

Ann. Funct. Anal. 7 (2016), no. 3, 381–385 http://dx.doi.org/10.1215/20088752-3605762 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

PROPERTY T OF REDUCED C^* -CROSSED PRODUCTS BY DISCRETE GROUPS

BAOJIE JIANG^{1*} and CHI-KEUNG NG^2

Communicated by V. Runde

ABSTRACT. We generalize a result of Kamalov and we show that if G is an amenable discrete group with an action α on a finite nuclear unital C^* -algebra A such that the reduced crossed product $A \rtimes_{\alpha,r} G$ has property T, then G is finite and A is finite-dimensional. As an application, an infinite discrete group H is nonamenable if and only if the corresponding uniform Roe algebra $C_u^*(H)$ has property T.

1. INTRODUCTION

Property T for unital C^* -algebras was introduced by Bekka in [1] and has been studied by many different people. Recently, it was shown by Kamalov (in [6]) that

"... if G is a discrete amenable group acting on a commutative unital C^* -algebra A such that the crossed product has property T, then G is finite and A is finite-dimensional."

The aims of this paper is to extend this result to the case of finite nuclear unital C^* -algebras, and to give an application concerning a characterization of the amenability of G. The main result of Brown in [2] is one of our essential tools.

2. The main results

Throughout this article, G is a discrete group acting on a unital C^* -algebra A through an action α (by automorphisms).

Copyright 2016 by the Tusi Mathematical Research Group.

Received Sep. 15, 2015; Accepted Nov. 23, 2015.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L05; Secondary 46L55.

Keywords. discrete groups, reduced C^* -crossed products, property T, amenability.

Let T(A) be the set of all traical states on A. For any $\tau \in T(A)$, we denote by $\pi_{\tau} : A \to \mathcal{B}(\mathcal{H}_{\tau})$ the GNS representation corresponding to τ , and we denote by ξ_{τ} a norm 1 cyclic vector in \mathcal{H}_{τ} with

$$\tau(a) = \langle \pi_{\tau}(a)\xi_{\tau}, \xi_{\tau} \rangle, \quad a \in A.$$

Recall that A is said to be *finite* when T(A) separates points of A_+ (see [4, Theorem 3.4]), and that if $T(A) = \emptyset$, then A has property T (see [1, Remark 2]). We use $T_{\alpha}(A)$ and $A \rtimes_{\alpha,r} G$ to denote the set of all α -invariant traical states on A and the reduced crossed product of α , respectively. We will regard $A \subseteq A \rtimes_{\alpha,r} G$ as well as $G \subseteq A \rtimes_{\alpha,r} G$ through their canonical embeddings.

Let us first give the following well-known facts. Since we cannot find the precise references for them, we present their simple arguments here.

Lemma 2.1. We have the following:

- (a) $T_{\alpha}(A) \neq \emptyset$ if and only if $T(A \rtimes_{\alpha, r} G) \neq \emptyset$;
- (b) if $T_{\alpha}(A)$ separates points of A_+ , then $A \rtimes_{\alpha,r} G$ is finite;
- (c) if G is amenable and if $T(A) \neq \emptyset$, then $T_{\alpha}(A) \neq \emptyset$.

Proof. Let us denote $B := A \rtimes_{\alpha,r} G$, and let us consider $\mathcal{E} : B \to A$ to be the canonical conditional expectation (see e.g., [3, Proposition 4.1.9]). Then the following hold.

(a) If $\sigma \in T(B)$, then $\sigma(\alpha_t(a)) = \sigma(tat^{-1}) = \sigma(a)$ $(a \in A; t \in G)$, which means that $\sigma|_A \in T_{\alpha}(A)$. Conversely, consider any $\tau \in T_{\alpha}(A)$ and any $x = \sum_{s \in G} a_s s \in B$ such that $a_s = 0$ except for a finite number of s. Then

$$\tau(\mathcal{E}(x^*x)) = \tau\left(\sum_{r\in G} \alpha_{r^{-1}}(a_r^*a_r)\right) = \tau\left(\sum_{r\in G} a_r a_r^*\right) = \tau(\mathcal{E}(xx^*)).$$

Hence, $\tau \circ \mathcal{E}$ belongs to T(B), because it is continuous.

