alpha} \rtimes_{\beta, r} G$ is finite-dimensional. It suffices to show that $I_{\alpha}=\{0\}$.

Suppose on the contrary that $I_{\alpha} \neq\{0\}$. As in (2.1), we have

$$
B=B_{\mathbf{n t}} \oplus B_{\mathrm{fd}} .
$$

Thus, $I_{\alpha} \rtimes_{\alpha, r} G=J_{\mathbf{n t}} \oplus J_{\mathbf{f d}}$, with $J_{\mathbf{n t}}$ (respectively, $J_{\mathrm{fd}}$ ) being a closed ideal of $B_{\mathrm{nt}}$ (respectively, $B_{\mathrm{fd}}$ ). The short exact sequence

$$
0 \rightarrow I_{\alpha} \rightarrow A \rightarrow A_{\alpha} \rightarrow 0
$$

induces a short exact sequence of the corresponding reduced crossed products, because $G$ is amenable. From this, we obtain

$$
B_{\alpha}=B /\left(I_{\alpha} \rtimes_{\alpha, r} G\right)=B_{\mathbf{n t}} / J_{\mathbf{n t}} \oplus B_{\mathrm{fd}} / J_{\mathrm{fd}}
$$

Hence, $B_{\mathbf{n t}} / J_{\mathbf{n t}}$ is a quotient $C^{*}$-algebra of the finite-dimensional $C^{*}$-algebra $B_{\alpha}$. This forces $J_{\mathrm{nt}}=B_{\mathrm{nt}}$ (otherwise, $B_{\mathrm{nt}}$ will have a tracial state). Therefore, $B_{\alpha} \cong$ $B_{\mathrm{fd}} / J_{\mathrm{fd}}$, or equivalently, $B_{\mathrm{fd}} \cong B_{\alpha} \oplus J_{\mathrm{fd}}$ (as $B_{\mathrm{fd}}$ is finite-dimensional). This gives

$$
B \cong B_{\alpha} \oplus J_{\mathrm{fd}} \oplus B_{\mathrm{nt}}=B_{\alpha} \oplus J_{\mathrm{fd}} \oplus J_{\mathbf{n t}}=B_{\alpha} \oplus\left(I_{\alpha} \rtimes_{\alpha, r} G\right)
$$

Consequently, $I_{\alpha} \rtimes_{\alpha, r} G$ is a unital $C^{*}$-algebra and so is $I_{\alpha}$.
Now, by the finiteness assumption of $A$, one knows that $T\left(I_{\alpha}\right) \neq \emptyset$, and Lemma 2.1(c) will produce an element $\tau \in T_{\alpha}\left(I_{\alpha}\right)$. Let $\Phi: A \rightarrow M\left(I_{\alpha}\right)=I_{\alpha}$ be the canonical $G$-equivariant ${ }^{*}$-epimorphism. If we define

$$
\tau^{\prime}(a):=\left\langle\pi_{\tau}(\Phi(a)) \xi_{\tau}, \xi_{\tau}\right\rangle \quad(a \in A)
$$

then $\tau^{\prime} \in T_{\alpha}(A)$ and $\left.\tau^{\prime}\right|_{I_{\alpha}}=\tau$. However, the existence of such a $\tau^{\prime}$ contradicts the definition of $I_{\alpha}$.

Corollary 2.4. Let $G$ be an infinite discrete group and $\alpha_{G}$ be the left translation action of $G$ on $\ell^{\infty}(G)$. The following statements are equivalent:
(1) $G$ is nonamenable,
(2) $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ does not have a tracial state,
(3) $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ has strong property $T$ (see [9]),
(4) $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ has property $T$,
(5) there is a finite nuclear unital $C^{*}$-algebra $A$ and an action $\alpha$ of $G$ on $A$ such that $A \rtimes_{\alpha, r} G$ has property $T$.