(b) Since \mathcal{E} is faithful, we know that B is a Hilbert A-module under the A-valued inner product

$$\langle x, y \rangle_A := \mathcal{E}(x^*y), \quad x, y \in B.$$

For any $\tau \in T_{\alpha}(A)$, we consider $B \otimes_{\pi_{\tau}} \mathcal{H}_{\tau}$ to be the Hilbert space as in [8, Proposition 4.5] (we regard a Hilbert \mathbb{C} -module as a Hilbert space by considering the conjugation of the inner product). If π_{τ}^{B} is the canoincal representation of Bon $B \otimes_{\pi_{\tau}} \mathcal{H}_{\tau}$, then $(B \otimes_{\pi_{\tau}} \mathcal{H}_{\tau}, \pi_{\tau}^{B})$ coincides with $(\mathcal{H}_{\tau \circ \mathcal{E}}, \pi_{\tau \circ \mathcal{E}})$, because $1 \otimes \xi_{\tau}$ is a cyclic vector for π_{τ}^{B} such that the state defined by $1 \otimes \xi_{\tau}$ is $\tau \circ \mathcal{E}$.

Let $(\mathcal{H}_0, \pi_0) := \bigoplus_{\tau \in T_\alpha(A)} (\mathcal{H}_\tau, \pi_\tau)$. As $T_\alpha(A)$ separates points of A_+ , one knows that π_0 is faithful. It is easy to verify that the representation π_0^B of B on $B \otimes_{\pi_0} \mathcal{H}_0$ induced by π_0 is also faithful, and that π_0^B coincides with $\bigoplus_{\tau \in T_\alpha(A)} \pi_\tau^B$. Consequently, $\bigoplus_{\tau \in T_\alpha(A)} (\mathcal{H}_{\tau \circ \mathcal{E}}, \pi_{\tau \circ \mathcal{E}})$ is faithful. This means that the subset $\{\tau \circ \mathcal{E} : \tau \in$ $T_\alpha(A)\}$ of T(B) (see the argument of part (a)) separates points of B_+ .

(c) Notice that T(A) is a nonempty weak*-compact convex subset of A^* and α induces an action of G on T(A) by continuous affine maps. Hence, Day's fixed point theorem (see [5, Theorem 1]) produces a fixed point $\tau_0 \in T(A)$ for this action. Obviously, $\tau_0 \in T_{\alpha}(A)$.

We warn the readers that part (c) above does not hold for nonunital C^* -algebras.

Our main theorem concerns a relation between nuclearity and property T of $A \rtimes_{\alpha,r} G$. We recall from [2, Theorem 5.1] that if $A \rtimes_{\alpha,r} G$ is nuclear and has property T, then

$$A \rtimes_{\alpha,r} G = B_{\mathbf{nt}} \oplus B_{\mathbf{fd}},\tag{2.1}$$

where B_{nt} is a nuclear C^* -algebra with no tracial state and B_{fd} is a finitedimensional C^* -algebra (note that although all C^* -algebras in [2] are assumed to be separable, [2, Theorem 5.1] is true in the nonseparable case because one can use [3, Theorem 6.2.7] to replace [2, Theorem 4.2] in the proof of this result). The following theorem implies that if G is infinite, then we arrive at one of the extreme case of (2.1); namely, the algebra B_{fd} is zero. This proposition and its proof are essential ingredients in the argument of our main theorem.

Proposition 2.2. Let G be an infinite discrete group acting on a unital C^{*}-algebra A through an action α . If $A \rtimes_{\alpha,r} G$ is nuclear and has property T, then $T(A \rtimes_{\alpha,r} G) = \emptyset$.

Proof. Let $I_{\alpha} := \bigcap_{\tau \in T_{\alpha}(A)} \ker \pi_{\tau}$ and $A_{\alpha} := A/I_{\alpha}$. Suppose on contrary that $T(A \rtimes_{\alpha,r} G) \neq \emptyset$. Then $I_{\alpha} \neq A$ because of Lemma 2.1(a). Moreover, as

$$\ker \pi_{\tau} = \left\{ x \in A : \tau(x^*x) = 0 \right\}, \quad \tau \in T(A),$$

we know that I_{α} is α -invariant, and hence α produces an action β of G on A_{α} . Furthermore, every state in $T_{\alpha}(A)$ induces a state in $T_{\beta}(A_{\alpha})$. This tells us that $T_{\beta}(A_{\alpha})$ will separate points of $(A_{\alpha})_+$.

Since $A_{\alpha} \rtimes_{\beta,r} G$ is a quotient C^* -algebra of $A \rtimes_{\alpha,r} G$ (see, e.g., [7]), the hypothesis implies that $A_{\alpha} \rtimes_{\beta,r} G$ is nuclear and has property T. Therefore, [2, Theorem 5.1] tells us that $A_{\alpha} \rtimes_{\beta,r} G = D_{\mathbf{nt}} \oplus D_{\mathbf{fd}}$, where $D_{\mathbf{fd}}$ is finite-dimensional and $T(D_{\mathbf{nt}}) = \emptyset$. However, the finiteness of $A_{\alpha} \rtimes_{\beta,r} G$ (which follows from Lemma 2.1(b)) tells us that $D_{\mathbf{nt}} = (0)$. Consequently, $A_{\alpha} \rtimes_{\beta,r} G$ is a nonzero finite-dimensional C^* -algebra, which contradicts the fact that G is infinite.