Proof. If $G$ is nonamenable, then $T_{\alpha_{G}}\left(\ell^{\infty}(G)\right)=\emptyset$ and Lemma 2.1(a) tells us that statement (2) holds. On the other hand, if $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ does not have a tracial state, then [9, Proposition 5.2] gives statement (3). Moreover, a strong property $T C^{*}$-algebra clearly has property $T$. Finally, suppose that statement (5) holds but $G$ is amenable. Then Theorem 2.3 produces the contradiction that $G$ is finite.

The following comparison of Corollary 2.4 with the main result of Ozawa in [10] (see also Theorem 5.1.6 and Proposition 5.1.3 of [3]) may be worth mentioning: a discrete group $G$ is exact if and only if $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ is nuclear (or equivalently, the action $\alpha_{G}$ is amenable).

This result tells us that one cannot weaken the assumption of $G$ being amenable in Theorem 2.3 to the assumptions that the action $\alpha$ is amenable and the crossed product $A \rtimes_{\alpha, r} G$ is nuclear. Indeed, if $G$ is an exact nonamenable group, then $\alpha_{G}$ is amenable, the reduced crossed product $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ has property $T$ and is nuclear, while $\ell^{\infty}(G) \rtimes_{\alpha_{G}, r} G$ is infinite-dimensional.

Acknowledgment. Ng's work was supported by National Natural Science Foundation of China grant (11471168).

## References

1. B. Bekka, Property (T) for $C^{*}$-algebras, Bull. Lond. Math. Soc. 38 (2006), no. 5, 857-867. Zbl 1114.46039. MR2268371. DOI 10.1112/S0024609306018765. 381, 382
2. N. P. Brown, Kazhdan's property $T$ and $C^{*}$-algebras, J. Funct. Anal. 240 (2006), no. 1, 290-296. MR2259898. DOI 10.1016/j.jfa.2006.05.003. 381, 383
3. N. P. Brown and N. Ozawa, $C^{*}$-algebras and Finite-dimensional Approximations, Grad. Stud. Math. 88, Amer. Math. Soc., Providence, 2008. MR2391387. DOI 10.1090/gsm/088. 382, 383, 384
4. J. Cuntz and G. K. Pedersen, Equivalence and traces on $C^{*}$-algebras, J. Funct. Anal. 33 (1979), no. 2, 135-164. Zbl 0427.46042. MR0546503. DOI 10.1016/0022-1236(79)90108-3. 382
5. M. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. Zbl 0097.31705. MR0138100. 382
6. F. Kamalov, Property $T$ and Amenable Transformation Group $C^{*}$-algebras, Canad. Math. Bull. 58 (2015), no. 1, 110-114. Zbl pre06418029. MR3303213. DOI 10.4153/ CMB-2014-006-5. 381, 383
7. E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of $C^{*}$-algebras, Math. Ann. 315 (1999), no. 2, 169-203. Zbl 0946.46054. MR1721796. DOI 10.1007/ s002080050364. 383
8. E. C. Lance, Hilbert $C^{*}$-modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. MR1325694. DOI 10.1017/CBO9780511526206. 382
9. C.-W. Leung and C.-K. Ng, Property $(T)$ and strong property $(T)$ for unital $C^{*}$-algebras, J. Funct. Anal. 256 (2009), no. 9, 3055-3070. Zbl 1176.46054. MR2502432. DOI 10.1016/ j.jfa.2009.01.004. 384
10. N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 691-695. Zbl 0953.43001. MR1763912. DOI 10.1016/ S0764-4442(00)00248-2. 384
[^1]
[^0]:    Copyright 2016 by the Tusi Mathematical Research Group.
    Received Sep. 15, 2015; Accepted Nov. 23, 2015.
    *Corresponding author.
    2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L55.
    Keywords. discrete groups, reduced $C^{*}$-crossed products, property $T$, amenability.

[^1]:    ${ }^{1}$ Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China.

    E-mail address: jiangbaojie@gmail.com
    ${ }^{2}$ Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China.

    E-mail address: ckng@nankai.edu.cn; ckngmath@hotmail.com