Our main result concerns the other extreme case of (2.1)—that is, the algebra $B_{\rm nt}$ is zero. In order words, it gives a situation (that extends the one in [6]) ensuring that the reduced crossed product is finite-dimensional.

Notice that the finiteness assumption of A in this theorem is indispensable. In fact, if D is the direct sum of \mathbb{C} with an infinite-dimensional nuclear unital C^* -algebra having no tracial state, then D is not finite (although it has a tracial state), the crossed product $D \rtimes H$ of the trivial action of a finite group H on D is nuclear and has property T, but $D \rtimes H$ is infinite-dimensional. We will see at the end of this article that the amenability of G is also indispensable (even if we assume that $A \rtimes_{\alpha,r} G$ is nuclear).

Theorem 2.3. Let G be an amenable discrete group and let A be a finite nuclear unital C^{*}-algebra. If there is an action α of G on A such that $A \rtimes_{\alpha,r} G$ has property T, then G is finite and A is finite-dimensional.

Proof. Let us set $I_{\alpha} := \bigcap_{\tau \in T_{\alpha}(A)} \ker \pi_{\tau}$ and $A_{\alpha} := A/I_{\alpha}$. Denote $B := A \rtimes_{\alpha,r} G$. The finiteness assumption of A as well as parts (a) and (c) of Lemma 2.1 imply that $T(B) \neq \emptyset$ and $I_{\alpha} \neq A$. By Proposition 2.2, we know that the group G has to be finite. Moreover, the argument of Proposition 2.2 tells us that I_{α} is α -invariant and $B_{\alpha} := A_{\alpha} \rtimes_{\beta,r} G$ is finite-dimensional. It suffices to show that $I_{\alpha} = \{0\}$.

Suppose on the contrary that $I_{\alpha} \neq \{0\}$. As in (2.1), we have

$$B = B_{\mathbf{nt}} \oplus B_{\mathbf{fd}}$$

Thus, $I_{\alpha} \rtimes_{\alpha,r} G = J_{\mathbf{nt}} \oplus J_{\mathbf{fd}}$, with $J_{\mathbf{nt}}$ (respectively, $J_{\mathbf{fd}}$) being a closed ideal of $B_{\mathbf{nt}}$ (respectively, $B_{\mathbf{fd}}$). The short exact sequence

$$0 \to I_{\alpha} \to A \to A_{\alpha} \to 0,$$

induces a short exact sequence of the corresponding reduced crossed products, because G is amenable. From this, we obtain

$$B_{\alpha} = B/(I_{\alpha} \rtimes_{\alpha,r} G) = B_{\mathbf{nt}}/J_{\mathbf{nt}} \oplus B_{\mathbf{fd}}/J_{\mathbf{fd}}$$

Hence, $B_{\mathbf{nt}}/J_{\mathbf{nt}}$ is a quotient C^* -algebra of the finite-dimensional C^* -algebra B_{α} . This forces $J_{\mathbf{nt}} = B_{\mathbf{nt}}$ (otherwise, $B_{\mathbf{nt}}$ will have a tracial state). Therefore, $B_{\alpha} \cong B_{\mathbf{fd}}/J_{\mathbf{fd}}$, or equivalently, $B_{\mathbf{fd}} \cong B_{\alpha} \oplus J_{\mathbf{fd}}$ (as $B_{\mathbf{fd}}$ is finite-dimensional). This gives

$$B \cong B_{\alpha} \oplus J_{\mathbf{fd}} \oplus B_{\mathbf{nt}} = B_{\alpha} \oplus J_{\mathbf{fd}} \oplus J_{\mathbf{nt}} = B_{\alpha} \oplus (I_{\alpha} \rtimes_{\alpha, r} G).$$

Consequently, $I_{\alpha} \rtimes_{\alpha,r} G$ is a unital C^* -algebra and so is I_{α} .

Now, by the finiteness assumption of A, one knows that $T(I_{\alpha}) \neq \emptyset$, and Lemma 2.1(c) will produce an element $\tau \in T_{\alpha}(I_{\alpha})$. Let $\Phi : A \to M(I_{\alpha}) = I_{\alpha}$ be the canonical G-equivariant *-epimorphism. If we define

$$\tau'(a) := \left\langle \pi_\tau \big(\Phi(a) \big) \xi_\tau, \xi_\tau \right\rangle \quad (a \in A),$$

then $\tau' \in T_{\alpha}(A)$ and $\tau'|_{I_{\alpha}} = \tau$. However, the existence of such a τ' contradicts the definition of I_{α} .

Corollary 2.4. Let G be an infinite discrete group and α_G be the left translation action of G on $\ell^{\infty}(G)$. The following statements are equivalent:

- (1) G is nonamenable,
- (2) $\ell^{\infty}(G) \rtimes_{\alpha_G, r} G$ does not have a tracial state,
- (3) $\ell^{\infty}(G) \rtimes_{\alpha_G,r} G$ has strong property T (see [9]),
- (4) $\ell^{\infty}(G) \rtimes_{\alpha_G, r} G$ has property T,
- (5) there is a finite nuclear unital C^* -algebra A and an action α of G on A such that $A \rtimes_{\alpha,r} G$ has property T.

Proof. If G is nonamenable, then $T_{\alpha_G}(\ell^{\infty}(G)) = \emptyset$ and Lemma 2.1(a) tells us that statement (2) holds. On the other hand, if $\ell^{\infty}(G) \rtimes_{\alpha_G,r} G$ does not have a tracial state, then [9, Proposition 5.2] gives statement (3). Moreover, a strong property T C^{*}-algebra clearly has property T. Finally, suppose that statement (5) holds but G is amenable. Then Theorem 2.3 produces the contradiction that G is finite.

The following comparison of Corollary 2.4 with the main result of Ozawa in [10] (see also Theorem 5.1.6 and Proposition 5.1.3 of [3]) may be worth mentioning:

a discrete group G is exact if and only if $\ell^{\infty}(G) \rtimes_{\alpha_G, r} G$ is nuclear (or equivalently, the action α_G is amenable).

This result tells us that one cannot weaken the assumption of G being amenable in Theorem 2.3 to the assumptions that the action α is amenable and the crossed product $A \rtimes_{\alpha,r} G$ is nuclear. Indeed, if G is an exact nonamenable group, then α_G is amenable, the reduced crossed product $\ell^{\infty}(G) \rtimes_{\alpha_G,r} G$ has property T and is nuclear, while $\ell^{\infty}(G) \rtimes_{\alpha_G,r} G$ is infinite-dimensional.

Acknowledgment. Ng's work was supported by National Natural Science Foundation of China grant (11471168).

References

- B. Bekka, Property (T) for C^{*}-algebras, Bull. Lond. Math. Soc. 38 (2006), no. 5, 857–867. Zbl 1114.46039. MR2268371. DOI 10.1112/S0024609306018765. 381, 382
- N. P. Brown, Kazhdan's property T and C*-algebras, J. Funct. Anal. 240 (2006), no. 1, 290–296. MR2259898. DOI 10.1016/j.jfa.2006.05.003. 381, 383
- N. P. Brown and N. Ozawa, C^{*}-algebras and Finite-dimensional Approximations, Grad. Stud. Math. 88, Amer. Math. Soc., Providence, 2008. MR2391387. DOI 10.1090/gsm/088. 382, 383, 384
- J. Cuntz and G. K. Pedersen, Equivalence and traces on C*-algebras, J. Funct. Anal. 33 (1979), no. 2, 135–164. Zbl 0427.46042. MR0546503. DOI 10.1016/0022-1236(79)90108-3. 382
- M. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590. Zbl 0097.31705. MR0138100. 382
- F. Kamalov, Property T and Amenable Transformation Group C^{*}-algebras, Canad. Math. Bull. 58 (2015), no. 1, 110–114. Zbl pre06418029. MR3303213. DOI 10.4153/ CMB-2014-006-5. 381, 383
- E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of C^{*}-algebras, Math. Ann. **315** (1999), no. 2, 169–203. Zbl 0946.46054. MR1721796. DOI 10.1007/ s002080050364. 383
- E. C. Lance, Hilbert C^{*}-modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. MR1325694. DOI 10.1017/CBO9780511526206. 382
- C.-W. Leung and C.-K. Ng, Property (T) and strong property (T) for unital C*-algebras, J. Funct. Anal. 256 (2009), no. 9, 3055–3070. Zbl 1176.46054. MR2502432. DOI 10.1016/ j.jfa.2009.01.004. 384
- N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 691–695. Zbl 0953.43001. MR1763912. DOI 10.1016/ S0764-4442(00)00248-2. 384

¹Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China.

E-mail address: jiangbaojie@gmail.com

²Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China.

E-mail address: ckng@nankai.edu.cn; ckngmath@hotmail.com